Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / powerpc / platforms / cell / pmu.c
blob59c1a1694104f0a4048e23b75535fe4eaa4f0068
1 /*
2 * Cell Broadband Engine Performance Monitor
4 * (C) Copyright IBM Corporation 2001,2006
6 * Author:
7 * David Erb (djerb@us.ibm.com)
8 * Kevin Corry (kevcorry@us.ibm.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <linux/export.h>
28 #include <asm/io.h>
29 #include <asm/irq_regs.h>
30 #include <asm/machdep.h>
31 #include <asm/pmc.h>
32 #include <asm/reg.h>
33 #include <asm/spu.h>
34 #include <asm/cell-regs.h>
36 #include "interrupt.h"
39 * When writing to write-only mmio addresses, save a shadow copy. All of the
40 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
41 * pmd_regs.
44 #define WRITE_WO_MMIO(reg, x) \
45 do { \
46 u32 _x = (x); \
47 struct cbe_pmd_regs __iomem *pmd_regs; \
48 struct cbe_pmd_shadow_regs *shadow_regs; \
49 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
50 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
51 out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \
52 shadow_regs->reg = _x; \
53 } while (0)
55 #define READ_SHADOW_REG(val, reg) \
56 do { \
57 struct cbe_pmd_shadow_regs *shadow_regs; \
58 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
59 (val) = shadow_regs->reg; \
60 } while (0)
62 #define READ_MMIO_UPPER32(val, reg) \
63 do { \
64 struct cbe_pmd_regs __iomem *pmd_regs; \
65 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
66 (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \
67 } while (0)
70 * Physical counter registers.
71 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
74 u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
76 u32 val_in_latch, val = 0;
78 if (phys_ctr < NR_PHYS_CTRS) {
79 READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
81 /* Read the latch or the actual counter, whichever is newer. */
82 if (val_in_latch & (1 << phys_ctr)) {
83 READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
84 } else {
85 READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
89 return val;
91 EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
93 void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
95 struct cbe_pmd_shadow_regs *shadow_regs;
96 u32 pm_ctrl;
98 if (phys_ctr < NR_PHYS_CTRS) {
99 /* Writing to a counter only writes to a hardware latch.
100 * The new value is not propagated to the actual counter
101 * until the performance monitor is enabled.
103 WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
105 pm_ctrl = cbe_read_pm(cpu, pm_control);
106 if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
107 /* The counters are already active, so we need to
108 * rewrite the pm_control register to "re-enable"
109 * the PMU.
111 cbe_write_pm(cpu, pm_control, pm_ctrl);
112 } else {
113 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
114 shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
118 EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
121 * "Logical" counter registers.
122 * These will read/write 16-bits or 32-bits depending on the
123 * current size of the counter. Counters 4 - 7 are always 16-bit.
126 u32 cbe_read_ctr(u32 cpu, u32 ctr)
128 u32 val;
129 u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
131 val = cbe_read_phys_ctr(cpu, phys_ctr);
133 if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
134 val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
136 return val;
138 EXPORT_SYMBOL_GPL(cbe_read_ctr);
140 void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
142 u32 phys_ctr;
143 u32 phys_val;
145 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
147 if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
148 phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
150 if (ctr < NR_PHYS_CTRS)
151 val = (val << 16) | (phys_val & 0xffff);
152 else
153 val = (val & 0xffff) | (phys_val & 0xffff0000);
156 cbe_write_phys_ctr(cpu, phys_ctr, val);
158 EXPORT_SYMBOL_GPL(cbe_write_ctr);
161 * Counter-control registers.
162 * Each "logical" counter has a corresponding control register.
165 u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
167 u32 pm07_control = 0;
169 if (ctr < NR_CTRS)
170 READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
172 return pm07_control;
174 EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
176 void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
178 if (ctr < NR_CTRS)
179 WRITE_WO_MMIO(pm07_control[ctr], val);
181 EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
184 * Other PMU control registers. Most of these are write-only.
187 u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
189 u32 val = 0;
191 switch (reg) {
192 case group_control:
193 READ_SHADOW_REG(val, group_control);
194 break;
196 case debug_bus_control:
197 READ_SHADOW_REG(val, debug_bus_control);
198 break;
200 case trace_address:
201 READ_MMIO_UPPER32(val, trace_address);
202 break;
204 case ext_tr_timer:
205 READ_SHADOW_REG(val, ext_tr_timer);
206 break;
208 case pm_status:
209 READ_MMIO_UPPER32(val, pm_status);
210 break;
212 case pm_control:
213 READ_SHADOW_REG(val, pm_control);
214 break;
216 case pm_interval:
217 READ_MMIO_UPPER32(val, pm_interval);
218 break;
220 case pm_start_stop:
221 READ_SHADOW_REG(val, pm_start_stop);
222 break;
225 return val;
227 EXPORT_SYMBOL_GPL(cbe_read_pm);
229 void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
231 switch (reg) {
232 case group_control:
233 WRITE_WO_MMIO(group_control, val);
234 break;
236 case debug_bus_control:
237 WRITE_WO_MMIO(debug_bus_control, val);
238 break;
240 case trace_address:
241 WRITE_WO_MMIO(trace_address, val);
242 break;
244 case ext_tr_timer:
245 WRITE_WO_MMIO(ext_tr_timer, val);
246 break;
248 case pm_status:
249 WRITE_WO_MMIO(pm_status, val);
250 break;
252 case pm_control:
253 WRITE_WO_MMIO(pm_control, val);
254 break;
256 case pm_interval:
257 WRITE_WO_MMIO(pm_interval, val);
258 break;
260 case pm_start_stop:
261 WRITE_WO_MMIO(pm_start_stop, val);
262 break;
265 EXPORT_SYMBOL_GPL(cbe_write_pm);
268 * Get/set the size of a physical counter to either 16 or 32 bits.
271 u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
273 u32 pm_ctrl, size = 0;
275 if (phys_ctr < NR_PHYS_CTRS) {
276 pm_ctrl = cbe_read_pm(cpu, pm_control);
277 size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
280 return size;
282 EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
284 void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
286 u32 pm_ctrl;
288 if (phys_ctr < NR_PHYS_CTRS) {
289 pm_ctrl = cbe_read_pm(cpu, pm_control);
290 switch (ctr_size) {
291 case 16:
292 pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
293 break;
295 case 32:
296 pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
297 break;
299 cbe_write_pm(cpu, pm_control, pm_ctrl);
302 EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
305 * Enable/disable the entire performance monitoring unit.
306 * When we enable the PMU, all pending writes to counters get committed.
309 void cbe_enable_pm(u32 cpu)
311 struct cbe_pmd_shadow_regs *shadow_regs;
312 u32 pm_ctrl;
314 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
315 shadow_regs->counter_value_in_latch = 0;
317 pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
318 cbe_write_pm(cpu, pm_control, pm_ctrl);
320 EXPORT_SYMBOL_GPL(cbe_enable_pm);
322 void cbe_disable_pm(u32 cpu)
324 u32 pm_ctrl;
325 pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
326 cbe_write_pm(cpu, pm_control, pm_ctrl);
328 EXPORT_SYMBOL_GPL(cbe_disable_pm);
331 * Reading from the trace_buffer.
332 * The trace buffer is two 64-bit registers. Reading from
333 * the second half automatically increments the trace_address.
336 void cbe_read_trace_buffer(u32 cpu, u64 *buf)
338 struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
340 *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
341 *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
343 EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
346 * Enabling/disabling interrupts for the entire performance monitoring unit.
349 u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
351 /* Reading pm_status clears the interrupt bits. */
352 return cbe_read_pm(cpu, pm_status);
354 EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
356 void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
358 /* Set which node and thread will handle the next interrupt. */
359 iic_set_interrupt_routing(cpu, thread, 0);
361 /* Enable the interrupt bits in the pm_status register. */
362 if (mask)
363 cbe_write_pm(cpu, pm_status, mask);
365 EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
367 void cbe_disable_pm_interrupts(u32 cpu)
369 cbe_get_and_clear_pm_interrupts(cpu);
370 cbe_write_pm(cpu, pm_status, 0);
372 EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
374 static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
376 perf_irq(get_irq_regs());
377 return IRQ_HANDLED;
380 static int __init cbe_init_pm_irq(void)
382 unsigned int irq;
383 int rc, node;
385 for_each_node(node) {
386 irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
387 (node << IIC_IRQ_NODE_SHIFT));
388 if (irq == NO_IRQ) {
389 printk("ERROR: Unable to allocate irq for node %d\n",
390 node);
391 return -EINVAL;
394 rc = request_irq(irq, cbe_pm_irq,
395 0, "cbe-pmu-0", NULL);
396 if (rc) {
397 printk("ERROR: Request for irq on node %d failed\n",
398 node);
399 return rc;
403 return 0;
405 machine_arch_initcall(cell, cbe_init_pm_irq);
407 void cbe_sync_irq(int node)
409 unsigned int irq;
411 irq = irq_find_mapping(NULL,
412 IIC_IRQ_IOEX_PMI
413 | (node << IIC_IRQ_NODE_SHIFT));
415 if (irq == NO_IRQ) {
416 printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
417 "for node %d\n", irq, node);
418 return;
421 synchronize_irq(irq);
423 EXPORT_SYMBOL_GPL(cbe_sync_irq);