Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / powerpc / kvm / book3s_hv_rm_mmu.c
blob5c70d19494f9251bee3968ba5f23a7c56cd6c926
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/hugetlb.h>
14 #include <linux/module.h>
16 #include <asm/tlbflush.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/mmu-hash64.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
24 /* Translate address of a vmalloc'd thing to a linear map address */
25 static void *real_vmalloc_addr(void *x)
27 unsigned long addr = (unsigned long) x;
28 pte_t *p;
30 p = find_linux_pte(swapper_pg_dir, addr);
31 if (!p || !pte_present(*p))
32 return NULL;
33 /* assume we don't have huge pages in vmalloc space... */
34 addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
35 return __va(addr);
39 * Add this HPTE into the chain for the real page.
40 * Must be called with the chain locked; it unlocks the chain.
42 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
43 unsigned long *rmap, long pte_index, int realmode)
45 struct revmap_entry *head, *tail;
46 unsigned long i;
48 if (*rmap & KVMPPC_RMAP_PRESENT) {
49 i = *rmap & KVMPPC_RMAP_INDEX;
50 head = &kvm->arch.revmap[i];
51 if (realmode)
52 head = real_vmalloc_addr(head);
53 tail = &kvm->arch.revmap[head->back];
54 if (realmode)
55 tail = real_vmalloc_addr(tail);
56 rev->forw = i;
57 rev->back = head->back;
58 tail->forw = pte_index;
59 head->back = pte_index;
60 } else {
61 rev->forw = rev->back = pte_index;
62 i = pte_index;
64 smp_wmb();
65 *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
67 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
69 /* Remove this HPTE from the chain for a real page */
70 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
71 struct revmap_entry *rev,
72 unsigned long hpte_v, unsigned long hpte_r)
74 struct revmap_entry *next, *prev;
75 unsigned long gfn, ptel, head;
76 struct kvm_memory_slot *memslot;
77 unsigned long *rmap;
78 unsigned long rcbits;
80 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
81 ptel = rev->guest_rpte |= rcbits;
82 gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
83 memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
84 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
85 return;
87 rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
88 lock_rmap(rmap);
90 head = *rmap & KVMPPC_RMAP_INDEX;
91 next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
92 prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
93 next->back = rev->back;
94 prev->forw = rev->forw;
95 if (head == pte_index) {
96 head = rev->forw;
97 if (head == pte_index)
98 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
99 else
100 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
102 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
103 unlock_rmap(rmap);
106 static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
107 int writing, unsigned long *pte_sizep)
109 pte_t *ptep;
110 unsigned long ps = *pte_sizep;
111 unsigned int shift;
113 ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
114 if (!ptep)
115 return __pte(0);
116 if (shift)
117 *pte_sizep = 1ul << shift;
118 else
119 *pte_sizep = PAGE_SIZE;
120 if (ps > *pte_sizep)
121 return __pte(0);
122 if (!pte_present(*ptep))
123 return __pte(0);
124 return kvmppc_read_update_linux_pte(ptep, writing);
127 static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
129 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
130 hpte[0] = hpte_v;
133 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
134 long pte_index, unsigned long pteh, unsigned long ptel)
136 struct kvm *kvm = vcpu->kvm;
137 unsigned long i, pa, gpa, gfn, psize;
138 unsigned long slot_fn, hva;
139 unsigned long *hpte;
140 struct revmap_entry *rev;
141 unsigned long g_ptel = ptel;
142 struct kvm_memory_slot *memslot;
143 unsigned long *physp, pte_size;
144 unsigned long is_io;
145 unsigned long *rmap;
146 pte_t pte;
147 unsigned int writing;
148 unsigned long mmu_seq;
149 unsigned long rcbits;
150 bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;
152 psize = hpte_page_size(pteh, ptel);
153 if (!psize)
154 return H_PARAMETER;
155 writing = hpte_is_writable(ptel);
156 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
158 /* used later to detect if we might have been invalidated */
159 mmu_seq = kvm->mmu_notifier_seq;
160 smp_rmb();
162 /* Find the memslot (if any) for this address */
163 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
164 gfn = gpa >> PAGE_SHIFT;
165 memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
166 pa = 0;
167 is_io = ~0ul;
168 rmap = NULL;
169 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
170 /* PPC970 can't do emulated MMIO */
171 if (!cpu_has_feature(CPU_FTR_ARCH_206))
172 return H_PARAMETER;
173 /* Emulated MMIO - mark this with key=31 */
174 pteh |= HPTE_V_ABSENT;
175 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
176 goto do_insert;
179 /* Check if the requested page fits entirely in the memslot. */
180 if (!slot_is_aligned(memslot, psize))
181 return H_PARAMETER;
182 slot_fn = gfn - memslot->base_gfn;
183 rmap = &memslot->rmap[slot_fn];
185 if (!kvm->arch.using_mmu_notifiers) {
186 physp = kvm->arch.slot_phys[memslot->id];
187 if (!physp)
188 return H_PARAMETER;
189 physp += slot_fn;
190 if (realmode)
191 physp = real_vmalloc_addr(physp);
192 pa = *physp;
193 if (!pa)
194 return H_TOO_HARD;
195 is_io = pa & (HPTE_R_I | HPTE_R_W);
196 pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
197 pa &= PAGE_MASK;
198 } else {
199 /* Translate to host virtual address */
200 hva = gfn_to_hva_memslot(memslot, gfn);
202 /* Look up the Linux PTE for the backing page */
203 pte_size = psize;
204 pte = lookup_linux_pte(vcpu, hva, writing, &pte_size);
205 if (pte_present(pte)) {
206 if (writing && !pte_write(pte))
207 /* make the actual HPTE be read-only */
208 ptel = hpte_make_readonly(ptel);
209 is_io = hpte_cache_bits(pte_val(pte));
210 pa = pte_pfn(pte) << PAGE_SHIFT;
213 if (pte_size < psize)
214 return H_PARAMETER;
215 if (pa && pte_size > psize)
216 pa |= gpa & (pte_size - 1);
218 ptel &= ~(HPTE_R_PP0 - psize);
219 ptel |= pa;
221 if (pa)
222 pteh |= HPTE_V_VALID;
223 else
224 pteh |= HPTE_V_ABSENT;
226 /* Check WIMG */
227 if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
228 if (is_io)
229 return H_PARAMETER;
231 * Allow guest to map emulated device memory as
232 * uncacheable, but actually make it cacheable.
234 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
235 ptel |= HPTE_R_M;
238 /* Find and lock the HPTEG slot to use */
239 do_insert:
240 if (pte_index >= kvm->arch.hpt_npte)
241 return H_PARAMETER;
242 if (likely((flags & H_EXACT) == 0)) {
243 pte_index &= ~7UL;
244 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
245 for (i = 0; i < 8; ++i) {
246 if ((*hpte & HPTE_V_VALID) == 0 &&
247 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
248 HPTE_V_ABSENT))
249 break;
250 hpte += 2;
252 if (i == 8) {
254 * Since try_lock_hpte doesn't retry (not even stdcx.
255 * failures), it could be that there is a free slot
256 * but we transiently failed to lock it. Try again,
257 * actually locking each slot and checking it.
259 hpte -= 16;
260 for (i = 0; i < 8; ++i) {
261 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
262 cpu_relax();
263 if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
264 break;
265 *hpte &= ~HPTE_V_HVLOCK;
266 hpte += 2;
268 if (i == 8)
269 return H_PTEG_FULL;
271 pte_index += i;
272 } else {
273 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
274 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
275 HPTE_V_ABSENT)) {
276 /* Lock the slot and check again */
277 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
278 cpu_relax();
279 if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
280 *hpte &= ~HPTE_V_HVLOCK;
281 return H_PTEG_FULL;
286 /* Save away the guest's idea of the second HPTE dword */
287 rev = &kvm->arch.revmap[pte_index];
288 if (realmode)
289 rev = real_vmalloc_addr(rev);
290 if (rev)
291 rev->guest_rpte = g_ptel;
293 /* Link HPTE into reverse-map chain */
294 if (pteh & HPTE_V_VALID) {
295 if (realmode)
296 rmap = real_vmalloc_addr(rmap);
297 lock_rmap(rmap);
298 /* Check for pending invalidations under the rmap chain lock */
299 if (kvm->arch.using_mmu_notifiers &&
300 mmu_notifier_retry(vcpu, mmu_seq)) {
301 /* inval in progress, write a non-present HPTE */
302 pteh |= HPTE_V_ABSENT;
303 pteh &= ~HPTE_V_VALID;
304 unlock_rmap(rmap);
305 } else {
306 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
307 realmode);
308 /* Only set R/C in real HPTE if already set in *rmap */
309 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
310 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
314 hpte[1] = ptel;
316 /* Write the first HPTE dword, unlocking the HPTE and making it valid */
317 eieio();
318 hpte[0] = pteh;
319 asm volatile("ptesync" : : : "memory");
321 vcpu->arch.gpr[4] = pte_index;
322 return H_SUCCESS;
324 EXPORT_SYMBOL_GPL(kvmppc_h_enter);
326 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
328 static inline int try_lock_tlbie(unsigned int *lock)
330 unsigned int tmp, old;
331 unsigned int token = LOCK_TOKEN;
333 asm volatile("1:lwarx %1,0,%2\n"
334 " cmpwi cr0,%1,0\n"
335 " bne 2f\n"
336 " stwcx. %3,0,%2\n"
337 " bne- 1b\n"
338 " isync\n"
339 "2:"
340 : "=&r" (tmp), "=&r" (old)
341 : "r" (lock), "r" (token)
342 : "cc", "memory");
343 return old == 0;
346 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
347 unsigned long pte_index, unsigned long avpn,
348 unsigned long va)
350 struct kvm *kvm = vcpu->kvm;
351 unsigned long *hpte;
352 unsigned long v, r, rb;
353 struct revmap_entry *rev;
355 if (pte_index >= kvm->arch.hpt_npte)
356 return H_PARAMETER;
357 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
358 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
359 cpu_relax();
360 if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
361 ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
362 ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
363 hpte[0] &= ~HPTE_V_HVLOCK;
364 return H_NOT_FOUND;
367 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
368 v = hpte[0] & ~HPTE_V_HVLOCK;
369 if (v & HPTE_V_VALID) {
370 hpte[0] &= ~HPTE_V_VALID;
371 rb = compute_tlbie_rb(v, hpte[1], pte_index);
372 if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
373 while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
374 cpu_relax();
375 asm volatile("ptesync" : : : "memory");
376 asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
377 : : "r" (rb), "r" (kvm->arch.lpid));
378 asm volatile("ptesync" : : : "memory");
379 kvm->arch.tlbie_lock = 0;
380 } else {
381 asm volatile("ptesync" : : : "memory");
382 asm volatile("tlbiel %0" : : "r" (rb));
383 asm volatile("ptesync" : : : "memory");
385 /* Read PTE low word after tlbie to get final R/C values */
386 remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
388 r = rev->guest_rpte;
389 unlock_hpte(hpte, 0);
391 vcpu->arch.gpr[4] = v;
392 vcpu->arch.gpr[5] = r;
393 return H_SUCCESS;
396 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
398 struct kvm *kvm = vcpu->kvm;
399 unsigned long *args = &vcpu->arch.gpr[4];
400 unsigned long *hp, *hptes[4], tlbrb[4];
401 long int i, j, k, n, found, indexes[4];
402 unsigned long flags, req, pte_index, rcbits;
403 long int local = 0;
404 long int ret = H_SUCCESS;
405 struct revmap_entry *rev, *revs[4];
407 if (atomic_read(&kvm->online_vcpus) == 1)
408 local = 1;
409 for (i = 0; i < 4 && ret == H_SUCCESS; ) {
410 n = 0;
411 for (; i < 4; ++i) {
412 j = i * 2;
413 pte_index = args[j];
414 flags = pte_index >> 56;
415 pte_index &= ((1ul << 56) - 1);
416 req = flags >> 6;
417 flags &= 3;
418 if (req == 3) { /* no more requests */
419 i = 4;
420 break;
422 if (req != 1 || flags == 3 ||
423 pte_index >= kvm->arch.hpt_npte) {
424 /* parameter error */
425 args[j] = ((0xa0 | flags) << 56) + pte_index;
426 ret = H_PARAMETER;
427 break;
429 hp = (unsigned long *)
430 (kvm->arch.hpt_virt + (pte_index << 4));
431 /* to avoid deadlock, don't spin except for first */
432 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
433 if (n)
434 break;
435 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
436 cpu_relax();
438 found = 0;
439 if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
440 switch (flags & 3) {
441 case 0: /* absolute */
442 found = 1;
443 break;
444 case 1: /* andcond */
445 if (!(hp[0] & args[j + 1]))
446 found = 1;
447 break;
448 case 2: /* AVPN */
449 if ((hp[0] & ~0x7fUL) == args[j + 1])
450 found = 1;
451 break;
454 if (!found) {
455 hp[0] &= ~HPTE_V_HVLOCK;
456 args[j] = ((0x90 | flags) << 56) + pte_index;
457 continue;
460 args[j] = ((0x80 | flags) << 56) + pte_index;
461 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
463 if (!(hp[0] & HPTE_V_VALID)) {
464 /* insert R and C bits from PTE */
465 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
466 args[j] |= rcbits << (56 - 5);
467 hp[0] = 0;
468 continue;
471 hp[0] &= ~HPTE_V_VALID; /* leave it locked */
472 tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
473 indexes[n] = j;
474 hptes[n] = hp;
475 revs[n] = rev;
476 ++n;
479 if (!n)
480 break;
482 /* Now that we've collected a batch, do the tlbies */
483 if (!local) {
484 while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
485 cpu_relax();
486 asm volatile("ptesync" : : : "memory");
487 for (k = 0; k < n; ++k)
488 asm volatile(PPC_TLBIE(%1,%0) : :
489 "r" (tlbrb[k]),
490 "r" (kvm->arch.lpid));
491 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
492 kvm->arch.tlbie_lock = 0;
493 } else {
494 asm volatile("ptesync" : : : "memory");
495 for (k = 0; k < n; ++k)
496 asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
497 asm volatile("ptesync" : : : "memory");
500 /* Read PTE low words after tlbie to get final R/C values */
501 for (k = 0; k < n; ++k) {
502 j = indexes[k];
503 pte_index = args[j] & ((1ul << 56) - 1);
504 hp = hptes[k];
505 rev = revs[k];
506 remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
507 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
508 args[j] |= rcbits << (56 - 5);
509 hp[0] = 0;
513 return ret;
516 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
517 unsigned long pte_index, unsigned long avpn,
518 unsigned long va)
520 struct kvm *kvm = vcpu->kvm;
521 unsigned long *hpte;
522 struct revmap_entry *rev;
523 unsigned long v, r, rb, mask, bits;
525 if (pte_index >= kvm->arch.hpt_npte)
526 return H_PARAMETER;
528 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
529 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
530 cpu_relax();
531 if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
532 ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
533 hpte[0] &= ~HPTE_V_HVLOCK;
534 return H_NOT_FOUND;
537 if (atomic_read(&kvm->online_vcpus) == 1)
538 flags |= H_LOCAL;
539 v = hpte[0];
540 bits = (flags << 55) & HPTE_R_PP0;
541 bits |= (flags << 48) & HPTE_R_KEY_HI;
542 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
544 /* Update guest view of 2nd HPTE dword */
545 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
546 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
547 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
548 if (rev) {
549 r = (rev->guest_rpte & ~mask) | bits;
550 rev->guest_rpte = r;
552 r = (hpte[1] & ~mask) | bits;
554 /* Update HPTE */
555 if (v & HPTE_V_VALID) {
556 rb = compute_tlbie_rb(v, r, pte_index);
557 hpte[0] = v & ~HPTE_V_VALID;
558 if (!(flags & H_LOCAL)) {
559 while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
560 cpu_relax();
561 asm volatile("ptesync" : : : "memory");
562 asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
563 : : "r" (rb), "r" (kvm->arch.lpid));
564 asm volatile("ptesync" : : : "memory");
565 kvm->arch.tlbie_lock = 0;
566 } else {
567 asm volatile("ptesync" : : : "memory");
568 asm volatile("tlbiel %0" : : "r" (rb));
569 asm volatile("ptesync" : : : "memory");
572 hpte[1] = r;
573 eieio();
574 hpte[0] = v & ~HPTE_V_HVLOCK;
575 asm volatile("ptesync" : : : "memory");
576 return H_SUCCESS;
579 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
580 unsigned long pte_index)
582 struct kvm *kvm = vcpu->kvm;
583 unsigned long *hpte, v, r;
584 int i, n = 1;
585 struct revmap_entry *rev = NULL;
587 if (pte_index >= kvm->arch.hpt_npte)
588 return H_PARAMETER;
589 if (flags & H_READ_4) {
590 pte_index &= ~3;
591 n = 4;
593 rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
594 for (i = 0; i < n; ++i, ++pte_index) {
595 hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
596 v = hpte[0] & ~HPTE_V_HVLOCK;
597 r = hpte[1];
598 if (v & HPTE_V_ABSENT) {
599 v &= ~HPTE_V_ABSENT;
600 v |= HPTE_V_VALID;
602 if (v & HPTE_V_VALID)
603 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
604 vcpu->arch.gpr[4 + i * 2] = v;
605 vcpu->arch.gpr[5 + i * 2] = r;
607 return H_SUCCESS;
610 void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
611 unsigned long pte_index)
613 unsigned long rb;
615 hptep[0] &= ~HPTE_V_VALID;
616 rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
617 while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
618 cpu_relax();
619 asm volatile("ptesync" : : : "memory");
620 asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
621 : : "r" (rb), "r" (kvm->arch.lpid));
622 asm volatile("ptesync" : : : "memory");
623 kvm->arch.tlbie_lock = 0;
625 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
627 void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
628 unsigned long pte_index)
630 unsigned long rb;
631 unsigned char rbyte;
633 rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
634 rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
635 /* modify only the second-last byte, which contains the ref bit */
636 *((char *)hptep + 14) = rbyte;
637 while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
638 cpu_relax();
639 asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
640 : : "r" (rb), "r" (kvm->arch.lpid));
641 asm volatile("ptesync" : : : "memory");
642 kvm->arch.tlbie_lock = 0;
644 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
646 static int slb_base_page_shift[4] = {
647 24, /* 16M */
648 16, /* 64k */
649 34, /* 16G */
650 20, /* 1M, unsupported */
653 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
654 unsigned long valid)
656 unsigned int i;
657 unsigned int pshift;
658 unsigned long somask;
659 unsigned long vsid, hash;
660 unsigned long avpn;
661 unsigned long *hpte;
662 unsigned long mask, val;
663 unsigned long v, r;
665 /* Get page shift, work out hash and AVPN etc. */
666 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
667 val = 0;
668 pshift = 12;
669 if (slb_v & SLB_VSID_L) {
670 mask |= HPTE_V_LARGE;
671 val |= HPTE_V_LARGE;
672 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
674 if (slb_v & SLB_VSID_B_1T) {
675 somask = (1UL << 40) - 1;
676 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
677 vsid ^= vsid << 25;
678 } else {
679 somask = (1UL << 28) - 1;
680 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
682 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
683 avpn = slb_v & ~(somask >> 16); /* also includes B */
684 avpn |= (eaddr & somask) >> 16;
686 if (pshift >= 24)
687 avpn &= ~((1UL << (pshift - 16)) - 1);
688 else
689 avpn &= ~0x7fUL;
690 val |= avpn;
692 for (;;) {
693 hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
695 for (i = 0; i < 16; i += 2) {
696 /* Read the PTE racily */
697 v = hpte[i] & ~HPTE_V_HVLOCK;
699 /* Check valid/absent, hash, segment size and AVPN */
700 if (!(v & valid) || (v & mask) != val)
701 continue;
703 /* Lock the PTE and read it under the lock */
704 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
705 cpu_relax();
706 v = hpte[i] & ~HPTE_V_HVLOCK;
707 r = hpte[i+1];
710 * Check the HPTE again, including large page size
711 * Since we don't currently allow any MPSS (mixed
712 * page-size segment) page sizes, it is sufficient
713 * to check against the actual page size.
715 if ((v & valid) && (v & mask) == val &&
716 hpte_page_size(v, r) == (1ul << pshift))
717 /* Return with the HPTE still locked */
718 return (hash << 3) + (i >> 1);
720 /* Unlock and move on */
721 hpte[i] = v;
724 if (val & HPTE_V_SECONDARY)
725 break;
726 val |= HPTE_V_SECONDARY;
727 hash = hash ^ kvm->arch.hpt_mask;
729 return -1;
731 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
734 * Called in real mode to check whether an HPTE not found fault
735 * is due to accessing a paged-out page or an emulated MMIO page,
736 * or if a protection fault is due to accessing a page that the
737 * guest wanted read/write access to but which we made read-only.
738 * Returns a possibly modified status (DSISR) value if not
739 * (i.e. pass the interrupt to the guest),
740 * -1 to pass the fault up to host kernel mode code, -2 to do that
741 * and also load the instruction word (for MMIO emulation),
742 * or 0 if we should make the guest retry the access.
744 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
745 unsigned long slb_v, unsigned int status, bool data)
747 struct kvm *kvm = vcpu->kvm;
748 long int index;
749 unsigned long v, r, gr;
750 unsigned long *hpte;
751 unsigned long valid;
752 struct revmap_entry *rev;
753 unsigned long pp, key;
755 /* For protection fault, expect to find a valid HPTE */
756 valid = HPTE_V_VALID;
757 if (status & DSISR_NOHPTE)
758 valid |= HPTE_V_ABSENT;
760 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
761 if (index < 0) {
762 if (status & DSISR_NOHPTE)
763 return status; /* there really was no HPTE */
764 return 0; /* for prot fault, HPTE disappeared */
766 hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
767 v = hpte[0] & ~HPTE_V_HVLOCK;
768 r = hpte[1];
769 rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
770 gr = rev->guest_rpte;
772 unlock_hpte(hpte, v);
774 /* For not found, if the HPTE is valid by now, retry the instruction */
775 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
776 return 0;
778 /* Check access permissions to the page */
779 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
780 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
781 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
782 if (!data) {
783 if (gr & (HPTE_R_N | HPTE_R_G))
784 return status | SRR1_ISI_N_OR_G;
785 if (!hpte_read_permission(pp, slb_v & key))
786 return status | SRR1_ISI_PROT;
787 } else if (status & DSISR_ISSTORE) {
788 /* check write permission */
789 if (!hpte_write_permission(pp, slb_v & key))
790 return status | DSISR_PROTFAULT;
791 } else {
792 if (!hpte_read_permission(pp, slb_v & key))
793 return status | DSISR_PROTFAULT;
796 /* Check storage key, if applicable */
797 if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
798 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
799 if (status & DSISR_ISSTORE)
800 perm >>= 1;
801 if (perm & 1)
802 return status | DSISR_KEYFAULT;
805 /* Save HPTE info for virtual-mode handler */
806 vcpu->arch.pgfault_addr = addr;
807 vcpu->arch.pgfault_index = index;
808 vcpu->arch.pgfault_hpte[0] = v;
809 vcpu->arch.pgfault_hpte[1] = r;
811 /* Check the storage key to see if it is possibly emulated MMIO */
812 if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
813 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
814 (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
815 return -2; /* MMIO emulation - load instr word */
817 return -1; /* send fault up to host kernel mode */