Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / powerpc / kvm / e500.c
blobb479ed77c515331315703d18a214d849f7209b2e
1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, <yu.liu@freescale.com>
6 * Description:
7 * This file is derived from arch/powerpc/kvm/44x.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
20 #include <asm/reg.h>
21 #include <asm/cputable.h>
22 #include <asm/tlbflush.h>
23 #include <asm/kvm_ppc.h>
25 #include "../mm/mmu_decl.h"
26 #include "booke.h"
27 #include "e500.h"
29 struct id {
30 unsigned long val;
31 struct id **pentry;
34 #define NUM_TIDS 256
37 * This table provide mappings from:
38 * (guestAS,guestTID,guestPR) --> ID of physical cpu
39 * guestAS [0..1]
40 * guestTID [0..255]
41 * guestPR [0..1]
42 * ID [1..255]
43 * Each vcpu keeps one vcpu_id_table.
45 struct vcpu_id_table {
46 struct id id[2][NUM_TIDS][2];
50 * This table provide reversed mappings of vcpu_id_table:
51 * ID --> address of vcpu_id_table item.
52 * Each physical core has one pcpu_id_table.
54 struct pcpu_id_table {
55 struct id *entry[NUM_TIDS];
58 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
60 /* This variable keeps last used shadow ID on local core.
61 * The valid range of shadow ID is [1..255] */
62 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
65 * Allocate a free shadow id and setup a valid sid mapping in given entry.
66 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
68 * The caller must have preemption disabled, and keep it that way until
69 * it has finished with the returned shadow id (either written into the
70 * TLB or arch.shadow_pid, or discarded).
72 static inline int local_sid_setup_one(struct id *entry)
74 unsigned long sid;
75 int ret = -1;
77 sid = ++(__get_cpu_var(pcpu_last_used_sid));
78 if (sid < NUM_TIDS) {
79 __get_cpu_var(pcpu_sids).entry[sid] = entry;
80 entry->val = sid;
81 entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
82 ret = sid;
86 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
87 * the caller will invalidate everything and start over.
89 * sid > NUM_TIDS indicates a race, which we disable preemption to
90 * avoid.
92 WARN_ON(sid > NUM_TIDS);
94 return ret;
98 * Check if given entry contain a valid shadow id mapping.
99 * An ID mapping is considered valid only if
100 * both vcpu and pcpu know this mapping.
102 * The caller must have preemption disabled, and keep it that way until
103 * it has finished with the returned shadow id (either written into the
104 * TLB or arch.shadow_pid, or discarded).
106 static inline int local_sid_lookup(struct id *entry)
108 if (entry && entry->val != 0 &&
109 __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
110 entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
111 return entry->val;
112 return -1;
115 /* Invalidate all id mappings on local core -- call with preempt disabled */
116 static inline void local_sid_destroy_all(void)
118 __get_cpu_var(pcpu_last_used_sid) = 0;
119 memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
122 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
124 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
125 return vcpu_e500->idt;
128 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
130 kfree(vcpu_e500->idt);
131 vcpu_e500->idt = NULL;
134 /* Map guest pid to shadow.
135 * We use PID to keep shadow of current guest non-zero PID,
136 * and use PID1 to keep shadow of guest zero PID.
137 * So that guest tlbe with TID=0 can be accessed at any time */
138 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
140 preempt_disable();
141 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
142 get_cur_as(&vcpu_e500->vcpu),
143 get_cur_pid(&vcpu_e500->vcpu),
144 get_cur_pr(&vcpu_e500->vcpu), 1);
145 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
146 get_cur_as(&vcpu_e500->vcpu), 0,
147 get_cur_pr(&vcpu_e500->vcpu), 1);
148 preempt_enable();
151 /* Invalidate all mappings on vcpu */
152 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
154 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
156 /* Update shadow pid when mappings are changed */
157 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
160 /* Invalidate one ID mapping on vcpu */
161 static inline void kvmppc_e500_id_table_reset_one(
162 struct kvmppc_vcpu_e500 *vcpu_e500,
163 int as, int pid, int pr)
165 struct vcpu_id_table *idt = vcpu_e500->idt;
167 BUG_ON(as >= 2);
168 BUG_ON(pid >= NUM_TIDS);
169 BUG_ON(pr >= 2);
171 idt->id[as][pid][pr].val = 0;
172 idt->id[as][pid][pr].pentry = NULL;
174 /* Update shadow pid when mappings are changed */
175 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
179 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
180 * This function first lookup if a valid mapping exists,
181 * if not, then creates a new one.
183 * The caller must have preemption disabled, and keep it that way until
184 * it has finished with the returned shadow id (either written into the
185 * TLB or arch.shadow_pid, or discarded).
187 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
188 unsigned int as, unsigned int gid,
189 unsigned int pr, int avoid_recursion)
191 struct vcpu_id_table *idt = vcpu_e500->idt;
192 int sid;
194 BUG_ON(as >= 2);
195 BUG_ON(gid >= NUM_TIDS);
196 BUG_ON(pr >= 2);
198 sid = local_sid_lookup(&idt->id[as][gid][pr]);
200 while (sid <= 0) {
201 /* No mapping yet */
202 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
203 if (sid <= 0) {
204 _tlbil_all();
205 local_sid_destroy_all();
208 /* Update shadow pid when mappings are changed */
209 if (!avoid_recursion)
210 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
213 return sid;
216 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
217 struct kvm_book3e_206_tlb_entry *gtlbe)
219 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
220 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
223 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
225 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
227 if (vcpu->arch.pid != pid) {
228 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
229 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
233 /* gtlbe must not be mapped by more than one host tlbe */
234 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
235 struct kvm_book3e_206_tlb_entry *gtlbe)
237 struct vcpu_id_table *idt = vcpu_e500->idt;
238 unsigned int pr, tid, ts, pid;
239 u32 val, eaddr;
240 unsigned long flags;
242 ts = get_tlb_ts(gtlbe);
243 tid = get_tlb_tid(gtlbe);
245 preempt_disable();
247 /* One guest ID may be mapped to two shadow IDs */
248 for (pr = 0; pr < 2; pr++) {
250 * The shadow PID can have a valid mapping on at most one
251 * host CPU. In the common case, it will be valid on this
252 * CPU, in which case we do a local invalidation of the
253 * specific address.
255 * If the shadow PID is not valid on the current host CPU,
256 * we invalidate the entire shadow PID.
258 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
259 if (pid <= 0) {
260 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
261 continue;
265 * The guest is invalidating a 4K entry which is in a PID
266 * that has a valid shadow mapping on this host CPU. We
267 * search host TLB to invalidate it's shadow TLB entry,
268 * similar to __tlbil_va except that we need to look in AS1.
270 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
271 eaddr = get_tlb_eaddr(gtlbe);
273 local_irq_save(flags);
275 mtspr(SPRN_MAS6, val);
276 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
277 val = mfspr(SPRN_MAS1);
278 if (val & MAS1_VALID) {
279 mtspr(SPRN_MAS1, val & ~MAS1_VALID);
280 asm volatile("tlbwe");
283 local_irq_restore(flags);
286 preempt_enable();
289 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
291 kvmppc_e500_id_table_reset_all(vcpu_e500);
294 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
296 /* Recalc shadow pid since MSR changes */
297 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
300 void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
304 void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
308 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
310 kvmppc_booke_vcpu_load(vcpu, cpu);
312 /* Shadow PID may be expired on local core */
313 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
316 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
318 #ifdef CONFIG_SPE
319 if (vcpu->arch.shadow_msr & MSR_SPE)
320 kvmppc_vcpu_disable_spe(vcpu);
321 #endif
323 kvmppc_booke_vcpu_put(vcpu);
326 int kvmppc_core_check_processor_compat(void)
328 int r;
330 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
331 r = 0;
332 else
333 r = -ENOTSUPP;
335 return r;
338 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
340 struct kvm_book3e_206_tlb_entry *tlbe;
342 /* Insert large initial mapping for guest. */
343 tlbe = get_entry(vcpu_e500, 1, 0);
344 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
345 tlbe->mas2 = 0;
346 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
348 /* 4K map for serial output. Used by kernel wrapper. */
349 tlbe = get_entry(vcpu_e500, 1, 1);
350 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
351 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
352 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
355 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
357 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
359 kvmppc_e500_tlb_setup(vcpu_e500);
361 /* Registers init */
362 vcpu->arch.pvr = mfspr(SPRN_PVR);
363 vcpu_e500->svr = mfspr(SPRN_SVR);
365 vcpu->arch.cpu_type = KVM_CPU_E500V2;
367 return 0;
370 void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
372 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
374 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
375 KVM_SREGS_E_PM;
376 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
378 sregs->u.e.impl.fsl.features = 0;
379 sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
380 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
381 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
383 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
384 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
385 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
386 sregs->u.e.ivor_high[3] =
387 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
389 kvmppc_get_sregs_ivor(vcpu, sregs);
390 kvmppc_get_sregs_e500_tlb(vcpu, sregs);
393 int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
395 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
396 int ret;
398 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
399 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
400 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
401 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
404 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
405 if (ret < 0)
406 return ret;
408 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
409 return 0;
411 if (sregs->u.e.features & KVM_SREGS_E_SPE) {
412 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
413 sregs->u.e.ivor_high[0];
414 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
415 sregs->u.e.ivor_high[1];
416 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
417 sregs->u.e.ivor_high[2];
420 if (sregs->u.e.features & KVM_SREGS_E_PM) {
421 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
422 sregs->u.e.ivor_high[3];
425 return kvmppc_set_sregs_ivor(vcpu, sregs);
428 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
430 struct kvmppc_vcpu_e500 *vcpu_e500;
431 struct kvm_vcpu *vcpu;
432 int err;
434 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
435 if (!vcpu_e500) {
436 err = -ENOMEM;
437 goto out;
440 vcpu = &vcpu_e500->vcpu;
441 err = kvm_vcpu_init(vcpu, kvm, id);
442 if (err)
443 goto free_vcpu;
445 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
446 goto uninit_vcpu;
448 err = kvmppc_e500_tlb_init(vcpu_e500);
449 if (err)
450 goto uninit_id;
452 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
453 if (!vcpu->arch.shared)
454 goto uninit_tlb;
456 return vcpu;
458 uninit_tlb:
459 kvmppc_e500_tlb_uninit(vcpu_e500);
460 uninit_id:
461 kvmppc_e500_id_table_free(vcpu_e500);
462 uninit_vcpu:
463 kvm_vcpu_uninit(vcpu);
464 free_vcpu:
465 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
466 out:
467 return ERR_PTR(err);
470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
472 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
474 free_page((unsigned long)vcpu->arch.shared);
475 kvmppc_e500_tlb_uninit(vcpu_e500);
476 kvmppc_e500_id_table_free(vcpu_e500);
477 kvm_vcpu_uninit(vcpu);
478 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
481 int kvmppc_core_init_vm(struct kvm *kvm)
483 return 0;
486 void kvmppc_core_destroy_vm(struct kvm *kvm)
490 static int __init kvmppc_e500_init(void)
492 int r, i;
493 unsigned long ivor[3];
494 unsigned long max_ivor = 0;
496 r = kvmppc_core_check_processor_compat();
497 if (r)
498 return r;
500 r = kvmppc_booke_init();
501 if (r)
502 return r;
504 /* copy extra E500 exception handlers */
505 ivor[0] = mfspr(SPRN_IVOR32);
506 ivor[1] = mfspr(SPRN_IVOR33);
507 ivor[2] = mfspr(SPRN_IVOR34);
508 for (i = 0; i < 3; i++) {
509 if (ivor[i] > max_ivor)
510 max_ivor = ivor[i];
512 memcpy((void *)kvmppc_booke_handlers + ivor[i],
513 kvmppc_handlers_start + (i + 16) * kvmppc_handler_len,
514 kvmppc_handler_len);
516 flush_icache_range(kvmppc_booke_handlers,
517 kvmppc_booke_handlers + max_ivor + kvmppc_handler_len);
519 return kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
522 static void __exit kvmppc_e500_exit(void)
524 kvmppc_booke_exit();
527 module_init(kvmppc_e500_init);
528 module_exit(kvmppc_e500_exit);