2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <asm/stack.h>
31 #include <asm/switch_to.h>
32 #include <asm/homecache.h>
33 #include <asm/syscalls.h>
34 #include <asm/traps.h>
35 #include <asm/setup.h>
36 #ifdef CONFIG_HARDWALL
37 #include <asm/hardwall.h>
39 #include <arch/chip.h>
41 #include <arch/sim_def.h>
45 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
46 * idle loop over low power while in the idle loop, e.g. if we have
47 * one thread per core and we want to get threads out of futex waits fast.
49 static int no_idle_nap
;
50 static int __init
idle_setup(char *str
)
55 if (!strcmp(str
, "poll")) {
56 pr_info("using polling idle threads.\n");
58 } else if (!strcmp(str
, "halt"))
65 early_param("idle", idle_setup
);
68 * The idle thread. There's no useful work to be
69 * done, so just try to conserve power and have a
70 * low exit latency (ie sit in a loop waiting for
71 * somebody to say that they'd like to reschedule)
75 int cpu
= smp_processor_id();
78 current_thread_info()->status
|= TS_POLLING
;
82 while (!need_resched())
88 /* endless idle loop with no priority at all */
90 tick_nohz_idle_enter();
92 while (!need_resched()) {
93 if (cpu_is_offline(cpu
))
94 BUG(); /* no HOTPLUG_CPU */
97 __get_cpu_var(irq_stat
).idle_timestamp
= jiffies
;
98 current_thread_info()->status
&= ~TS_POLLING
;
100 * TS_POLLING-cleared state must be visible before we
109 current_thread_info()->status
|= TS_POLLING
;
112 tick_nohz_idle_exit();
113 schedule_preempt_disabled();
118 * Release a thread_info structure
120 void arch_release_thread_info(struct thread_info
*info
)
122 struct single_step_state
*step_state
= info
->step_state
;
124 #ifdef CONFIG_HARDWALL
126 * We free a thread_info from the context of the task that has
127 * been scheduled next, so the original task is already dead.
128 * Calling deactivate here just frees up the data structures.
129 * If the task we're freeing held the last reference to a
130 * hardwall fd, it would have been released prior to this point
131 * anyway via exit_files(), and the hardwall_task.info pointers
132 * would be NULL by now.
134 hardwall_deactivate_all(info
->task
);
140 * FIXME: we don't munmap step_state->buffer
141 * because the mm_struct for this process (info->task->mm)
142 * has already been zeroed in exit_mm(). Keeping a
143 * reference to it here seems like a bad move, so this
144 * means we can't munmap() the buffer, and therefore if we
145 * ptrace multiple threads in a process, we will slowly
146 * leak user memory. (Note that as soon as the last
147 * thread in a process dies, we will reclaim all user
148 * memory including single-step buffers in the usual way.)
149 * We should either assign a kernel VA to this buffer
150 * somehow, or we should associate the buffer(s) with the
151 * mm itself so we can clean them up that way.
157 static void save_arch_state(struct thread_struct
*t
);
159 int copy_thread(unsigned long clone_flags
, unsigned long sp
,
160 unsigned long stack_size
,
161 struct task_struct
*p
, struct pt_regs
*regs
)
163 struct pt_regs
*childregs
;
167 * When creating a new kernel thread we pass sp as zero.
168 * Assign it to a reasonable value now that we have the stack.
170 if (sp
== 0 && regs
->ex1
== PL_ICS_EX1(KERNEL_PL
, 0))
174 * Do not clone step state from the parent; each thread
175 * must make its own lazily.
177 task_thread_info(p
)->step_state
= NULL
;
180 * Start new thread in ret_from_fork so it schedules properly
181 * and then return from interrupt like the parent.
183 p
->thread
.pc
= (unsigned long) ret_from_fork
;
185 /* Save user stack top pointer so we can ID the stack vm area later. */
188 /* Record the pid of the process that created this one. */
189 p
->thread
.creator_pid
= current
->pid
;
192 * Copy the registers onto the kernel stack so the
193 * return-from-interrupt code will reload it into registers.
195 childregs
= task_pt_regs(p
);
197 childregs
->regs
[0] = 0; /* return value is zero */
198 childregs
->sp
= sp
; /* override with new user stack pointer */
201 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
202 * which is passed in as arg #5 to sys_clone().
204 if (clone_flags
& CLONE_SETTLS
)
205 childregs
->tp
= regs
->regs
[4];
208 * Copy the callee-saved registers from the passed pt_regs struct
209 * into the context-switch callee-saved registers area.
210 * This way when we start the interrupt-return sequence, the
211 * callee-save registers will be correctly in registers, which
212 * is how we assume the compiler leaves them as we start doing
213 * the normal return-from-interrupt path after calling C code.
214 * Zero out the C ABI save area to mark the top of the stack.
216 ksp
= (unsigned long) childregs
;
217 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* interrupt-entry save area */
218 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
219 ksp
-= CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long);
220 memcpy((void *)ksp
, ®s
->regs
[CALLEE_SAVED_FIRST_REG
],
221 CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long));
222 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* __switch_to() save area */
223 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
226 #if CHIP_HAS_TILE_DMA()
228 * No DMA in the new thread. We model this on the fact that
229 * fork() clears the pending signals, alarms, and aio for the child.
231 memset(&p
->thread
.tile_dma_state
, 0, sizeof(struct tile_dma_state
));
232 memset(&p
->thread
.dma_async_tlb
, 0, sizeof(struct async_tlb
));
235 #if CHIP_HAS_SN_PROC()
236 /* Likewise, the new thread is not running static processor code. */
237 p
->thread
.sn_proc_running
= 0;
238 memset(&p
->thread
.sn_async_tlb
, 0, sizeof(struct async_tlb
));
241 #if CHIP_HAS_PROC_STATUS_SPR()
242 /* New thread has its miscellaneous processor state bits clear. */
243 p
->thread
.proc_status
= 0;
246 #ifdef CONFIG_HARDWALL
247 /* New thread does not own any networks. */
248 memset(&p
->thread
.hardwall
[0], 0,
249 sizeof(struct hardwall_task
) * HARDWALL_TYPES
);
254 * Start the new thread with the current architecture state
255 * (user interrupt masks, etc.).
257 save_arch_state(&p
->thread
);
263 * Return "current" if it looks plausible, or else a pointer to a dummy.
264 * This can be helpful if we are just trying to emit a clean panic.
266 struct task_struct
*validate_current(void)
268 static struct task_struct corrupt
= { .comm
= "<corrupt>" };
269 struct task_struct
*tsk
= current
;
270 if (unlikely((unsigned long)tsk
< PAGE_OFFSET
||
271 (high_memory
&& (void *)tsk
> high_memory
) ||
272 ((unsigned long)tsk
& (__alignof__(*tsk
) - 1)) != 0)) {
273 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk
, stack_pointer
);
279 /* Take and return the pointer to the previous task, for schedule_tail(). */
280 struct task_struct
*sim_notify_fork(struct task_struct
*prev
)
282 struct task_struct
*tsk
= current
;
283 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK_PARENT
|
284 (tsk
->thread
.creator_pid
<< _SIM_CONTROL_OPERATOR_BITS
));
285 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK
|
286 (tsk
->pid
<< _SIM_CONTROL_OPERATOR_BITS
));
290 int dump_task_regs(struct task_struct
*tsk
, elf_gregset_t
*regs
)
292 struct pt_regs
*ptregs
= task_pt_regs(tsk
);
293 elf_core_copy_regs(regs
, ptregs
);
297 #if CHIP_HAS_TILE_DMA()
299 /* Allow user processes to access the DMA SPRs */
300 void grant_dma_mpls(void)
302 #if CONFIG_KERNEL_PL == 2
303 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
304 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
306 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0
, 1);
307 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0
, 1);
311 /* Forbid user processes from accessing the DMA SPRs */
312 void restrict_dma_mpls(void)
314 #if CONFIG_KERNEL_PL == 2
315 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2
, 1);
316 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2
, 1);
318 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
319 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
323 /* Pause the DMA engine, then save off its state registers. */
324 static void save_tile_dma_state(struct tile_dma_state
*dma
)
326 unsigned long state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
327 unsigned long post_suspend_state
;
329 /* If we're running, suspend the engine. */
330 if ((state
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
)
331 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
334 * Wait for the engine to idle, then save regs. Note that we
335 * want to record the "running" bit from before suspension,
336 * and the "done" bit from after, so that we can properly
337 * distinguish a case where the user suspended the engine from
338 * the case where the kernel suspended as part of the context
342 post_suspend_state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
343 } while (post_suspend_state
& SPR_DMA_STATUS__BUSY_MASK
);
345 dma
->src
= __insn_mfspr(SPR_DMA_SRC_ADDR
);
346 dma
->src_chunk
= __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR
);
347 dma
->dest
= __insn_mfspr(SPR_DMA_DST_ADDR
);
348 dma
->dest_chunk
= __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR
);
349 dma
->strides
= __insn_mfspr(SPR_DMA_STRIDE
);
350 dma
->chunk_size
= __insn_mfspr(SPR_DMA_CHUNK_SIZE
);
351 dma
->byte
= __insn_mfspr(SPR_DMA_BYTE
);
352 dma
->status
= (state
& SPR_DMA_STATUS__RUNNING_MASK
) |
353 (post_suspend_state
& SPR_DMA_STATUS__DONE_MASK
);
356 /* Restart a DMA that was running before we were context-switched out. */
357 static void restore_tile_dma_state(struct thread_struct
*t
)
359 const struct tile_dma_state
*dma
= &t
->tile_dma_state
;
362 * The only way to restore the done bit is to run a zero
363 * length transaction.
365 if ((dma
->status
& SPR_DMA_STATUS__DONE_MASK
) &&
366 !(__insn_mfspr(SPR_DMA_USER_STATUS
) & SPR_DMA_STATUS__DONE_MASK
)) {
367 __insn_mtspr(SPR_DMA_BYTE
, 0);
368 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
369 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
370 SPR_DMA_STATUS__BUSY_MASK
)
374 __insn_mtspr(SPR_DMA_SRC_ADDR
, dma
->src
);
375 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR
, dma
->src_chunk
);
376 __insn_mtspr(SPR_DMA_DST_ADDR
, dma
->dest
);
377 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR
, dma
->dest_chunk
);
378 __insn_mtspr(SPR_DMA_STRIDE
, dma
->strides
);
379 __insn_mtspr(SPR_DMA_CHUNK_SIZE
, dma
->chunk_size
);
380 __insn_mtspr(SPR_DMA_BYTE
, dma
->byte
);
383 * Restart the engine if we were running and not done.
384 * Clear a pending async DMA fault that we were waiting on return
385 * to user space to execute, since we expect the DMA engine
386 * to regenerate those faults for us now. Note that we don't
387 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
388 * harmless if set, and it covers both DMA and the SN processor.
390 if ((dma
->status
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
) {
391 t
->dma_async_tlb
.fault_num
= 0;
392 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
398 static void save_arch_state(struct thread_struct
*t
)
400 #if CHIP_HAS_SPLIT_INTR_MASK()
401 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0_0
) |
402 ((u64
)__insn_mfspr(SPR_INTERRUPT_MASK_0_1
) << 32);
404 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0
);
406 t
->ex_context
[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0
);
407 t
->ex_context
[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1
);
408 t
->system_save
[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0
);
409 t
->system_save
[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1
);
410 t
->system_save
[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2
);
411 t
->system_save
[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3
);
412 t
->intctrl_0
= __insn_mfspr(SPR_INTCTRL_0_STATUS
);
413 #if CHIP_HAS_PROC_STATUS_SPR()
414 t
->proc_status
= __insn_mfspr(SPR_PROC_STATUS
);
416 #if !CHIP_HAS_FIXED_INTVEC_BASE()
417 t
->interrupt_vector_base
= __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0
);
419 #if CHIP_HAS_TILE_RTF_HWM()
420 t
->tile_rtf_hwm
= __insn_mfspr(SPR_TILE_RTF_HWM
);
422 #if CHIP_HAS_DSTREAM_PF()
423 t
->dstream_pf
= __insn_mfspr(SPR_DSTREAM_PF
);
427 static void restore_arch_state(const struct thread_struct
*t
)
429 #if CHIP_HAS_SPLIT_INTR_MASK()
430 __insn_mtspr(SPR_INTERRUPT_MASK_0_0
, (u32
) t
->interrupt_mask
);
431 __insn_mtspr(SPR_INTERRUPT_MASK_0_1
, t
->interrupt_mask
>> 32);
433 __insn_mtspr(SPR_INTERRUPT_MASK_0
, t
->interrupt_mask
);
435 __insn_mtspr(SPR_EX_CONTEXT_0_0
, t
->ex_context
[0]);
436 __insn_mtspr(SPR_EX_CONTEXT_0_1
, t
->ex_context
[1]);
437 __insn_mtspr(SPR_SYSTEM_SAVE_0_0
, t
->system_save
[0]);
438 __insn_mtspr(SPR_SYSTEM_SAVE_0_1
, t
->system_save
[1]);
439 __insn_mtspr(SPR_SYSTEM_SAVE_0_2
, t
->system_save
[2]);
440 __insn_mtspr(SPR_SYSTEM_SAVE_0_3
, t
->system_save
[3]);
441 __insn_mtspr(SPR_INTCTRL_0_STATUS
, t
->intctrl_0
);
442 #if CHIP_HAS_PROC_STATUS_SPR()
443 __insn_mtspr(SPR_PROC_STATUS
, t
->proc_status
);
445 #if !CHIP_HAS_FIXED_INTVEC_BASE()
446 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0
, t
->interrupt_vector_base
);
448 #if CHIP_HAS_TILE_RTF_HWM()
449 __insn_mtspr(SPR_TILE_RTF_HWM
, t
->tile_rtf_hwm
);
451 #if CHIP_HAS_DSTREAM_PF()
452 __insn_mtspr(SPR_DSTREAM_PF
, t
->dstream_pf
);
457 void _prepare_arch_switch(struct task_struct
*next
)
459 #if CHIP_HAS_SN_PROC()
462 #if CHIP_HAS_TILE_DMA()
463 struct tile_dma_state
*dma
= ¤t
->thread
.tile_dma_state
;
465 save_tile_dma_state(dma
);
467 #if CHIP_HAS_SN_PROC()
469 * Suspend the static network processor if it was running.
470 * We do not suspend the fabric itself, just like we don't
471 * try to suspend the UDN.
473 snctl
= __insn_mfspr(SPR_SNCTL
);
474 current
->thread
.sn_proc_running
=
475 (snctl
& SPR_SNCTL__FRZPROC_MASK
) == 0;
476 if (current
->thread
.sn_proc_running
)
477 __insn_mtspr(SPR_SNCTL
, snctl
| SPR_SNCTL__FRZPROC_MASK
);
482 struct task_struct
*__sched
_switch_to(struct task_struct
*prev
,
483 struct task_struct
*next
)
485 /* DMA state is already saved; save off other arch state. */
486 save_arch_state(&prev
->thread
);
488 #if CHIP_HAS_TILE_DMA()
490 * Restore DMA in new task if desired.
491 * Note that it is only safe to restart here since interrupts
492 * are disabled, so we can't take any DMATLB miss or access
493 * interrupts before we have finished switching stacks.
495 if (next
->thread
.tile_dma_state
.enabled
) {
496 restore_tile_dma_state(&next
->thread
);
503 /* Restore other arch state. */
504 restore_arch_state(&next
->thread
);
506 #if CHIP_HAS_SN_PROC()
508 * Restart static network processor in the new process
509 * if it was running before.
511 if (next
->thread
.sn_proc_running
) {
512 int snctl
= __insn_mfspr(SPR_SNCTL
);
513 __insn_mtspr(SPR_SNCTL
, snctl
& ~SPR_SNCTL__FRZPROC_MASK
);
517 #ifdef CONFIG_HARDWALL
518 /* Enable or disable access to the network registers appropriately. */
519 hardwall_switch_tasks(prev
, next
);
523 * Switch kernel SP, PC, and callee-saved registers.
524 * In the context of the new task, return the old task pointer
525 * (i.e. the task that actually called __switch_to).
526 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
528 return __switch_to(prev
, next
, next_current_ksp0(next
));
532 * This routine is called on return from interrupt if any of the
533 * TIF_WORK_MASK flags are set in thread_info->flags. It is
534 * entered with interrupts disabled so we don't miss an event
535 * that modified the thread_info flags. If any flag is set, we
536 * handle it and return, and the calling assembly code will
537 * re-disable interrupts, reload the thread flags, and call back
538 * if more flags need to be handled.
540 * We return whether we need to check the thread_info flags again
541 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
542 * important that it be tested last, and then claim that we don't
543 * need to recheck the flags.
545 int do_work_pending(struct pt_regs
*regs
, u32 thread_info_flags
)
547 /* If we enter in kernel mode, do nothing and exit the caller loop. */
548 if (!user_mode(regs
))
551 if (thread_info_flags
& _TIF_NEED_RESCHED
) {
555 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
556 if (thread_info_flags
& _TIF_ASYNC_TLB
) {
557 do_async_page_fault(regs
);
561 if (thread_info_flags
& _TIF_SIGPENDING
) {
565 if (thread_info_flags
& _TIF_NOTIFY_RESUME
) {
566 clear_thread_flag(TIF_NOTIFY_RESUME
);
567 tracehook_notify_resume(regs
);
570 if (thread_info_flags
& _TIF_SINGLESTEP
) {
571 single_step_once(regs
);
574 panic("work_pending: bad flags %#x\n", thread_info_flags
);
577 /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
578 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
579 void __user
*, parent_tidptr
, void __user
*, child_tidptr
,
580 struct pt_regs
*, regs
)
584 return do_fork(clone_flags
, newsp
, regs
, 0,
585 parent_tidptr
, child_tidptr
);
589 * sys_execve() executes a new program.
591 SYSCALL_DEFINE4(execve
, const char __user
*, path
,
592 const char __user
*const __user
*, argv
,
593 const char __user
*const __user
*, envp
,
594 struct pt_regs
*, regs
)
599 filename
= getname(path
);
600 error
= PTR_ERR(filename
);
601 if (IS_ERR(filename
))
603 error
= do_execve(filename
, argv
, envp
, regs
);
606 single_step_execve();
612 long compat_sys_execve(const char __user
*path
,
613 compat_uptr_t __user
*argv
,
614 compat_uptr_t __user
*envp
,
615 struct pt_regs
*regs
)
620 filename
= getname(path
);
621 error
= PTR_ERR(filename
);
622 if (IS_ERR(filename
))
624 error
= compat_do_execve(filename
, argv
, envp
, regs
);
627 single_step_execve();
633 unsigned long get_wchan(struct task_struct
*p
)
635 struct KBacktraceIterator kbt
;
637 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
640 for (KBacktraceIterator_init(&kbt
, p
, NULL
);
641 !KBacktraceIterator_end(&kbt
);
642 KBacktraceIterator_next(&kbt
)) {
643 if (!in_sched_functions(kbt
.it
.pc
))
651 * We pass in lr as zero (cleared in kernel_thread) and the caller
652 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
653 * so that backtraces will stop with this function.
654 * Note that we don't use r0, since copy_thread() clears it.
656 static void start_kernel_thread(int dummy
, int (*fn
)(int), int arg
)
662 * Create a kernel thread
664 int kernel_thread(int (*fn
)(void *), void * arg
, unsigned long flags
)
668 memset(®s
, 0, sizeof(regs
));
669 regs
.ex1
= PL_ICS_EX1(KERNEL_PL
, 0); /* run at kernel PL, no ICS */
670 regs
.pc
= (long) start_kernel_thread
;
671 regs
.flags
= PT_FLAGS_CALLER_SAVES
; /* need to restore r1 and r2 */
672 regs
.regs
[1] = (long) fn
; /* function pointer */
673 regs
.regs
[2] = (long) arg
; /* parameter register */
675 /* Ok, create the new process.. */
676 return do_fork(flags
| CLONE_VM
| CLONE_UNTRACED
, 0, ®s
,
679 EXPORT_SYMBOL(kernel_thread
);
681 /* Flush thread state. */
682 void flush_thread(void)
688 * Free current thread data structures etc..
690 void exit_thread(void)
695 void show_regs(struct pt_regs
*regs
)
697 struct task_struct
*tsk
= validate_current();
701 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
702 tsk
->pid
, tsk
->comm
, smp_processor_id());
704 for (i
= 0; i
< 51; i
+= 3)
705 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
706 i
, regs
->regs
[i
], i
+1, regs
->regs
[i
+1],
707 i
+2, regs
->regs
[i
+2]);
708 pr_err(" r51: "REGFMT
" r52: "REGFMT
" tp : "REGFMT
"\n",
709 regs
->regs
[51], regs
->regs
[52], regs
->tp
);
710 pr_err(" sp : "REGFMT
" lr : "REGFMT
"\n", regs
->sp
, regs
->lr
);
712 for (i
= 0; i
< 52; i
+= 4)
713 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
714 " r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
715 i
, regs
->regs
[i
], i
+1, regs
->regs
[i
+1],
716 i
+2, regs
->regs
[i
+2], i
+3, regs
->regs
[i
+3]);
717 pr_err(" r52: "REGFMT
" tp : "REGFMT
" sp : "REGFMT
" lr : "REGFMT
"\n",
718 regs
->regs
[52], regs
->tp
, regs
->sp
, regs
->lr
);
720 pr_err(" pc : "REGFMT
" ex1: %ld faultnum: %ld\n",
721 regs
->pc
, regs
->ex1
, regs
->faultnum
);
723 dump_stack_regs(regs
);