3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
36 #include <asm/firmware.h>
38 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
41 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <mm/mmu_decl.h>
50 static inline int notify_page_fault(struct pt_regs
*regs
)
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs
)) {
57 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
65 static inline int notify_page_fault(struct pt_regs
*regs
)
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
75 static int store_updates_sp(struct pt_regs
*regs
)
79 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
81 /* check for 1 in the rA field */
82 if (((inst
>> 16) & 0x1f) != 1)
84 /* check major opcode */
92 case 62: /* std or stdu */
93 return (inst
& 3) == 1;
95 /* check minor opcode */
96 switch ((inst
>> 1) & 0x3ff) {
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
109 * do_page_fault error handling helpers
112 #define MM_FAULT_RETURN 0
113 #define MM_FAULT_CONTINUE -1
114 #define MM_FAULT_ERR(sig) (sig)
116 static int out_of_memory(struct pt_regs
*regs
)
119 * We ran out of memory, or some other thing happened to us that made
120 * us unable to handle the page fault gracefully.
122 up_read(¤t
->mm
->mmap_sem
);
123 if (!user_mode(regs
))
124 return MM_FAULT_ERR(SIGKILL
);
125 pagefault_out_of_memory();
126 return MM_FAULT_RETURN
;
129 static int do_sigbus(struct pt_regs
*regs
, unsigned long address
)
133 up_read(¤t
->mm
->mmap_sem
);
135 if (user_mode(regs
)) {
136 info
.si_signo
= SIGBUS
;
138 info
.si_code
= BUS_ADRERR
;
139 info
.si_addr
= (void __user
*)address
;
140 force_sig_info(SIGBUS
, &info
, current
);
141 return MM_FAULT_RETURN
;
143 return MM_FAULT_ERR(SIGBUS
);
146 static int mm_fault_error(struct pt_regs
*regs
, unsigned long addr
, int fault
)
149 * Pagefault was interrupted by SIGKILL. We have no reason to
150 * continue the pagefault.
152 if (fatal_signal_pending(current
)) {
154 * If we have retry set, the mmap semaphore will have
155 * alrady been released in __lock_page_or_retry(). Else
158 if (!(fault
& VM_FAULT_RETRY
))
159 up_read(¤t
->mm
->mmap_sem
);
160 /* Coming from kernel, we need to deal with uaccess fixups */
162 return MM_FAULT_RETURN
;
163 return MM_FAULT_ERR(SIGKILL
);
166 /* No fault: be happy */
167 if (!(fault
& VM_FAULT_ERROR
))
168 return MM_FAULT_CONTINUE
;
171 if (fault
& VM_FAULT_OOM
)
172 return out_of_memory(regs
);
174 /* Bus error. x86 handles HWPOISON here, we'll add this if/when
175 * we support the feature in HW
177 if (fault
& VM_FAULT_SIGBUS
)
178 return do_sigbus(regs
, addr
);
180 /* We don't understand the fault code, this is fatal */
182 return MM_FAULT_CONTINUE
;
186 * For 600- and 800-family processors, the error_code parameter is DSISR
187 * for a data fault, SRR1 for an instruction fault. For 400-family processors
188 * the error_code parameter is ESR for a data fault, 0 for an instruction
190 * For 64-bit processors, the error_code parameter is
191 * - DSISR for a non-SLB data access fault,
192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
195 * The return value is 0 if the fault was handled, or the signal
196 * number if this is a kernel fault that can't be handled here.
198 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
199 unsigned long error_code
)
201 struct vm_area_struct
* vma
;
202 struct mm_struct
*mm
= current
->mm
;
203 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
204 int code
= SEGV_MAPERR
;
206 int trap
= TRAP(regs
);
207 int is_exec
= trap
== 0x400;
210 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
212 * Fortunately the bit assignments in SRR1 for an instruction
213 * fault and DSISR for a data fault are mostly the same for the
214 * bits we are interested in. But there are some bits which
215 * indicate errors in DSISR but can validly be set in SRR1.
218 error_code
&= 0x48200000;
220 is_write
= error_code
& DSISR_ISSTORE
;
222 is_write
= error_code
& ESR_DST
;
223 #endif /* CONFIG_4xx || CONFIG_BOOKE */
226 flags
|= FAULT_FLAG_WRITE
;
228 #ifdef CONFIG_PPC_ICSWX
230 * we need to do this early because this "data storage
231 * interrupt" does not update the DAR/DEAR so we don't want to
234 if (error_code
& ICSWX_DSI_UCT
) {
235 int rc
= acop_handle_fault(regs
, address
, error_code
);
239 #endif /* CONFIG_PPC_ICSWX */
241 if (notify_page_fault(regs
))
244 if (unlikely(debugger_fault_handler(regs
)))
247 /* On a kernel SLB miss we can only check for a valid exception entry */
248 if (!user_mode(regs
) && (address
>= TASK_SIZE
))
251 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 defined(CONFIG_PPC_BOOK3S_64))
253 if (error_code
& DSISR_DABRMATCH
) {
255 do_dabr(regs
, address
, error_code
);
260 /* We restore the interrupt state now */
261 if (!arch_irq_disabled_regs(regs
))
264 if (in_atomic() || mm
== NULL
) {
265 if (!user_mode(regs
))
267 /* in_atomic() in user mode is really bad,
268 as is current->mm == NULL. */
269 printk(KERN_EMERG
"Page fault in user mode with "
270 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
271 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
272 regs
->nip
, regs
->msr
);
273 die("Weird page fault", regs
, SIGSEGV
);
276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
278 /* When running in the kernel we expect faults to occur only to
279 * addresses in user space. All other faults represent errors in the
280 * kernel and should generate an OOPS. Unfortunately, in the case of an
281 * erroneous fault occurring in a code path which already holds mmap_sem
282 * we will deadlock attempting to validate the fault against the
283 * address space. Luckily the kernel only validly references user
284 * space from well defined areas of code, which are listed in the
287 * As the vast majority of faults will be valid we will only perform
288 * the source reference check when there is a possibility of a deadlock.
289 * Attempt to lock the address space, if we cannot we then validate the
290 * source. If this is invalid we can skip the address space check,
291 * thus avoiding the deadlock.
293 if (!down_read_trylock(&mm
->mmap_sem
)) {
294 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
295 goto bad_area_nosemaphore
;
298 down_read(&mm
->mmap_sem
);
301 * The above down_read_trylock() might have succeeded in
302 * which case we'll have missed the might_sleep() from
308 vma
= find_vma(mm
, address
);
311 if (vma
->vm_start
<= address
)
313 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
317 * N.B. The POWER/Open ABI allows programs to access up to
318 * 288 bytes below the stack pointer.
319 * The kernel signal delivery code writes up to about 1.5kB
320 * below the stack pointer (r1) before decrementing it.
321 * The exec code can write slightly over 640kB to the stack
322 * before setting the user r1. Thus we allow the stack to
323 * expand to 1MB without further checks.
325 if (address
+ 0x100000 < vma
->vm_end
) {
326 /* get user regs even if this fault is in kernel mode */
327 struct pt_regs
*uregs
= current
->thread
.regs
;
332 * A user-mode access to an address a long way below
333 * the stack pointer is only valid if the instruction
334 * is one which would update the stack pointer to the
335 * address accessed if the instruction completed,
336 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
337 * (or the byte, halfword, float or double forms).
339 * If we don't check this then any write to the area
340 * between the last mapped region and the stack will
341 * expand the stack rather than segfaulting.
343 if (address
+ 2048 < uregs
->gpr
[1]
344 && (!user_mode(regs
) || !store_updates_sp(regs
)))
347 if (expand_stack(vma
, address
))
352 #if defined(CONFIG_6xx)
353 if (error_code
& 0x95700000)
354 /* an error such as lwarx to I/O controller space,
355 address matching DABR, eciwx, etc. */
357 #endif /* CONFIG_6xx */
358 #if defined(CONFIG_8xx)
359 /* 8xx sometimes need to load a invalid/non-present TLBs.
360 * These must be invalidated separately as linux mm don't.
362 if (error_code
& 0x40000000) /* no translation? */
363 _tlbil_va(address
, 0, 0, 0);
365 /* The MPC8xx seems to always set 0x80000000, which is
366 * "undefined". Of those that can be set, this is the only
367 * one which seems bad.
369 if (error_code
& 0x10000000)
370 /* Guarded storage error. */
372 #endif /* CONFIG_8xx */
375 #ifdef CONFIG_PPC_STD_MMU
376 /* Protection fault on exec go straight to failure on
377 * Hash based MMUs as they either don't support per-page
378 * execute permission, or if they do, it's handled already
379 * at the hash level. This test would probably have to
380 * be removed if we change the way this works to make hash
381 * processors use the same I/D cache coherency mechanism
384 if (error_code
& DSISR_PROTFAULT
)
386 #endif /* CONFIG_PPC_STD_MMU */
389 * Allow execution from readable areas if the MMU does not
390 * provide separate controls over reading and executing.
392 * Note: That code used to not be enabled for 4xx/BookE.
393 * It is now as I/D cache coherency for these is done at
394 * set_pte_at() time and I see no reason why the test
395 * below wouldn't be valid on those processors. This -may-
396 * break programs compiled with a really old ABI though.
398 if (!(vma
->vm_flags
& VM_EXEC
) &&
399 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
400 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
403 } else if (is_write
) {
404 if (!(vma
->vm_flags
& VM_WRITE
))
408 /* protection fault */
409 if (error_code
& 0x08000000)
411 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
416 * If for any reason at all we couldn't handle the fault,
417 * make sure we exit gracefully rather than endlessly redo
420 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
421 if (unlikely(fault
& (VM_FAULT_RETRY
|VM_FAULT_ERROR
))) {
422 int rc
= mm_fault_error(regs
, address
, fault
);
423 if (rc
>= MM_FAULT_RETURN
)
428 * Major/minor page fault accounting is only done on the
429 * initial attempt. If we go through a retry, it is extremely
430 * likely that the page will be found in page cache at that point.
432 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
433 if (fault
& VM_FAULT_MAJOR
) {
435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
437 #ifdef CONFIG_PPC_SMLPAR
438 if (firmware_has_feature(FW_FEATURE_CMO
)) {
440 get_lppaca()->page_ins
+= (1 << PAGE_FACTOR
);
443 #endif /* CONFIG_PPC_SMLPAR */
446 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
449 if (fault
& VM_FAULT_RETRY
) {
450 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
452 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
457 up_read(&mm
->mmap_sem
);
461 up_read(&mm
->mmap_sem
);
463 bad_area_nosemaphore
:
464 /* User mode accesses cause a SIGSEGV */
465 if (user_mode(regs
)) {
466 _exception(SIGSEGV
, regs
, code
, address
);
470 if (is_exec
&& (error_code
& DSISR_PROTFAULT
))
471 printk_ratelimited(KERN_CRIT
"kernel tried to execute NX-protected"
472 " page (%lx) - exploit attempt? (uid: %d)\n",
473 address
, current_uid());
480 * bad_page_fault is called when we have a bad access from the kernel.
481 * It is called from the DSI and ISI handlers in head.S and from some
482 * of the procedures in traps.c.
484 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
486 const struct exception_table_entry
*entry
;
487 unsigned long *stackend
;
489 /* Are we prepared to handle this fault? */
490 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
491 regs
->nip
= entry
->fixup
;
495 /* kernel has accessed a bad area */
497 switch (regs
->trap
) {
500 printk(KERN_ALERT
"Unable to handle kernel paging request for "
501 "data at address 0x%08lx\n", regs
->dar
);
505 printk(KERN_ALERT
"Unable to handle kernel paging request for "
506 "instruction fetch\n");
509 printk(KERN_ALERT
"Unable to handle kernel paging request for "
513 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
516 stackend
= end_of_stack(current
);
517 if (current
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
518 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
520 die("Kernel access of bad area", regs
, sig
);