Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
blobd03eb6f7b0584e368bdd96e0f1969af58e885371
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
28 #include <asm/tlbflush.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu-hash64.h>
32 #include <asm/hvcall.h>
33 #include <asm/synch.h>
34 #include <asm/ppc-opcode.h>
35 #include <asm/cputable.h>
37 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
38 #define MAX_LPID_970 63
40 /* Power architecture requires HPT is at least 256kB */
41 #define PPC_MIN_HPT_ORDER 18
43 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
45 unsigned long hpt;
46 struct revmap_entry *rev;
47 struct kvmppc_linear_info *li;
48 long order = kvm_hpt_order;
50 if (htab_orderp) {
51 order = *htab_orderp;
52 if (order < PPC_MIN_HPT_ORDER)
53 order = PPC_MIN_HPT_ORDER;
57 * If the user wants a different size from default,
58 * try first to allocate it from the kernel page allocator.
60 hpt = 0;
61 if (order != kvm_hpt_order) {
62 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
63 __GFP_NOWARN, order - PAGE_SHIFT);
64 if (!hpt)
65 --order;
68 /* Next try to allocate from the preallocated pool */
69 if (!hpt) {
70 li = kvm_alloc_hpt();
71 if (li) {
72 hpt = (ulong)li->base_virt;
73 kvm->arch.hpt_li = li;
74 order = kvm_hpt_order;
78 /* Lastly try successively smaller sizes from the page allocator */
79 while (!hpt && order > PPC_MIN_HPT_ORDER) {
80 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
81 __GFP_NOWARN, order - PAGE_SHIFT);
82 if (!hpt)
83 --order;
86 if (!hpt)
87 return -ENOMEM;
89 kvm->arch.hpt_virt = hpt;
90 kvm->arch.hpt_order = order;
91 /* HPTEs are 2**4 bytes long */
92 kvm->arch.hpt_npte = 1ul << (order - 4);
93 /* 128 (2**7) bytes in each HPTEG */
94 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
96 /* Allocate reverse map array */
97 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
98 if (!rev) {
99 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
100 goto out_freehpt;
102 kvm->arch.revmap = rev;
103 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
105 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
106 hpt, order, kvm->arch.lpid);
108 if (htab_orderp)
109 *htab_orderp = order;
110 return 0;
112 out_freehpt:
113 if (kvm->arch.hpt_li)
114 kvm_release_hpt(kvm->arch.hpt_li);
115 else
116 free_pages(hpt, order - PAGE_SHIFT);
117 return -ENOMEM;
120 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
122 long err = -EBUSY;
123 long order;
125 mutex_lock(&kvm->lock);
126 if (kvm->arch.rma_setup_done) {
127 kvm->arch.rma_setup_done = 0;
128 /* order rma_setup_done vs. vcpus_running */
129 smp_mb();
130 if (atomic_read(&kvm->arch.vcpus_running)) {
131 kvm->arch.rma_setup_done = 1;
132 goto out;
135 if (kvm->arch.hpt_virt) {
136 order = kvm->arch.hpt_order;
137 /* Set the entire HPT to 0, i.e. invalid HPTEs */
138 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
140 * Set the whole last_vcpu array to an invalid vcpu number.
141 * This ensures that each vcpu will flush its TLB on next entry.
143 memset(kvm->arch.last_vcpu, 0xff, sizeof(kvm->arch.last_vcpu));
144 *htab_orderp = order;
145 err = 0;
146 } else {
147 err = kvmppc_alloc_hpt(kvm, htab_orderp);
148 order = *htab_orderp;
150 out:
151 mutex_unlock(&kvm->lock);
152 return err;
155 void kvmppc_free_hpt(struct kvm *kvm)
157 kvmppc_free_lpid(kvm->arch.lpid);
158 vfree(kvm->arch.revmap);
159 if (kvm->arch.hpt_li)
160 kvm_release_hpt(kvm->arch.hpt_li);
161 else
162 free_pages(kvm->arch.hpt_virt,
163 kvm->arch.hpt_order - PAGE_SHIFT);
166 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
167 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
169 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
172 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
173 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
175 return (pgsize == 0x10000) ? 0x1000 : 0;
178 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
179 unsigned long porder)
181 unsigned long i;
182 unsigned long npages;
183 unsigned long hp_v, hp_r;
184 unsigned long addr, hash;
185 unsigned long psize;
186 unsigned long hp0, hp1;
187 long ret;
188 struct kvm *kvm = vcpu->kvm;
190 psize = 1ul << porder;
191 npages = memslot->npages >> (porder - PAGE_SHIFT);
193 /* VRMA can't be > 1TB */
194 if (npages > 1ul << (40 - porder))
195 npages = 1ul << (40 - porder);
196 /* Can't use more than 1 HPTE per HPTEG */
197 if (npages > kvm->arch.hpt_mask + 1)
198 npages = kvm->arch.hpt_mask + 1;
200 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
201 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
202 hp1 = hpte1_pgsize_encoding(psize) |
203 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
205 for (i = 0; i < npages; ++i) {
206 addr = i << porder;
207 /* can't use hpt_hash since va > 64 bits */
208 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
210 * We assume that the hash table is empty and no
211 * vcpus are using it at this stage. Since we create
212 * at most one HPTE per HPTEG, we just assume entry 7
213 * is available and use it.
215 hash = (hash << 3) + 7;
216 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
217 hp_r = hp1 | addr;
218 ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
219 if (ret != H_SUCCESS) {
220 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
221 addr, ret);
222 break;
227 int kvmppc_mmu_hv_init(void)
229 unsigned long host_lpid, rsvd_lpid;
231 if (!cpu_has_feature(CPU_FTR_HVMODE))
232 return -EINVAL;
234 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
235 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
236 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
237 rsvd_lpid = LPID_RSVD;
238 } else {
239 host_lpid = 0; /* PPC970 */
240 rsvd_lpid = MAX_LPID_970;
243 kvmppc_init_lpid(rsvd_lpid + 1);
245 kvmppc_claim_lpid(host_lpid);
246 /* rsvd_lpid is reserved for use in partition switching */
247 kvmppc_claim_lpid(rsvd_lpid);
249 return 0;
252 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
256 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
258 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
262 * This is called to get a reference to a guest page if there isn't
263 * one already in the kvm->arch.slot_phys[][] arrays.
265 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
266 struct kvm_memory_slot *memslot,
267 unsigned long psize)
269 unsigned long start;
270 long np, err;
271 struct page *page, *hpage, *pages[1];
272 unsigned long s, pgsize;
273 unsigned long *physp;
274 unsigned int is_io, got, pgorder;
275 struct vm_area_struct *vma;
276 unsigned long pfn, i, npages;
278 physp = kvm->arch.slot_phys[memslot->id];
279 if (!physp)
280 return -EINVAL;
281 if (physp[gfn - memslot->base_gfn])
282 return 0;
284 is_io = 0;
285 got = 0;
286 page = NULL;
287 pgsize = psize;
288 err = -EINVAL;
289 start = gfn_to_hva_memslot(memslot, gfn);
291 /* Instantiate and get the page we want access to */
292 np = get_user_pages_fast(start, 1, 1, pages);
293 if (np != 1) {
294 /* Look up the vma for the page */
295 down_read(&current->mm->mmap_sem);
296 vma = find_vma(current->mm, start);
297 if (!vma || vma->vm_start > start ||
298 start + psize > vma->vm_end ||
299 !(vma->vm_flags & VM_PFNMAP))
300 goto up_err;
301 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
302 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
303 /* check alignment of pfn vs. requested page size */
304 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
305 goto up_err;
306 up_read(&current->mm->mmap_sem);
308 } else {
309 page = pages[0];
310 got = KVMPPC_GOT_PAGE;
312 /* See if this is a large page */
313 s = PAGE_SIZE;
314 if (PageHuge(page)) {
315 hpage = compound_head(page);
316 s <<= compound_order(hpage);
317 /* Get the whole large page if slot alignment is ok */
318 if (s > psize && slot_is_aligned(memslot, s) &&
319 !(memslot->userspace_addr & (s - 1))) {
320 start &= ~(s - 1);
321 pgsize = s;
322 get_page(hpage);
323 put_page(page);
324 page = hpage;
327 if (s < psize)
328 goto out;
329 pfn = page_to_pfn(page);
332 npages = pgsize >> PAGE_SHIFT;
333 pgorder = __ilog2(npages);
334 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
335 spin_lock(&kvm->arch.slot_phys_lock);
336 for (i = 0; i < npages; ++i) {
337 if (!physp[i]) {
338 physp[i] = ((pfn + i) << PAGE_SHIFT) +
339 got + is_io + pgorder;
340 got = 0;
343 spin_unlock(&kvm->arch.slot_phys_lock);
344 err = 0;
346 out:
347 if (got)
348 put_page(page);
349 return err;
351 up_err:
352 up_read(&current->mm->mmap_sem);
353 return err;
357 * We come here on a H_ENTER call from the guest when we are not
358 * using mmu notifiers and we don't have the requested page pinned
359 * already.
361 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
362 long pte_index, unsigned long pteh, unsigned long ptel)
364 struct kvm *kvm = vcpu->kvm;
365 unsigned long psize, gpa, gfn;
366 struct kvm_memory_slot *memslot;
367 long ret;
369 if (kvm->arch.using_mmu_notifiers)
370 goto do_insert;
372 psize = hpte_page_size(pteh, ptel);
373 if (!psize)
374 return H_PARAMETER;
376 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
378 /* Find the memslot (if any) for this address */
379 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
380 gfn = gpa >> PAGE_SHIFT;
381 memslot = gfn_to_memslot(kvm, gfn);
382 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
383 if (!slot_is_aligned(memslot, psize))
384 return H_PARAMETER;
385 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
386 return H_PARAMETER;
389 do_insert:
390 /* Protect linux PTE lookup from page table destruction */
391 rcu_read_lock_sched(); /* this disables preemption too */
392 vcpu->arch.pgdir = current->mm->pgd;
393 ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
394 rcu_read_unlock_sched();
395 if (ret == H_TOO_HARD) {
396 /* this can't happen */
397 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
398 ret = H_RESOURCE; /* or something */
400 return ret;
404 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
405 gva_t eaddr)
407 u64 mask;
408 int i;
410 for (i = 0; i < vcpu->arch.slb_nr; i++) {
411 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
412 continue;
414 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
415 mask = ESID_MASK_1T;
416 else
417 mask = ESID_MASK;
419 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
420 return &vcpu->arch.slb[i];
422 return NULL;
425 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
426 unsigned long ea)
428 unsigned long ra_mask;
430 ra_mask = hpte_page_size(v, r) - 1;
431 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
434 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
435 struct kvmppc_pte *gpte, bool data)
437 struct kvm *kvm = vcpu->kvm;
438 struct kvmppc_slb *slbe;
439 unsigned long slb_v;
440 unsigned long pp, key;
441 unsigned long v, gr;
442 unsigned long *hptep;
443 int index;
444 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
446 /* Get SLB entry */
447 if (virtmode) {
448 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
449 if (!slbe)
450 return -EINVAL;
451 slb_v = slbe->origv;
452 } else {
453 /* real mode access */
454 slb_v = vcpu->kvm->arch.vrma_slb_v;
457 /* Find the HPTE in the hash table */
458 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
459 HPTE_V_VALID | HPTE_V_ABSENT);
460 if (index < 0)
461 return -ENOENT;
462 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
463 v = hptep[0] & ~HPTE_V_HVLOCK;
464 gr = kvm->arch.revmap[index].guest_rpte;
466 /* Unlock the HPTE */
467 asm volatile("lwsync" : : : "memory");
468 hptep[0] = v;
470 gpte->eaddr = eaddr;
471 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
473 /* Get PP bits and key for permission check */
474 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
475 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
476 key &= slb_v;
478 /* Calculate permissions */
479 gpte->may_read = hpte_read_permission(pp, key);
480 gpte->may_write = hpte_write_permission(pp, key);
481 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
483 /* Storage key permission check for POWER7 */
484 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
485 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
486 if (amrfield & 1)
487 gpte->may_read = 0;
488 if (amrfield & 2)
489 gpte->may_write = 0;
492 /* Get the guest physical address */
493 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
494 return 0;
498 * Quick test for whether an instruction is a load or a store.
499 * If the instruction is a load or a store, then this will indicate
500 * which it is, at least on server processors. (Embedded processors
501 * have some external PID instructions that don't follow the rule
502 * embodied here.) If the instruction isn't a load or store, then
503 * this doesn't return anything useful.
505 static int instruction_is_store(unsigned int instr)
507 unsigned int mask;
509 mask = 0x10000000;
510 if ((instr & 0xfc000000) == 0x7c000000)
511 mask = 0x100; /* major opcode 31 */
512 return (instr & mask) != 0;
515 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
516 unsigned long gpa, gva_t ea, int is_store)
518 int ret;
519 u32 last_inst;
520 unsigned long srr0 = kvmppc_get_pc(vcpu);
522 /* We try to load the last instruction. We don't let
523 * emulate_instruction do it as it doesn't check what
524 * kvmppc_ld returns.
525 * If we fail, we just return to the guest and try executing it again.
527 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
528 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
529 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
530 return RESUME_GUEST;
531 vcpu->arch.last_inst = last_inst;
535 * WARNING: We do not know for sure whether the instruction we just
536 * read from memory is the same that caused the fault in the first
537 * place. If the instruction we read is neither an load or a store,
538 * then it can't access memory, so we don't need to worry about
539 * enforcing access permissions. So, assuming it is a load or
540 * store, we just check that its direction (load or store) is
541 * consistent with the original fault, since that's what we
542 * checked the access permissions against. If there is a mismatch
543 * we just return and retry the instruction.
546 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
547 return RESUME_GUEST;
550 * Emulated accesses are emulated by looking at the hash for
551 * translation once, then performing the access later. The
552 * translation could be invalidated in the meantime in which
553 * point performing the subsequent memory access on the old
554 * physical address could possibly be a security hole for the
555 * guest (but not the host).
557 * This is less of an issue for MMIO stores since they aren't
558 * globally visible. It could be an issue for MMIO loads to
559 * a certain extent but we'll ignore it for now.
562 vcpu->arch.paddr_accessed = gpa;
563 vcpu->arch.vaddr_accessed = ea;
564 return kvmppc_emulate_mmio(run, vcpu);
567 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
568 unsigned long ea, unsigned long dsisr)
570 struct kvm *kvm = vcpu->kvm;
571 unsigned long *hptep, hpte[3], r;
572 unsigned long mmu_seq, psize, pte_size;
573 unsigned long gfn, hva, pfn;
574 struct kvm_memory_slot *memslot;
575 unsigned long *rmap;
576 struct revmap_entry *rev;
577 struct page *page, *pages[1];
578 long index, ret, npages;
579 unsigned long is_io;
580 unsigned int writing, write_ok;
581 struct vm_area_struct *vma;
582 unsigned long rcbits;
585 * Real-mode code has already searched the HPT and found the
586 * entry we're interested in. Lock the entry and check that
587 * it hasn't changed. If it has, just return and re-execute the
588 * instruction.
590 if (ea != vcpu->arch.pgfault_addr)
591 return RESUME_GUEST;
592 index = vcpu->arch.pgfault_index;
593 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
594 rev = &kvm->arch.revmap[index];
595 preempt_disable();
596 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
597 cpu_relax();
598 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
599 hpte[1] = hptep[1];
600 hpte[2] = r = rev->guest_rpte;
601 asm volatile("lwsync" : : : "memory");
602 hptep[0] = hpte[0];
603 preempt_enable();
605 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
606 hpte[1] != vcpu->arch.pgfault_hpte[1])
607 return RESUME_GUEST;
609 /* Translate the logical address and get the page */
610 psize = hpte_page_size(hpte[0], r);
611 gfn = hpte_rpn(r, psize);
612 memslot = gfn_to_memslot(kvm, gfn);
614 /* No memslot means it's an emulated MMIO region */
615 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
616 unsigned long gpa = (gfn << PAGE_SHIFT) | (ea & (psize - 1));
617 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
618 dsisr & DSISR_ISSTORE);
621 if (!kvm->arch.using_mmu_notifiers)
622 return -EFAULT; /* should never get here */
624 /* used to check for invalidations in progress */
625 mmu_seq = kvm->mmu_notifier_seq;
626 smp_rmb();
628 is_io = 0;
629 pfn = 0;
630 page = NULL;
631 pte_size = PAGE_SIZE;
632 writing = (dsisr & DSISR_ISSTORE) != 0;
633 /* If writing != 0, then the HPTE must allow writing, if we get here */
634 write_ok = writing;
635 hva = gfn_to_hva_memslot(memslot, gfn);
636 npages = get_user_pages_fast(hva, 1, writing, pages);
637 if (npages < 1) {
638 /* Check if it's an I/O mapping */
639 down_read(&current->mm->mmap_sem);
640 vma = find_vma(current->mm, hva);
641 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
642 (vma->vm_flags & VM_PFNMAP)) {
643 pfn = vma->vm_pgoff +
644 ((hva - vma->vm_start) >> PAGE_SHIFT);
645 pte_size = psize;
646 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
647 write_ok = vma->vm_flags & VM_WRITE;
649 up_read(&current->mm->mmap_sem);
650 if (!pfn)
651 return -EFAULT;
652 } else {
653 page = pages[0];
654 if (PageHuge(page)) {
655 page = compound_head(page);
656 pte_size <<= compound_order(page);
658 /* if the guest wants write access, see if that is OK */
659 if (!writing && hpte_is_writable(r)) {
660 pte_t *ptep, pte;
663 * We need to protect against page table destruction
664 * while looking up and updating the pte.
666 rcu_read_lock_sched();
667 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
668 hva, NULL);
669 if (ptep && pte_present(*ptep)) {
670 pte = kvmppc_read_update_linux_pte(ptep, 1);
671 if (pte_write(pte))
672 write_ok = 1;
674 rcu_read_unlock_sched();
676 pfn = page_to_pfn(page);
679 ret = -EFAULT;
680 if (psize > pte_size)
681 goto out_put;
683 /* Check WIMG vs. the actual page we're accessing */
684 if (!hpte_cache_flags_ok(r, is_io)) {
685 if (is_io)
686 return -EFAULT;
688 * Allow guest to map emulated device memory as
689 * uncacheable, but actually make it cacheable.
691 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
694 /* Set the HPTE to point to pfn */
695 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
696 if (hpte_is_writable(r) && !write_ok)
697 r = hpte_make_readonly(r);
698 ret = RESUME_GUEST;
699 preempt_disable();
700 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
701 cpu_relax();
702 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
703 rev->guest_rpte != hpte[2])
704 /* HPTE has been changed under us; let the guest retry */
705 goto out_unlock;
706 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
708 rmap = &memslot->rmap[gfn - memslot->base_gfn];
709 lock_rmap(rmap);
711 /* Check if we might have been invalidated; let the guest retry if so */
712 ret = RESUME_GUEST;
713 if (mmu_notifier_retry(vcpu, mmu_seq)) {
714 unlock_rmap(rmap);
715 goto out_unlock;
718 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
719 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
720 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
722 if (hptep[0] & HPTE_V_VALID) {
723 /* HPTE was previously valid, so we need to invalidate it */
724 unlock_rmap(rmap);
725 hptep[0] |= HPTE_V_ABSENT;
726 kvmppc_invalidate_hpte(kvm, hptep, index);
727 /* don't lose previous R and C bits */
728 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
729 } else {
730 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
733 hptep[1] = r;
734 eieio();
735 hptep[0] = hpte[0];
736 asm volatile("ptesync" : : : "memory");
737 preempt_enable();
738 if (page && hpte_is_writable(r))
739 SetPageDirty(page);
741 out_put:
742 if (page) {
744 * We drop pages[0] here, not page because page might
745 * have been set to the head page of a compound, but
746 * we have to drop the reference on the correct tail
747 * page to match the get inside gup()
749 put_page(pages[0]);
751 return ret;
753 out_unlock:
754 hptep[0] &= ~HPTE_V_HVLOCK;
755 preempt_enable();
756 goto out_put;
759 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
760 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
761 unsigned long gfn))
763 int ret;
764 int retval = 0;
765 struct kvm_memslots *slots;
766 struct kvm_memory_slot *memslot;
768 slots = kvm_memslots(kvm);
769 kvm_for_each_memslot(memslot, slots) {
770 unsigned long start = memslot->userspace_addr;
771 unsigned long end;
773 end = start + (memslot->npages << PAGE_SHIFT);
774 if (hva >= start && hva < end) {
775 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
777 ret = handler(kvm, &memslot->rmap[gfn_offset],
778 memslot->base_gfn + gfn_offset);
779 retval |= ret;
783 return retval;
786 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
787 unsigned long gfn)
789 struct revmap_entry *rev = kvm->arch.revmap;
790 unsigned long h, i, j;
791 unsigned long *hptep;
792 unsigned long ptel, psize, rcbits;
794 for (;;) {
795 lock_rmap(rmapp);
796 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
797 unlock_rmap(rmapp);
798 break;
802 * To avoid an ABBA deadlock with the HPTE lock bit,
803 * we can't spin on the HPTE lock while holding the
804 * rmap chain lock.
806 i = *rmapp & KVMPPC_RMAP_INDEX;
807 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
808 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
809 /* unlock rmap before spinning on the HPTE lock */
810 unlock_rmap(rmapp);
811 while (hptep[0] & HPTE_V_HVLOCK)
812 cpu_relax();
813 continue;
815 j = rev[i].forw;
816 if (j == i) {
817 /* chain is now empty */
818 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
819 } else {
820 /* remove i from chain */
821 h = rev[i].back;
822 rev[h].forw = j;
823 rev[j].back = h;
824 rev[i].forw = rev[i].back = i;
825 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
828 /* Now check and modify the HPTE */
829 ptel = rev[i].guest_rpte;
830 psize = hpte_page_size(hptep[0], ptel);
831 if ((hptep[0] & HPTE_V_VALID) &&
832 hpte_rpn(ptel, psize) == gfn) {
833 hptep[0] |= HPTE_V_ABSENT;
834 kvmppc_invalidate_hpte(kvm, hptep, i);
835 /* Harvest R and C */
836 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
837 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
838 rev[i].guest_rpte = ptel | rcbits;
840 unlock_rmap(rmapp);
841 hptep[0] &= ~HPTE_V_HVLOCK;
843 return 0;
846 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
848 if (kvm->arch.using_mmu_notifiers)
849 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
850 return 0;
853 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
854 unsigned long gfn)
856 struct revmap_entry *rev = kvm->arch.revmap;
857 unsigned long head, i, j;
858 unsigned long *hptep;
859 int ret = 0;
861 retry:
862 lock_rmap(rmapp);
863 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
864 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
865 ret = 1;
867 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
868 unlock_rmap(rmapp);
869 return ret;
872 i = head = *rmapp & KVMPPC_RMAP_INDEX;
873 do {
874 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
875 j = rev[i].forw;
877 /* If this HPTE isn't referenced, ignore it */
878 if (!(hptep[1] & HPTE_R_R))
879 continue;
881 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
882 /* unlock rmap before spinning on the HPTE lock */
883 unlock_rmap(rmapp);
884 while (hptep[0] & HPTE_V_HVLOCK)
885 cpu_relax();
886 goto retry;
889 /* Now check and modify the HPTE */
890 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
891 kvmppc_clear_ref_hpte(kvm, hptep, i);
892 rev[i].guest_rpte |= HPTE_R_R;
893 ret = 1;
895 hptep[0] &= ~HPTE_V_HVLOCK;
896 } while ((i = j) != head);
898 unlock_rmap(rmapp);
899 return ret;
902 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
904 if (!kvm->arch.using_mmu_notifiers)
905 return 0;
906 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
909 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
910 unsigned long gfn)
912 struct revmap_entry *rev = kvm->arch.revmap;
913 unsigned long head, i, j;
914 unsigned long *hp;
915 int ret = 1;
917 if (*rmapp & KVMPPC_RMAP_REFERENCED)
918 return 1;
920 lock_rmap(rmapp);
921 if (*rmapp & KVMPPC_RMAP_REFERENCED)
922 goto out;
924 if (*rmapp & KVMPPC_RMAP_PRESENT) {
925 i = head = *rmapp & KVMPPC_RMAP_INDEX;
926 do {
927 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
928 j = rev[i].forw;
929 if (hp[1] & HPTE_R_R)
930 goto out;
931 } while ((i = j) != head);
933 ret = 0;
935 out:
936 unlock_rmap(rmapp);
937 return ret;
940 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
942 if (!kvm->arch.using_mmu_notifiers)
943 return 0;
944 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
947 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
949 if (!kvm->arch.using_mmu_notifiers)
950 return;
951 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
954 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
956 struct revmap_entry *rev = kvm->arch.revmap;
957 unsigned long head, i, j;
958 unsigned long *hptep;
959 int ret = 0;
961 retry:
962 lock_rmap(rmapp);
963 if (*rmapp & KVMPPC_RMAP_CHANGED) {
964 *rmapp &= ~KVMPPC_RMAP_CHANGED;
965 ret = 1;
967 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
968 unlock_rmap(rmapp);
969 return ret;
972 i = head = *rmapp & KVMPPC_RMAP_INDEX;
973 do {
974 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
975 j = rev[i].forw;
977 if (!(hptep[1] & HPTE_R_C))
978 continue;
980 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
981 /* unlock rmap before spinning on the HPTE lock */
982 unlock_rmap(rmapp);
983 while (hptep[0] & HPTE_V_HVLOCK)
984 cpu_relax();
985 goto retry;
988 /* Now check and modify the HPTE */
989 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
990 /* need to make it temporarily absent to clear C */
991 hptep[0] |= HPTE_V_ABSENT;
992 kvmppc_invalidate_hpte(kvm, hptep, i);
993 hptep[1] &= ~HPTE_R_C;
994 eieio();
995 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
996 rev[i].guest_rpte |= HPTE_R_C;
997 ret = 1;
999 hptep[0] &= ~HPTE_V_HVLOCK;
1000 } while ((i = j) != head);
1002 unlock_rmap(rmapp);
1003 return ret;
1006 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1008 unsigned long i;
1009 unsigned long *rmapp, *map;
1011 preempt_disable();
1012 rmapp = memslot->rmap;
1013 map = memslot->dirty_bitmap;
1014 for (i = 0; i < memslot->npages; ++i) {
1015 if (kvm_test_clear_dirty(kvm, rmapp))
1016 __set_bit_le(i, map);
1017 ++rmapp;
1019 preempt_enable();
1020 return 0;
1023 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1024 unsigned long *nb_ret)
1026 struct kvm_memory_slot *memslot;
1027 unsigned long gfn = gpa >> PAGE_SHIFT;
1028 struct page *page, *pages[1];
1029 int npages;
1030 unsigned long hva, psize, offset;
1031 unsigned long pa;
1032 unsigned long *physp;
1034 memslot = gfn_to_memslot(kvm, gfn);
1035 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1036 return NULL;
1037 if (!kvm->arch.using_mmu_notifiers) {
1038 physp = kvm->arch.slot_phys[memslot->id];
1039 if (!physp)
1040 return NULL;
1041 physp += gfn - memslot->base_gfn;
1042 pa = *physp;
1043 if (!pa) {
1044 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1045 PAGE_SIZE) < 0)
1046 return NULL;
1047 pa = *physp;
1049 page = pfn_to_page(pa >> PAGE_SHIFT);
1050 get_page(page);
1051 } else {
1052 hva = gfn_to_hva_memslot(memslot, gfn);
1053 npages = get_user_pages_fast(hva, 1, 1, pages);
1054 if (npages < 1)
1055 return NULL;
1056 page = pages[0];
1058 psize = PAGE_SIZE;
1059 if (PageHuge(page)) {
1060 page = compound_head(page);
1061 psize <<= compound_order(page);
1063 offset = gpa & (psize - 1);
1064 if (nb_ret)
1065 *nb_ret = psize - offset;
1066 return page_address(page) + offset;
1069 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1071 struct page *page = virt_to_page(va);
1073 put_page(page);
1076 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1078 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1080 if (cpu_has_feature(CPU_FTR_ARCH_206))
1081 vcpu->arch.slb_nr = 32; /* POWER7 */
1082 else
1083 vcpu->arch.slb_nr = 64;
1085 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1086 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1088 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;