3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
35 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 extern void fault_init(void);
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
47 * ZERO_PAGE is a global shared page that is always zero; used
48 * for zero-mapped memory areas etc..
51 extern unsigned long empty_zero_page
;
52 extern unsigned long zero_page_mask
;
54 #define ZERO_PAGE(vaddr) \
55 (virt_to_page((void *)(empty_zero_page + \
56 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define is_zero_pfn is_zero_pfn
59 static inline int is_zero_pfn(unsigned long pfn
)
61 extern unsigned long zero_pfn
;
62 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
63 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
66 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
68 #endif /* !__ASSEMBLY__ */
71 * PMD_SHIFT determines the size of the area a second-level page
73 * PGDIR_SHIFT determines what a third-level page table entry can map
78 # define PGDIR_SHIFT 20
79 #else /* CONFIG_64BIT */
82 # define PGDIR_SHIFT 42
83 #endif /* CONFIG_64BIT */
85 #define PMD_SIZE (1UL << PMD_SHIFT)
86 #define PMD_MASK (~(PMD_SIZE-1))
87 #define PUD_SIZE (1UL << PUD_SHIFT)
88 #define PUD_MASK (~(PUD_SIZE-1))
89 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
90 #define PGDIR_MASK (~(PGDIR_SIZE-1))
93 * entries per page directory level: the S390 is two-level, so
94 * we don't really have any PMD directory physically.
95 * for S390 segment-table entries are combined to one PGD
96 * that leads to 1024 pte per pgd
98 #define PTRS_PER_PTE 256
100 #define PTRS_PER_PMD 1
101 #define PTRS_PER_PUD 1
102 #else /* CONFIG_64BIT */
103 #define PTRS_PER_PMD 2048
104 #define PTRS_PER_PUD 2048
105 #endif /* CONFIG_64BIT */
106 #define PTRS_PER_PGD 2048
108 #define FIRST_USER_ADDRESS 0
110 #define pte_ERROR(e) \
111 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
112 #define pmd_ERROR(e) \
113 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
114 #define pud_ERROR(e) \
115 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
116 #define pgd_ERROR(e) \
117 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
121 * The vmalloc area will always be on the topmost area of the kernel
122 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
123 * which should be enough for any sane case.
124 * By putting vmalloc at the top, we maximise the gap between physical
125 * memory and vmalloc to catch misplaced memory accesses. As a side
126 * effect, this also makes sure that 64 bit module code cannot be used
127 * as system call address.
129 extern unsigned long VMALLOC_START
;
130 extern unsigned long VMALLOC_END
;
131 extern struct page
*vmemmap
;
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
136 * A 31 bit pagetable entry of S390 has following format:
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
155 * The 31 bit segmenttable origin of S390 has following format:
157 * |S-table origin | | STL |
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
168 * A 64 bit pagetable entry of S390 has following format:
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
192 * I Segment-Invalid Bit: Segment is not available for address-translation
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
209 * A storage key has the following format:
213 * F : fetch protection bit
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO 0x100 /* HW Change-bit override */
220 #define _PAGE_RO 0x200 /* HW read-only bit */
221 #define _PAGE_INVALID 0x400 /* HW invalid bit */
223 /* Software bits in the page table entry */
224 #define _PAGE_SWT 0x001 /* SW pte type bit t */
225 #define _PAGE_SWX 0x002 /* SW pte type bit x */
226 #define _PAGE_SWC 0x004 /* SW pte changed bit (for KVM) */
227 #define _PAGE_SWR 0x008 /* SW pte referenced bit (for KVM) */
228 #define _PAGE_SPECIAL 0x010 /* SW associated with special page */
229 #define __HAVE_ARCH_PTE_SPECIAL
231 /* Set of bits not changed in pte_modify */
232 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
234 /* Six different types of pages. */
235 #define _PAGE_TYPE_EMPTY 0x400
236 #define _PAGE_TYPE_NONE 0x401
237 #define _PAGE_TYPE_SWAP 0x403
238 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
239 #define _PAGE_TYPE_RO 0x200
240 #define _PAGE_TYPE_RW 0x000
243 * Only four types for huge pages, using the invalid bit and protection bit
244 * of a segment table entry.
246 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
247 #define _HPAGE_TYPE_NONE 0x220
248 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
249 #define _HPAGE_TYPE_RW 0x000
252 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
253 * pte_none and pte_file to find out the pte type WITHOUT holding the page
254 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
255 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
256 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
257 * This change is done while holding the lock, but the intermediate step
258 * of a previously valid pte with the hw invalid bit set can be observed by
259 * handle_pte_fault. That makes it necessary that all valid pte types with
260 * the hw invalid bit set must be distinguishable from the four pte types
261 * empty, none, swap and file.
264 * _PAGE_TYPE_EMPTY 1000 -> 1000
265 * _PAGE_TYPE_NONE 1001 -> 1001
266 * _PAGE_TYPE_SWAP 1011 -> 1011
267 * _PAGE_TYPE_FILE 11?1 -> 11?1
268 * _PAGE_TYPE_RO 0100 -> 1100
269 * _PAGE_TYPE_RW 0000 -> 1000
271 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
272 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
273 * pte_file is true for bits combinations 1101, 1111
274 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
279 /* Bits in the segment table address-space-control-element */
280 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
281 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
282 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
283 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
284 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
286 /* Bits in the segment table entry */
287 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
288 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
289 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
290 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
291 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
293 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
294 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
296 /* Page status table bits for virtualization */
297 #define RCP_ACC_BITS 0xf0000000UL
298 #define RCP_FP_BIT 0x08000000UL
299 #define RCP_PCL_BIT 0x00800000UL
300 #define RCP_HR_BIT 0x00400000UL
301 #define RCP_HC_BIT 0x00200000UL
302 #define RCP_GR_BIT 0x00040000UL
303 #define RCP_GC_BIT 0x00020000UL
305 /* User dirty / referenced bit for KVM's migration feature */
306 #define KVM_UR_BIT 0x00008000UL
307 #define KVM_UC_BIT 0x00004000UL
309 #else /* CONFIG_64BIT */
311 /* Bits in the segment/region table address-space-control-element */
312 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
313 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
314 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
315 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
316 #define _ASCE_REAL_SPACE 0x20 /* real space control */
317 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
318 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
319 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
320 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
321 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
322 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
324 /* Bits in the region table entry */
325 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
326 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
327 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
328 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
329 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
330 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
331 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
333 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
334 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
335 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
336 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
337 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
338 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
340 /* Bits in the segment table entry */
341 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
342 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
343 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
345 #define _SEGMENT_ENTRY (0)
346 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
348 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
349 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
351 /* Page status table bits for virtualization */
352 #define RCP_ACC_BITS 0xf000000000000000UL
353 #define RCP_FP_BIT 0x0800000000000000UL
354 #define RCP_PCL_BIT 0x0080000000000000UL
355 #define RCP_HR_BIT 0x0040000000000000UL
356 #define RCP_HC_BIT 0x0020000000000000UL
357 #define RCP_GR_BIT 0x0004000000000000UL
358 #define RCP_GC_BIT 0x0002000000000000UL
360 /* User dirty / referenced bit for KVM's migration feature */
361 #define KVM_UR_BIT 0x0000800000000000UL
362 #define KVM_UC_BIT 0x0000400000000000UL
364 #endif /* CONFIG_64BIT */
367 * A user page table pointer has the space-switch-event bit, the
368 * private-space-control bit and the storage-alteration-event-control
369 * bit set. A kernel page table pointer doesn't need them.
371 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
375 * Page protection definitions.
377 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
378 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
379 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
381 #define PAGE_KERNEL PAGE_RW
382 #define PAGE_COPY PAGE_RO
385 * On s390 the page table entry has an invalid bit and a read-only bit.
386 * Read permission implies execute permission and write permission
387 * implies read permission.
390 #define __P000 PAGE_NONE
391 #define __P001 PAGE_RO
392 #define __P010 PAGE_RO
393 #define __P011 PAGE_RO
394 #define __P100 PAGE_RO
395 #define __P101 PAGE_RO
396 #define __P110 PAGE_RO
397 #define __P111 PAGE_RO
399 #define __S000 PAGE_NONE
400 #define __S001 PAGE_RO
401 #define __S010 PAGE_RW
402 #define __S011 PAGE_RW
403 #define __S100 PAGE_RO
404 #define __S101 PAGE_RO
405 #define __S110 PAGE_RW
406 #define __S111 PAGE_RW
408 static inline int mm_exclusive(struct mm_struct
*mm
)
410 return likely(mm
== current
->active_mm
&&
411 atomic_read(&mm
->context
.attach_count
) <= 1);
414 static inline int mm_has_pgste(struct mm_struct
*mm
)
417 if (unlikely(mm
->context
.has_pgste
))
423 * pgd/pmd/pte query functions
427 static inline int pgd_present(pgd_t pgd
) { return 1; }
428 static inline int pgd_none(pgd_t pgd
) { return 0; }
429 static inline int pgd_bad(pgd_t pgd
) { return 0; }
431 static inline int pud_present(pud_t pud
) { return 1; }
432 static inline int pud_none(pud_t pud
) { return 0; }
433 static inline int pud_bad(pud_t pud
) { return 0; }
435 #else /* CONFIG_64BIT */
437 static inline int pgd_present(pgd_t pgd
)
439 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
441 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
444 static inline int pgd_none(pgd_t pgd
)
446 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
448 return (pgd_val(pgd
) & _REGION_ENTRY_INV
) != 0UL;
451 static inline int pgd_bad(pgd_t pgd
)
454 * With dynamic page table levels the pgd can be a region table
455 * entry or a segment table entry. Check for the bit that are
456 * invalid for either table entry.
459 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INV
&
460 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
461 return (pgd_val(pgd
) & mask
) != 0;
464 static inline int pud_present(pud_t pud
)
466 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
468 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
471 static inline int pud_none(pud_t pud
)
473 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
475 return (pud_val(pud
) & _REGION_ENTRY_INV
) != 0UL;
478 static inline int pud_bad(pud_t pud
)
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
486 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INV
&
487 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
488 return (pud_val(pud
) & mask
) != 0;
491 #endif /* CONFIG_64BIT */
493 static inline int pmd_present(pmd_t pmd
)
495 return (pmd_val(pmd
) & _SEGMENT_ENTRY_ORIGIN
) != 0UL;
498 static inline int pmd_none(pmd_t pmd
)
500 return (pmd_val(pmd
) & _SEGMENT_ENTRY_INV
) != 0UL;
503 static inline int pmd_bad(pmd_t pmd
)
505 unsigned long mask
= ~_SEGMENT_ENTRY_ORIGIN
& ~_SEGMENT_ENTRY_INV
;
506 return (pmd_val(pmd
) & mask
) != _SEGMENT_ENTRY
;
509 static inline int pte_none(pte_t pte
)
511 return (pte_val(pte
) & _PAGE_INVALID
) && !(pte_val(pte
) & _PAGE_SWT
);
514 static inline int pte_present(pte_t pte
)
516 unsigned long mask
= _PAGE_RO
| _PAGE_INVALID
| _PAGE_SWT
| _PAGE_SWX
;
517 return (pte_val(pte
) & mask
) == _PAGE_TYPE_NONE
||
518 (!(pte_val(pte
) & _PAGE_INVALID
) &&
519 !(pte_val(pte
) & _PAGE_SWT
));
522 static inline int pte_file(pte_t pte
)
524 unsigned long mask
= _PAGE_RO
| _PAGE_INVALID
| _PAGE_SWT
;
525 return (pte_val(pte
) & mask
) == _PAGE_TYPE_FILE
;
528 static inline int pte_special(pte_t pte
)
530 return (pte_val(pte
) & _PAGE_SPECIAL
);
533 #define __HAVE_ARCH_PTE_SAME
534 static inline int pte_same(pte_t a
, pte_t b
)
536 return pte_val(a
) == pte_val(b
);
539 static inline pgste_t
pgste_get_lock(pte_t
*ptep
)
541 unsigned long new = 0;
549 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
550 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
553 : "=&d" (old
), "=&d" (new), "=Q" (ptep
[PTRS_PER_PTE
])
554 : "Q" (ptep
[PTRS_PER_PTE
]) : "cc");
559 static inline void pgste_set_unlock(pte_t
*ptep
, pgste_t pgste
)
563 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
565 : "=Q" (ptep
[PTRS_PER_PTE
])
566 : "d" (pgste_val(pgste
)), "Q" (ptep
[PTRS_PER_PTE
]) : "cc");
571 static inline pgste_t
pgste_update_all(pte_t
*ptep
, pgste_t pgste
)
574 unsigned long address
, bits
;
577 if (!pte_present(*ptep
))
579 address
= pte_val(*ptep
) & PAGE_MASK
;
580 skey
= page_get_storage_key(address
);
581 bits
= skey
& (_PAGE_CHANGED
| _PAGE_REFERENCED
);
582 /* Clear page changed & referenced bit in the storage key */
583 if (bits
& _PAGE_CHANGED
)
584 page_set_storage_key(address
, skey
^ bits
, 1);
586 page_reset_referenced(address
);
587 /* Transfer page changed & referenced bit to guest bits in pgste */
588 pgste_val(pgste
) |= bits
<< 48; /* RCP_GR_BIT & RCP_GC_BIT */
589 /* Get host changed & referenced bits from pgste */
590 bits
|= (pgste_val(pgste
) & (RCP_HR_BIT
| RCP_HC_BIT
)) >> 52;
591 /* Clear host bits in pgste. */
592 pgste_val(pgste
) &= ~(RCP_HR_BIT
| RCP_HC_BIT
);
593 pgste_val(pgste
) &= ~(RCP_ACC_BITS
| RCP_FP_BIT
);
594 /* Copy page access key and fetch protection bit to pgste */
596 (unsigned long) (skey
& (_PAGE_ACC_BITS
| _PAGE_FP_BIT
)) << 56;
597 /* Transfer changed and referenced to kvm user bits */
598 pgste_val(pgste
) |= bits
<< 45; /* KVM_UR_BIT & KVM_UC_BIT */
599 /* Transfer changed & referenced to pte sofware bits */
600 pte_val(*ptep
) |= bits
<< 1; /* _PAGE_SWR & _PAGE_SWC */
606 static inline pgste_t
pgste_update_young(pte_t
*ptep
, pgste_t pgste
)
611 if (!pte_present(*ptep
))
613 young
= page_reset_referenced(pte_val(*ptep
) & PAGE_MASK
);
614 /* Transfer page referenced bit to pte software bit (host view) */
615 if (young
|| (pgste_val(pgste
) & RCP_HR_BIT
))
616 pte_val(*ptep
) |= _PAGE_SWR
;
617 /* Clear host referenced bit in pgste. */
618 pgste_val(pgste
) &= ~RCP_HR_BIT
;
619 /* Transfer page referenced bit to guest bit in pgste */
620 pgste_val(pgste
) |= (unsigned long) young
<< 50; /* set RCP_GR_BIT */
626 static inline void pgste_set_pte(pte_t
*ptep
, pgste_t pgste
, pte_t entry
)
629 unsigned long address
;
630 unsigned long okey
, nkey
;
632 if (!pte_present(entry
))
634 address
= pte_val(entry
) & PAGE_MASK
;
635 okey
= nkey
= page_get_storage_key(address
);
636 nkey
&= ~(_PAGE_ACC_BITS
| _PAGE_FP_BIT
);
637 /* Set page access key and fetch protection bit from pgste */
638 nkey
|= (pgste_val(pgste
) & (RCP_ACC_BITS
| RCP_FP_BIT
)) >> 56;
640 page_set_storage_key(address
, nkey
, 1);
645 * struct gmap_struct - guest address space
646 * @mm: pointer to the parent mm_struct
647 * @table: pointer to the page directory
648 * @asce: address space control element for gmap page table
649 * @crst_list: list of all crst tables used in the guest address space
652 struct list_head list
;
653 struct mm_struct
*mm
;
654 unsigned long *table
;
656 struct list_head crst_list
;
660 * struct gmap_rmap - reverse mapping for segment table entries
661 * @next: pointer to the next gmap_rmap structure in the list
662 * @entry: pointer to a segment table entry
665 struct list_head list
;
666 unsigned long *entry
;
670 * struct gmap_pgtable - gmap information attached to a page table
671 * @vmaddr: address of the 1MB segment in the process virtual memory
672 * @mapper: list of segment table entries maping a page table
674 struct gmap_pgtable
{
675 unsigned long vmaddr
;
676 struct list_head mapper
;
679 struct gmap
*gmap_alloc(struct mm_struct
*mm
);
680 void gmap_free(struct gmap
*gmap
);
681 void gmap_enable(struct gmap
*gmap
);
682 void gmap_disable(struct gmap
*gmap
);
683 int gmap_map_segment(struct gmap
*gmap
, unsigned long from
,
684 unsigned long to
, unsigned long length
);
685 int gmap_unmap_segment(struct gmap
*gmap
, unsigned long to
, unsigned long len
);
686 unsigned long __gmap_fault(unsigned long address
, struct gmap
*);
687 unsigned long gmap_fault(unsigned long address
, struct gmap
*);
688 void gmap_discard(unsigned long from
, unsigned long to
, struct gmap
*);
691 * Certain architectures need to do special things when PTEs
692 * within a page table are directly modified. Thus, the following
693 * hook is made available.
695 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
696 pte_t
*ptep
, pte_t entry
)
700 if (mm_has_pgste(mm
)) {
701 pgste
= pgste_get_lock(ptep
);
702 pgste_set_pte(ptep
, pgste
, entry
);
704 pgste_set_unlock(ptep
, pgste
);
710 * query functions pte_write/pte_dirty/pte_young only work if
711 * pte_present() is true. Undefined behaviour if not..
713 static inline int pte_write(pte_t pte
)
715 return (pte_val(pte
) & _PAGE_RO
) == 0;
718 static inline int pte_dirty(pte_t pte
)
721 if (pte_val(pte
) & _PAGE_SWC
)
727 static inline int pte_young(pte_t pte
)
730 if (pte_val(pte
) & _PAGE_SWR
)
737 * pgd/pmd/pte modification functions
740 static inline void pgd_clear(pgd_t
*pgd
)
743 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
744 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
748 static inline void pud_clear(pud_t
*pud
)
751 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
752 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
756 static inline void pmd_clear(pmd_t
*pmdp
)
758 pmd_val(*pmdp
) = _SEGMENT_ENTRY_EMPTY
;
761 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
763 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
767 * The following pte modification functions only work if
768 * pte_present() is true. Undefined behaviour if not..
770 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
772 pte_val(pte
) &= _PAGE_CHG_MASK
;
773 pte_val(pte
) |= pgprot_val(newprot
);
777 static inline pte_t
pte_wrprotect(pte_t pte
)
779 /* Do not clobber _PAGE_TYPE_NONE pages! */
780 if (!(pte_val(pte
) & _PAGE_INVALID
))
781 pte_val(pte
) |= _PAGE_RO
;
785 static inline pte_t
pte_mkwrite(pte_t pte
)
787 pte_val(pte
) &= ~_PAGE_RO
;
791 static inline pte_t
pte_mkclean(pte_t pte
)
794 pte_val(pte
) &= ~_PAGE_SWC
;
799 static inline pte_t
pte_mkdirty(pte_t pte
)
804 static inline pte_t
pte_mkold(pte_t pte
)
807 pte_val(pte
) &= ~_PAGE_SWR
;
812 static inline pte_t
pte_mkyoung(pte_t pte
)
817 static inline pte_t
pte_mkspecial(pte_t pte
)
819 pte_val(pte
) |= _PAGE_SPECIAL
;
823 #ifdef CONFIG_HUGETLB_PAGE
824 static inline pte_t
pte_mkhuge(pte_t pte
)
827 * PROT_NONE needs to be remapped from the pte type to the ste type.
828 * The HW invalid bit is also different for pte and ste. The pte
829 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
830 * bit, so we don't have to clear it.
832 if (pte_val(pte
) & _PAGE_INVALID
) {
833 if (pte_val(pte
) & _PAGE_SWT
)
834 pte_val(pte
) |= _HPAGE_TYPE_NONE
;
835 pte_val(pte
) |= _SEGMENT_ENTRY_INV
;
838 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
841 pte_val(pte
) &= ~(_PAGE_SWT
| _PAGE_SWX
);
843 * Also set the change-override bit because we don't need dirty bit
844 * tracking for hugetlbfs pages.
846 pte_val(pte
) |= (_SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_CO
);
852 * Get (and clear) the user dirty bit for a pte.
854 static inline int ptep_test_and_clear_user_dirty(struct mm_struct
*mm
,
860 if (mm_has_pgste(mm
)) {
861 pgste
= pgste_get_lock(ptep
);
862 pgste
= pgste_update_all(ptep
, pgste
);
863 dirty
= !!(pgste_val(pgste
) & KVM_UC_BIT
);
864 pgste_val(pgste
) &= ~KVM_UC_BIT
;
865 pgste_set_unlock(ptep
, pgste
);
872 * Get (and clear) the user referenced bit for a pte.
874 static inline int ptep_test_and_clear_user_young(struct mm_struct
*mm
,
880 if (mm_has_pgste(mm
)) {
881 pgste
= pgste_get_lock(ptep
);
882 pgste
= pgste_update_young(ptep
, pgste
);
883 young
= !!(pgste_val(pgste
) & KVM_UR_BIT
);
884 pgste_val(pgste
) &= ~KVM_UR_BIT
;
885 pgste_set_unlock(ptep
, pgste
);
890 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
891 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
892 unsigned long addr
, pte_t
*ptep
)
897 if (mm_has_pgste(vma
->vm_mm
)) {
898 pgste
= pgste_get_lock(ptep
);
899 pgste
= pgste_update_young(ptep
, pgste
);
901 *ptep
= pte_mkold(pte
);
902 pgste_set_unlock(ptep
, pgste
);
903 return pte_young(pte
);
908 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
909 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
910 unsigned long address
, pte_t
*ptep
)
912 /* No need to flush TLB
913 * On s390 reference bits are in storage key and never in TLB
914 * With virtualization we handle the reference bit, without we
915 * we can simply return */
916 return ptep_test_and_clear_young(vma
, address
, ptep
);
919 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
921 if (!(pte_val(*ptep
) & _PAGE_INVALID
)) {
923 /* pto must point to the start of the segment table */
924 pte_t
*pto
= (pte_t
*) (((unsigned long) ptep
) & 0x7ffffc00);
926 /* ipte in zarch mode can do the math */
931 : "=m" (*ptep
) : "m" (*ptep
),
932 "a" (pto
), "a" (address
));
937 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
938 * both clear the TLB for the unmapped pte. The reason is that
939 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
940 * to modify an active pte. The sequence is
941 * 1) ptep_get_and_clear
944 * On s390 the tlb needs to get flushed with the modification of the pte
945 * if the pte is active. The only way how this can be implemented is to
946 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
949 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
950 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
951 unsigned long address
, pte_t
*ptep
)
956 mm
->context
.flush_mm
= 1;
957 if (mm_has_pgste(mm
))
958 pgste
= pgste_get_lock(ptep
);
961 if (!mm_exclusive(mm
))
962 __ptep_ipte(address
, ptep
);
963 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
965 if (mm_has_pgste(mm
)) {
966 pgste
= pgste_update_all(&pte
, pgste
);
967 pgste_set_unlock(ptep
, pgste
);
972 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
973 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
974 unsigned long address
,
979 mm
->context
.flush_mm
= 1;
980 if (mm_has_pgste(mm
))
981 pgste_get_lock(ptep
);
984 if (!mm_exclusive(mm
))
985 __ptep_ipte(address
, ptep
);
989 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
990 unsigned long address
,
991 pte_t
*ptep
, pte_t pte
)
994 if (mm_has_pgste(mm
))
995 pgste_set_unlock(ptep
, *(pgste_t
*)(ptep
+ PTRS_PER_PTE
));
998 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
999 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
1000 unsigned long address
, pte_t
*ptep
)
1005 if (mm_has_pgste(vma
->vm_mm
))
1006 pgste
= pgste_get_lock(ptep
);
1009 __ptep_ipte(address
, ptep
);
1010 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
1012 if (mm_has_pgste(vma
->vm_mm
)) {
1013 pgste
= pgste_update_all(&pte
, pgste
);
1014 pgste_set_unlock(ptep
, pgste
);
1020 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1021 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1022 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1023 * cannot be accessed while the batched unmap is running. In this case
1024 * full==1 and a simple pte_clear is enough. See tlb.h.
1026 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1027 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
1028 unsigned long address
,
1029 pte_t
*ptep
, int full
)
1034 if (mm_has_pgste(mm
))
1035 pgste
= pgste_get_lock(ptep
);
1039 __ptep_ipte(address
, ptep
);
1040 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
1042 if (mm_has_pgste(mm
)) {
1043 pgste
= pgste_update_all(&pte
, pgste
);
1044 pgste_set_unlock(ptep
, pgste
);
1049 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1050 static inline pte_t
ptep_set_wrprotect(struct mm_struct
*mm
,
1051 unsigned long address
, pte_t
*ptep
)
1056 if (pte_write(pte
)) {
1057 mm
->context
.flush_mm
= 1;
1058 if (mm_has_pgste(mm
))
1059 pgste
= pgste_get_lock(ptep
);
1061 if (!mm_exclusive(mm
))
1062 __ptep_ipte(address
, ptep
);
1063 *ptep
= pte_wrprotect(pte
);
1065 if (mm_has_pgste(mm
))
1066 pgste_set_unlock(ptep
, pgste
);
1071 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1072 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
1073 unsigned long address
, pte_t
*ptep
,
1074 pte_t entry
, int dirty
)
1078 if (pte_same(*ptep
, entry
))
1080 if (mm_has_pgste(vma
->vm_mm
))
1081 pgste
= pgste_get_lock(ptep
);
1083 __ptep_ipte(address
, ptep
);
1086 if (mm_has_pgste(vma
->vm_mm
))
1087 pgste_set_unlock(ptep
, pgste
);
1092 * Conversion functions: convert a page and protection to a page entry,
1093 * and a page entry and page directory to the page they refer to.
1095 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1098 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
1102 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1104 unsigned long physpage
= page_to_phys(page
);
1106 return mk_pte_phys(physpage
, pgprot
);
1109 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1110 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1111 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1112 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1114 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1115 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1117 #ifndef CONFIG_64BIT
1119 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1120 #define pud_deref(pmd) ({ BUG(); 0UL; })
1121 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1123 #define pud_offset(pgd, address) ((pud_t *) pgd)
1124 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1126 #else /* CONFIG_64BIT */
1128 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1129 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1130 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1132 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
1134 pud_t
*pud
= (pud_t
*) pgd
;
1135 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
1136 pud
= (pud_t
*) pgd_deref(*pgd
);
1137 return pud
+ pud_index(address
);
1140 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
1142 pmd_t
*pmd
= (pmd_t
*) pud
;
1143 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
1144 pmd
= (pmd_t
*) pud_deref(*pud
);
1145 return pmd
+ pmd_index(address
);
1148 #endif /* CONFIG_64BIT */
1150 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1151 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1152 #define pte_page(x) pfn_to_page(pte_pfn(x))
1154 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1156 /* Find an entry in the lowest level page table.. */
1157 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1158 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1159 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1160 #define pte_unmap(pte) do { } while (0)
1163 * 31 bit swap entry format:
1164 * A page-table entry has some bits we have to treat in a special way.
1165 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1166 * exception will occur instead of a page translation exception. The
1167 * specifiation exception has the bad habit not to store necessary
1168 * information in the lowcore.
1169 * Bit 21 and bit 22 are the page invalid bit and the page protection
1170 * bit. We set both to indicate a swapped page.
1171 * Bit 30 and 31 are used to distinguish the different page types. For
1172 * a swapped page these bits need to be zero.
1173 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1174 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1175 * plus 24 for the offset.
1176 * 0| offset |0110|o|type |00|
1177 * 0 0000000001111111111 2222 2 22222 33
1178 * 0 1234567890123456789 0123 4 56789 01
1180 * 64 bit swap entry format:
1181 * A page-table entry has some bits we have to treat in a special way.
1182 * Bits 52 and bit 55 have to be zero, otherwise an specification
1183 * exception will occur instead of a page translation exception. The
1184 * specifiation exception has the bad habit not to store necessary
1185 * information in the lowcore.
1186 * Bit 53 and bit 54 are the page invalid bit and the page protection
1187 * bit. We set both to indicate a swapped page.
1188 * Bit 62 and 63 are used to distinguish the different page types. For
1189 * a swapped page these bits need to be zero.
1190 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1191 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1192 * plus 56 for the offset.
1193 * | offset |0110|o|type |00|
1194 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1195 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1197 #ifndef CONFIG_64BIT
1198 #define __SWP_OFFSET_MASK (~0UL >> 12)
1200 #define __SWP_OFFSET_MASK (~0UL >> 11)
1202 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1205 offset
&= __SWP_OFFSET_MASK
;
1206 pte_val(pte
) = _PAGE_TYPE_SWAP
| ((type
& 0x1f) << 2) |
1207 ((offset
& 1UL) << 7) | ((offset
& ~1UL) << 11);
1211 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1212 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1213 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1215 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1216 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1218 #ifndef CONFIG_64BIT
1219 # define PTE_FILE_MAX_BITS 26
1220 #else /* CONFIG_64BIT */
1221 # define PTE_FILE_MAX_BITS 59
1222 #endif /* CONFIG_64BIT */
1224 #define pte_to_pgoff(__pte) \
1225 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1227 #define pgoff_to_pte(__off) \
1228 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1229 | _PAGE_TYPE_FILE })
1231 #endif /* !__ASSEMBLY__ */
1233 #define kern_addr_valid(addr) (1)
1235 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1236 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1237 extern int s390_enable_sie(void);
1240 * No page table caches to initialise
1242 #define pgtable_cache_init() do { } while (0)
1244 #include <asm-generic/pgtable.h>
1246 #endif /* _S390_PAGE_H */