2 * arch/xtensa/kernel/process.c
4 * Xtensa Processor version.
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
33 #include <linux/slab.h>
34 #include <linux/rcupdate.h>
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
43 #include <linux/atomic.h>
44 #include <asm/asm-offsets.h>
47 extern void ret_from_fork(void);
49 struct task_struct
*current_set
[NR_CPUS
] = {&init_task
, };
51 void (*pm_power_off
)(void) = NULL
;
52 EXPORT_SYMBOL(pm_power_off
);
55 #if XTENSA_HAVE_COPROCESSORS
57 void coprocessor_release_all(struct thread_info
*ti
)
59 unsigned long cpenable
;
62 /* Make sure we don't switch tasks during this operation. */
66 /* Walk through all cp owners and release it for the requested one. */
68 cpenable
= ti
->cpenable
;
70 for (i
= 0; i
< XCHAL_CP_MAX
; i
++) {
71 if (coprocessor_owner
[i
] == ti
) {
72 coprocessor_owner
[i
] = 0;
73 cpenable
&= ~(1 << i
);
77 ti
->cpenable
= cpenable
;
78 coprocessor_clear_cpenable();
83 void coprocessor_flush_all(struct thread_info
*ti
)
85 unsigned long cpenable
;
90 cpenable
= ti
->cpenable
;
92 for (i
= 0; i
< XCHAL_CP_MAX
; i
++) {
93 if ((cpenable
& 1) != 0 && coprocessor_owner
[i
] == ti
)
94 coprocessor_flush(ti
, i
);
105 * Powermanagement idle function, if any is provided by the platform.
112 /* endless idle loop with no priority at all */
115 while (!need_resched())
118 schedule_preempt_disabled();
123 * This is called when the thread calls exit().
125 void exit_thread(void)
127 #if XTENSA_HAVE_COPROCESSORS
128 coprocessor_release_all(current_thread_info());
133 * Flush thread state. This is called when a thread does an execve()
134 * Note that we flush coprocessor registers for the case execve fails.
136 void flush_thread(void)
138 #if XTENSA_HAVE_COPROCESSORS
139 struct thread_info
*ti
= current_thread_info();
140 coprocessor_flush_all(ti
);
141 coprocessor_release_all(ti
);
146 * this gets called so that we can store coprocessor state into memory and
147 * copy the current task into the new thread.
149 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
151 #if XTENSA_HAVE_COPROCESSORS
152 coprocessor_flush_all(task_thread_info(src
));
161 * The stack layout for the new thread looks like this:
163 * +------------------------+ <- sp in childregs (= tos)
165 * +------------------------+ <- thread.sp = sp in dummy-frame
166 * | dummy-frame | (saved in dummy-frame spill-area)
167 * +------------------------+
169 * We create a dummy frame to return to ret_from_fork:
170 * a0 points to ret_from_fork (simulating a call4)
171 * sp points to itself (thread.sp)
174 * Note: This is a pristine frame, so we don't need any spill region on top of
178 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
179 unsigned long unused
,
180 struct task_struct
* p
, struct pt_regs
* regs
)
182 struct pt_regs
*childregs
;
183 struct thread_info
*ti
;
185 int user_mode
= user_mode(regs
);
187 /* Set up new TSS. */
188 tos
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
190 childregs
= (struct pt_regs
*)(tos
- PT_USER_SIZE
);
192 childregs
= (struct pt_regs
*)tos
- 1;
196 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
197 *((int*)childregs
- 3) = (unsigned long)childregs
;
198 *((int*)childregs
- 4) = 0;
200 childregs
->areg
[1] = tos
;
201 childregs
->areg
[2] = 0;
202 p
->set_child_tid
= p
->clear_child_tid
= NULL
;
203 p
->thread
.ra
= MAKE_RA_FOR_CALL((unsigned long)ret_from_fork
, 0x1);
204 p
->thread
.sp
= (unsigned long)childregs
;
206 if (user_mode(regs
)) {
208 int len
= childregs
->wmask
& ~0xf;
209 childregs
->areg
[1] = usp
;
210 memcpy(&childregs
->areg
[XCHAL_NUM_AREGS
- len
/4],
211 ®s
->areg
[XCHAL_NUM_AREGS
- len
/4], len
);
212 // FIXME: we need to set THREADPTR in thread_info...
213 if (clone_flags
& CLONE_SETTLS
)
214 childregs
->areg
[2] = childregs
->areg
[6];
217 /* In kernel space, we start a new thread with a new stack. */
218 childregs
->wmask
= 1;
221 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
222 ti
= task_thread_info(p
);
231 * These bracket the sleeping functions..
234 unsigned long get_wchan(struct task_struct
*p
)
236 unsigned long sp
, pc
;
237 unsigned long stack_page
= (unsigned long) task_stack_page(p
);
240 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
244 pc
= MAKE_PC_FROM_RA(p
->thread
.ra
, p
->thread
.sp
);
247 if (sp
< stack_page
+ sizeof(struct task_struct
) ||
248 sp
>= (stack_page
+ THREAD_SIZE
) ||
251 if (!in_sched_functions(pc
))
254 /* Stack layout: sp-4: ra, sp-3: sp' */
256 pc
= MAKE_PC_FROM_RA(*(unsigned long*)sp
- 4, sp
);
257 sp
= *(unsigned long *)sp
- 3;
258 } while (count
++ < 16);
263 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
264 * of processor registers. Besides different ordering,
265 * xtensa_gregset_t contains non-live register information that
266 * 'struct pt_regs' does not. Exception handling (primarily) uses
267 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
271 void xtensa_elf_core_copy_regs (xtensa_gregset_t
*elfregs
, struct pt_regs
*regs
)
273 unsigned long wb
, ws
, wm
;
276 wb
= regs
->windowbase
;
277 ws
= regs
->windowstart
;
279 ws
= ((ws
>> wb
) | (ws
<< (WSBITS
- wb
))) & ((1 << WSBITS
) - 1);
281 /* Don't leak any random bits. */
283 memset(elfregs
, 0, sizeof(*elfregs
));
285 /* Note: PS.EXCM is not set while user task is running; its
286 * being set in regs->ps is for exception handling convenience.
289 elfregs
->pc
= regs
->pc
;
290 elfregs
->ps
= (regs
->ps
& ~(1 << PS_EXCM_BIT
));
291 elfregs
->lbeg
= regs
->lbeg
;
292 elfregs
->lend
= regs
->lend
;
293 elfregs
->lcount
= regs
->lcount
;
294 elfregs
->sar
= regs
->sar
;
295 elfregs
->windowstart
= ws
;
297 live
= (wm
& 2) ? 4 : (wm
& 4) ? 8 : (wm
& 8) ? 12 : 16;
298 last
= XCHAL_NUM_AREGS
- (wm
>> 4) * 4;
299 memcpy(elfregs
->a
, regs
->areg
, live
* 4);
300 memcpy(elfregs
->a
+ last
, regs
->areg
+ last
, (wm
>> 4) * 16);
309 long xtensa_clone(unsigned long clone_flags
, unsigned long newsp
,
310 void __user
*parent_tid
, void *child_tls
,
311 void __user
*child_tid
, long a5
,
312 struct pt_regs
*regs
)
315 newsp
= regs
->areg
[1];
316 return do_fork(clone_flags
, newsp
, regs
, 0, parent_tid
, child_tid
);
320 * xtensa_execve() executes a new program.
324 long xtensa_execve(const char __user
*name
,
325 const char __user
*const __user
*argv
,
326 const char __user
*const __user
*envp
,
327 long a3
, long a4
, long a5
,
328 struct pt_regs
*regs
)
333 filename
= getname(name
);
334 error
= PTR_ERR(filename
);
335 if (IS_ERR(filename
))
337 error
= do_execve(filename
, argv
, envp
, regs
);