Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / char / hpet.c
blobdfd7876f127c0d23c9d45bc2922ccefe85ff3181
1 /*
2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
5 * Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
47 * The High Precision Event Timer driver.
48 * This driver is closely modelled after the rtc.c driver.
49 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
51 #define HPET_USER_FREQ (64)
52 #define HPET_DRIFT (500)
54 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
57 /* WARNING -- don't get confused. These macros are never used
58 * to write the (single) counter, and rarely to read it.
59 * They're badly named; to fix, someday.
61 #if BITS_PER_LONG == 64
62 #define write_counter(V, MC) writeq(V, MC)
63 #define read_counter(MC) readq(MC)
64 #else
65 #define write_counter(V, MC) writel(V, MC)
66 #define read_counter(MC) readl(MC)
67 #endif
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
76 static cycle_t read_hpet(struct clocksource *cs)
78 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
81 static struct clocksource clocksource_hpet = {
82 .name = "hpet",
83 .rating = 250,
84 .read = read_hpet,
85 .mask = CLOCKSOURCE_MASK(64),
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 static struct clocksource *hpet_clocksource;
89 #endif
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
94 #define HPET_DEV_NAME (7)
96 struct hpet_dev {
97 struct hpets *hd_hpets;
98 struct hpet __iomem *hd_hpet;
99 struct hpet_timer __iomem *hd_timer;
100 unsigned long hd_ireqfreq;
101 unsigned long hd_irqdata;
102 wait_queue_head_t hd_waitqueue;
103 struct fasync_struct *hd_async_queue;
104 unsigned int hd_flags;
105 unsigned int hd_irq;
106 unsigned int hd_hdwirq;
107 char hd_name[HPET_DEV_NAME];
110 struct hpets {
111 struct hpets *hp_next;
112 struct hpet __iomem *hp_hpet;
113 unsigned long hp_hpet_phys;
114 struct clocksource *hp_clocksource;
115 unsigned long long hp_tick_freq;
116 unsigned long hp_delta;
117 unsigned int hp_ntimer;
118 unsigned int hp_which;
119 struct hpet_dev hp_dev[1];
122 static struct hpets *hpets;
124 #define HPET_OPEN 0x0001
125 #define HPET_IE 0x0002 /* interrupt enabled */
126 #define HPET_PERIODIC 0x0004
127 #define HPET_SHARED_IRQ 0x0008
130 #ifndef readq
131 static inline unsigned long long readq(void __iomem *addr)
133 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
135 #endif
137 #ifndef writeq
138 static inline void writeq(unsigned long long v, void __iomem *addr)
140 writel(v & 0xffffffff, addr);
141 writel(v >> 32, addr + 4);
143 #endif
145 static irqreturn_t hpet_interrupt(int irq, void *data)
147 struct hpet_dev *devp;
148 unsigned long isr;
150 devp = data;
151 isr = 1 << (devp - devp->hd_hpets->hp_dev);
153 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154 !(isr & readl(&devp->hd_hpet->hpet_isr)))
155 return IRQ_NONE;
157 spin_lock(&hpet_lock);
158 devp->hd_irqdata++;
161 * For non-periodic timers, increment the accumulator.
162 * This has the effect of treating non-periodic like periodic.
164 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165 unsigned long m, t, mc, base, k;
166 struct hpet __iomem *hpet = devp->hd_hpet;
167 struct hpets *hpetp = devp->hd_hpets;
169 t = devp->hd_ireqfreq;
170 m = read_counter(&devp->hd_timer->hpet_compare);
171 mc = read_counter(&hpet->hpet_mc);
172 /* The time for the next interrupt would logically be t + m,
173 * however, if we are very unlucky and the interrupt is delayed
174 * for longer than t then we will completely miss the next
175 * interrupt if we set t + m and an application will hang.
176 * Therefore we need to make a more complex computation assuming
177 * that there exists a k for which the following is true:
178 * k * t + base < mc + delta
179 * (k + 1) * t + base > mc + delta
180 * where t is the interval in hpet ticks for the given freq,
181 * base is the theoretical start value 0 < base < t,
182 * mc is the main counter value at the time of the interrupt,
183 * delta is the time it takes to write the a value to the
184 * comparator.
185 * k may then be computed as (mc - base + delta) / t .
187 base = mc % t;
188 k = (mc - base + hpetp->hp_delta) / t;
189 write_counter(t * (k + 1) + base,
190 &devp->hd_timer->hpet_compare);
193 if (devp->hd_flags & HPET_SHARED_IRQ)
194 writel(isr, &devp->hd_hpet->hpet_isr);
195 spin_unlock(&hpet_lock);
197 wake_up_interruptible(&devp->hd_waitqueue);
199 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
201 return IRQ_HANDLED;
204 static void hpet_timer_set_irq(struct hpet_dev *devp)
206 unsigned long v;
207 int irq, gsi;
208 struct hpet_timer __iomem *timer;
210 spin_lock_irq(&hpet_lock);
211 if (devp->hd_hdwirq) {
212 spin_unlock_irq(&hpet_lock);
213 return;
216 timer = devp->hd_timer;
218 /* we prefer level triggered mode */
219 v = readl(&timer->hpet_config);
220 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221 v |= Tn_INT_TYPE_CNF_MASK;
222 writel(v, &timer->hpet_config);
224 spin_unlock_irq(&hpet_lock);
226 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227 Tn_INT_ROUTE_CAP_SHIFT;
230 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
233 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234 v &= ~0xf3df;
235 else
236 v &= ~0xffff;
238 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239 if (irq >= nr_irqs) {
240 irq = HPET_MAX_IRQ;
241 break;
244 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
245 ACPI_ACTIVE_LOW);
246 if (gsi > 0)
247 break;
249 /* FIXME: Setup interrupt source table */
252 if (irq < HPET_MAX_IRQ) {
253 spin_lock_irq(&hpet_lock);
254 v = readl(&timer->hpet_config);
255 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256 writel(v, &timer->hpet_config);
257 devp->hd_hdwirq = gsi;
258 spin_unlock_irq(&hpet_lock);
260 return;
263 static int hpet_open(struct inode *inode, struct file *file)
265 struct hpet_dev *devp;
266 struct hpets *hpetp;
267 int i;
269 if (file->f_mode & FMODE_WRITE)
270 return -EINVAL;
272 mutex_lock(&hpet_mutex);
273 spin_lock_irq(&hpet_lock);
275 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276 for (i = 0; i < hpetp->hp_ntimer; i++)
277 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278 continue;
279 else {
280 devp = &hpetp->hp_dev[i];
281 break;
284 if (!devp) {
285 spin_unlock_irq(&hpet_lock);
286 mutex_unlock(&hpet_mutex);
287 return -EBUSY;
290 file->private_data = devp;
291 devp->hd_irqdata = 0;
292 devp->hd_flags |= HPET_OPEN;
293 spin_unlock_irq(&hpet_lock);
294 mutex_unlock(&hpet_mutex);
296 hpet_timer_set_irq(devp);
298 return 0;
301 static ssize_t
302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
304 DECLARE_WAITQUEUE(wait, current);
305 unsigned long data;
306 ssize_t retval;
307 struct hpet_dev *devp;
309 devp = file->private_data;
310 if (!devp->hd_ireqfreq)
311 return -EIO;
313 if (count < sizeof(unsigned long))
314 return -EINVAL;
316 add_wait_queue(&devp->hd_waitqueue, &wait);
318 for ( ; ; ) {
319 set_current_state(TASK_INTERRUPTIBLE);
321 spin_lock_irq(&hpet_lock);
322 data = devp->hd_irqdata;
323 devp->hd_irqdata = 0;
324 spin_unlock_irq(&hpet_lock);
326 if (data)
327 break;
328 else if (file->f_flags & O_NONBLOCK) {
329 retval = -EAGAIN;
330 goto out;
331 } else if (signal_pending(current)) {
332 retval = -ERESTARTSYS;
333 goto out;
335 schedule();
338 retval = put_user(data, (unsigned long __user *)buf);
339 if (!retval)
340 retval = sizeof(unsigned long);
341 out:
342 __set_current_state(TASK_RUNNING);
343 remove_wait_queue(&devp->hd_waitqueue, &wait);
345 return retval;
348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
350 unsigned long v;
351 struct hpet_dev *devp;
353 devp = file->private_data;
355 if (!devp->hd_ireqfreq)
356 return 0;
358 poll_wait(file, &devp->hd_waitqueue, wait);
360 spin_lock_irq(&hpet_lock);
361 v = devp->hd_irqdata;
362 spin_unlock_irq(&hpet_lock);
364 if (v != 0)
365 return POLLIN | POLLRDNORM;
367 return 0;
370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
372 #ifdef CONFIG_HPET_MMAP
373 struct hpet_dev *devp;
374 unsigned long addr;
376 if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
377 return -EINVAL;
379 devp = file->private_data;
380 addr = devp->hd_hpets->hp_hpet_phys;
382 if (addr & (PAGE_SIZE - 1))
383 return -ENOSYS;
385 vma->vm_flags |= VM_IO;
386 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
388 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
389 PAGE_SIZE, vma->vm_page_prot)) {
390 printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
391 __func__);
392 return -EAGAIN;
395 return 0;
396 #else
397 return -ENOSYS;
398 #endif
401 static int hpet_fasync(int fd, struct file *file, int on)
403 struct hpet_dev *devp;
405 devp = file->private_data;
407 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
408 return 0;
409 else
410 return -EIO;
413 static int hpet_release(struct inode *inode, struct file *file)
415 struct hpet_dev *devp;
416 struct hpet_timer __iomem *timer;
417 int irq = 0;
419 devp = file->private_data;
420 timer = devp->hd_timer;
422 spin_lock_irq(&hpet_lock);
424 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
425 &timer->hpet_config);
427 irq = devp->hd_irq;
428 devp->hd_irq = 0;
430 devp->hd_ireqfreq = 0;
432 if (devp->hd_flags & HPET_PERIODIC
433 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
434 unsigned long v;
436 v = readq(&timer->hpet_config);
437 v ^= Tn_TYPE_CNF_MASK;
438 writeq(v, &timer->hpet_config);
441 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
442 spin_unlock_irq(&hpet_lock);
444 if (irq)
445 free_irq(irq, devp);
447 file->private_data = NULL;
448 return 0;
451 static int hpet_ioctl_ieon(struct hpet_dev *devp)
453 struct hpet_timer __iomem *timer;
454 struct hpet __iomem *hpet;
455 struct hpets *hpetp;
456 int irq;
457 unsigned long g, v, t, m;
458 unsigned long flags, isr;
460 timer = devp->hd_timer;
461 hpet = devp->hd_hpet;
462 hpetp = devp->hd_hpets;
464 if (!devp->hd_ireqfreq)
465 return -EIO;
467 spin_lock_irq(&hpet_lock);
469 if (devp->hd_flags & HPET_IE) {
470 spin_unlock_irq(&hpet_lock);
471 return -EBUSY;
474 devp->hd_flags |= HPET_IE;
476 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
477 devp->hd_flags |= HPET_SHARED_IRQ;
478 spin_unlock_irq(&hpet_lock);
480 irq = devp->hd_hdwirq;
482 if (irq) {
483 unsigned long irq_flags;
485 if (devp->hd_flags & HPET_SHARED_IRQ) {
487 * To prevent the interrupt handler from seeing an
488 * unwanted interrupt status bit, program the timer
489 * so that it will not fire in the near future ...
491 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
492 &timer->hpet_config);
493 write_counter(read_counter(&hpet->hpet_mc),
494 &timer->hpet_compare);
495 /* ... and clear any left-over status. */
496 isr = 1 << (devp - devp->hd_hpets->hp_dev);
497 writel(isr, &hpet->hpet_isr);
500 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
501 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
502 ? IRQF_SHARED : IRQF_DISABLED;
503 if (request_irq(irq, hpet_interrupt, irq_flags,
504 devp->hd_name, (void *)devp)) {
505 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
506 irq = 0;
510 if (irq == 0) {
511 spin_lock_irq(&hpet_lock);
512 devp->hd_flags ^= HPET_IE;
513 spin_unlock_irq(&hpet_lock);
514 return -EIO;
517 devp->hd_irq = irq;
518 t = devp->hd_ireqfreq;
519 v = readq(&timer->hpet_config);
521 /* 64-bit comparators are not yet supported through the ioctls,
522 * so force this into 32-bit mode if it supports both modes
524 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526 if (devp->hd_flags & HPET_PERIODIC) {
527 g |= Tn_TYPE_CNF_MASK;
528 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
529 writeq(v, &timer->hpet_config);
530 local_irq_save(flags);
533 * NOTE: First we modify the hidden accumulator
534 * register supported by periodic-capable comparators.
535 * We never want to modify the (single) counter; that
536 * would affect all the comparators. The value written
537 * is the counter value when the first interrupt is due.
539 m = read_counter(&hpet->hpet_mc);
540 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542 * Then we modify the comparator, indicating the period
543 * for subsequent interrupt.
545 write_counter(t, &timer->hpet_compare);
546 } else {
547 local_irq_save(flags);
548 m = read_counter(&hpet->hpet_mc);
549 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
552 if (devp->hd_flags & HPET_SHARED_IRQ) {
553 isr = 1 << (devp - devp->hd_hpets->hp_dev);
554 writel(isr, &hpet->hpet_isr);
556 writeq(g, &timer->hpet_config);
557 local_irq_restore(flags);
559 return 0;
562 /* converts Hz to number of timer ticks */
563 static inline unsigned long hpet_time_div(struct hpets *hpets,
564 unsigned long dis)
566 unsigned long long m;
568 m = hpets->hp_tick_freq + (dis >> 1);
569 do_div(m, dis);
570 return (unsigned long)m;
573 static int
574 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
575 struct hpet_info *info)
577 struct hpet_timer __iomem *timer;
578 struct hpet __iomem *hpet;
579 struct hpets *hpetp;
580 int err;
581 unsigned long v;
583 switch (cmd) {
584 case HPET_IE_OFF:
585 case HPET_INFO:
586 case HPET_EPI:
587 case HPET_DPI:
588 case HPET_IRQFREQ:
589 timer = devp->hd_timer;
590 hpet = devp->hd_hpet;
591 hpetp = devp->hd_hpets;
592 break;
593 case HPET_IE_ON:
594 return hpet_ioctl_ieon(devp);
595 default:
596 return -EINVAL;
599 err = 0;
601 switch (cmd) {
602 case HPET_IE_OFF:
603 if ((devp->hd_flags & HPET_IE) == 0)
604 break;
605 v = readq(&timer->hpet_config);
606 v &= ~Tn_INT_ENB_CNF_MASK;
607 writeq(v, &timer->hpet_config);
608 if (devp->hd_irq) {
609 free_irq(devp->hd_irq, devp);
610 devp->hd_irq = 0;
612 devp->hd_flags ^= HPET_IE;
613 break;
614 case HPET_INFO:
616 memset(info, 0, sizeof(*info));
617 if (devp->hd_ireqfreq)
618 info->hi_ireqfreq =
619 hpet_time_div(hpetp, devp->hd_ireqfreq);
620 info->hi_flags =
621 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
622 info->hi_hpet = hpetp->hp_which;
623 info->hi_timer = devp - hpetp->hp_dev;
624 break;
626 case HPET_EPI:
627 v = readq(&timer->hpet_config);
628 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
629 err = -ENXIO;
630 break;
632 devp->hd_flags |= HPET_PERIODIC;
633 break;
634 case HPET_DPI:
635 v = readq(&timer->hpet_config);
636 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
637 err = -ENXIO;
638 break;
640 if (devp->hd_flags & HPET_PERIODIC &&
641 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
642 v = readq(&timer->hpet_config);
643 v ^= Tn_TYPE_CNF_MASK;
644 writeq(v, &timer->hpet_config);
646 devp->hd_flags &= ~HPET_PERIODIC;
647 break;
648 case HPET_IRQFREQ:
649 if ((arg > hpet_max_freq) &&
650 !capable(CAP_SYS_RESOURCE)) {
651 err = -EACCES;
652 break;
655 if (!arg) {
656 err = -EINVAL;
657 break;
660 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
663 return err;
666 static long
667 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
669 struct hpet_info info;
670 int err;
672 mutex_lock(&hpet_mutex);
673 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
674 mutex_unlock(&hpet_mutex);
676 if ((cmd == HPET_INFO) && !err &&
677 (copy_to_user((void __user *)arg, &info, sizeof(info))))
678 err = -EFAULT;
680 return err;
683 #ifdef CONFIG_COMPAT
684 struct compat_hpet_info {
685 compat_ulong_t hi_ireqfreq; /* Hz */
686 compat_ulong_t hi_flags; /* information */
687 unsigned short hi_hpet;
688 unsigned short hi_timer;
691 static long
692 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
694 struct hpet_info info;
695 int err;
697 mutex_lock(&hpet_mutex);
698 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
699 mutex_unlock(&hpet_mutex);
701 if ((cmd == HPET_INFO) && !err) {
702 struct compat_hpet_info __user *u = compat_ptr(arg);
703 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
704 put_user(info.hi_flags, &u->hi_flags) ||
705 put_user(info.hi_hpet, &u->hi_hpet) ||
706 put_user(info.hi_timer, &u->hi_timer))
707 err = -EFAULT;
710 return err;
712 #endif
714 static const struct file_operations hpet_fops = {
715 .owner = THIS_MODULE,
716 .llseek = no_llseek,
717 .read = hpet_read,
718 .poll = hpet_poll,
719 .unlocked_ioctl = hpet_ioctl,
720 #ifdef CONFIG_COMPAT
721 .compat_ioctl = hpet_compat_ioctl,
722 #endif
723 .open = hpet_open,
724 .release = hpet_release,
725 .fasync = hpet_fasync,
726 .mmap = hpet_mmap,
729 static int hpet_is_known(struct hpet_data *hdp)
731 struct hpets *hpetp;
733 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
734 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
735 return 1;
737 return 0;
740 static ctl_table hpet_table[] = {
742 .procname = "max-user-freq",
743 .data = &hpet_max_freq,
744 .maxlen = sizeof(int),
745 .mode = 0644,
746 .proc_handler = proc_dointvec,
751 static ctl_table hpet_root[] = {
753 .procname = "hpet",
754 .maxlen = 0,
755 .mode = 0555,
756 .child = hpet_table,
761 static ctl_table dev_root[] = {
763 .procname = "dev",
764 .maxlen = 0,
765 .mode = 0555,
766 .child = hpet_root,
771 static struct ctl_table_header *sysctl_header;
774 * Adjustment for when arming the timer with
775 * initial conditions. That is, main counter
776 * ticks expired before interrupts are enabled.
778 #define TICK_CALIBRATE (1000UL)
780 static unsigned long __hpet_calibrate(struct hpets *hpetp)
782 struct hpet_timer __iomem *timer = NULL;
783 unsigned long t, m, count, i, flags, start;
784 struct hpet_dev *devp;
785 int j;
786 struct hpet __iomem *hpet;
788 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
789 if ((devp->hd_flags & HPET_OPEN) == 0) {
790 timer = devp->hd_timer;
791 break;
794 if (!timer)
795 return 0;
797 hpet = hpetp->hp_hpet;
798 t = read_counter(&timer->hpet_compare);
800 i = 0;
801 count = hpet_time_div(hpetp, TICK_CALIBRATE);
803 local_irq_save(flags);
805 start = read_counter(&hpet->hpet_mc);
807 do {
808 m = read_counter(&hpet->hpet_mc);
809 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
810 } while (i++, (m - start) < count);
812 local_irq_restore(flags);
814 return (m - start) / i;
817 static unsigned long hpet_calibrate(struct hpets *hpetp)
819 unsigned long ret = -1;
820 unsigned long tmp;
823 * Try to calibrate until return value becomes stable small value.
824 * If SMI interruption occurs in calibration loop, the return value
825 * will be big. This avoids its impact.
827 for ( ; ; ) {
828 tmp = __hpet_calibrate(hpetp);
829 if (ret <= tmp)
830 break;
831 ret = tmp;
834 return ret;
837 int hpet_alloc(struct hpet_data *hdp)
839 u64 cap, mcfg;
840 struct hpet_dev *devp;
841 u32 i, ntimer;
842 struct hpets *hpetp;
843 size_t siz;
844 struct hpet __iomem *hpet;
845 static struct hpets *last;
846 unsigned long period;
847 unsigned long long temp;
848 u32 remainder;
851 * hpet_alloc can be called by platform dependent code.
852 * If platform dependent code has allocated the hpet that
853 * ACPI has also reported, then we catch it here.
855 if (hpet_is_known(hdp)) {
856 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
857 __func__);
858 return 0;
861 siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
862 sizeof(struct hpet_dev));
864 hpetp = kzalloc(siz, GFP_KERNEL);
866 if (!hpetp)
867 return -ENOMEM;
869 hpetp->hp_which = hpet_nhpet++;
870 hpetp->hp_hpet = hdp->hd_address;
871 hpetp->hp_hpet_phys = hdp->hd_phys_address;
873 hpetp->hp_ntimer = hdp->hd_nirqs;
875 for (i = 0; i < hdp->hd_nirqs; i++)
876 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
878 hpet = hpetp->hp_hpet;
880 cap = readq(&hpet->hpet_cap);
882 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
884 if (hpetp->hp_ntimer != ntimer) {
885 printk(KERN_WARNING "hpet: number irqs doesn't agree"
886 " with number of timers\n");
887 kfree(hpetp);
888 return -ENODEV;
891 if (last)
892 last->hp_next = hpetp;
893 else
894 hpets = hpetp;
896 last = hpetp;
898 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
899 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
900 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
901 temp += period >> 1; /* round */
902 do_div(temp, period);
903 hpetp->hp_tick_freq = temp; /* ticks per second */
905 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
906 hpetp->hp_which, hdp->hd_phys_address,
907 hpetp->hp_ntimer > 1 ? "s" : "");
908 for (i = 0; i < hpetp->hp_ntimer; i++)
909 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
910 printk(KERN_CONT "\n");
912 temp = hpetp->hp_tick_freq;
913 remainder = do_div(temp, 1000000);
914 printk(KERN_INFO
915 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
916 hpetp->hp_which, hpetp->hp_ntimer,
917 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
918 (unsigned) temp, remainder);
920 mcfg = readq(&hpet->hpet_config);
921 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
922 write_counter(0L, &hpet->hpet_mc);
923 mcfg |= HPET_ENABLE_CNF_MASK;
924 writeq(mcfg, &hpet->hpet_config);
927 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
928 struct hpet_timer __iomem *timer;
930 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
932 devp->hd_hpets = hpetp;
933 devp->hd_hpet = hpet;
934 devp->hd_timer = timer;
937 * If the timer was reserved by platform code,
938 * then make timer unavailable for opens.
940 if (hdp->hd_state & (1 << i)) {
941 devp->hd_flags = HPET_OPEN;
942 continue;
945 init_waitqueue_head(&devp->hd_waitqueue);
948 hpetp->hp_delta = hpet_calibrate(hpetp);
950 /* This clocksource driver currently only works on ia64 */
951 #ifdef CONFIG_IA64
952 if (!hpet_clocksource) {
953 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
954 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
955 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
956 hpetp->hp_clocksource = &clocksource_hpet;
957 hpet_clocksource = &clocksource_hpet;
959 #endif
961 return 0;
964 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
966 struct hpet_data *hdp;
967 acpi_status status;
968 struct acpi_resource_address64 addr;
970 hdp = data;
972 status = acpi_resource_to_address64(res, &addr);
974 if (ACPI_SUCCESS(status)) {
975 hdp->hd_phys_address = addr.minimum;
976 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
978 if (hpet_is_known(hdp)) {
979 iounmap(hdp->hd_address);
980 return AE_ALREADY_EXISTS;
982 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
983 struct acpi_resource_fixed_memory32 *fixmem32;
985 fixmem32 = &res->data.fixed_memory32;
986 if (!fixmem32)
987 return AE_NO_MEMORY;
989 hdp->hd_phys_address = fixmem32->address;
990 hdp->hd_address = ioremap(fixmem32->address,
991 HPET_RANGE_SIZE);
993 if (hpet_is_known(hdp)) {
994 iounmap(hdp->hd_address);
995 return AE_ALREADY_EXISTS;
997 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
998 struct acpi_resource_extended_irq *irqp;
999 int i, irq;
1001 irqp = &res->data.extended_irq;
1003 for (i = 0; i < irqp->interrupt_count; i++) {
1004 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1005 irqp->triggering, irqp->polarity);
1006 if (irq < 0)
1007 return AE_ERROR;
1009 hdp->hd_irq[hdp->hd_nirqs] = irq;
1010 hdp->hd_nirqs++;
1014 return AE_OK;
1017 static int hpet_acpi_add(struct acpi_device *device)
1019 acpi_status result;
1020 struct hpet_data data;
1022 memset(&data, 0, sizeof(data));
1024 result =
1025 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1026 hpet_resources, &data);
1028 if (ACPI_FAILURE(result))
1029 return -ENODEV;
1031 if (!data.hd_address || !data.hd_nirqs) {
1032 if (data.hd_address)
1033 iounmap(data.hd_address);
1034 printk("%s: no address or irqs in _CRS\n", __func__);
1035 return -ENODEV;
1038 return hpet_alloc(&data);
1041 static int hpet_acpi_remove(struct acpi_device *device, int type)
1043 /* XXX need to unregister clocksource, dealloc mem, etc */
1044 return -EINVAL;
1047 static const struct acpi_device_id hpet_device_ids[] = {
1048 {"PNP0103", 0},
1049 {"", 0},
1051 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1053 static struct acpi_driver hpet_acpi_driver = {
1054 .name = "hpet",
1055 .ids = hpet_device_ids,
1056 .ops = {
1057 .add = hpet_acpi_add,
1058 .remove = hpet_acpi_remove,
1062 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1064 static int __init hpet_init(void)
1066 int result;
1068 result = misc_register(&hpet_misc);
1069 if (result < 0)
1070 return -ENODEV;
1072 sysctl_header = register_sysctl_table(dev_root);
1074 result = acpi_bus_register_driver(&hpet_acpi_driver);
1075 if (result < 0) {
1076 if (sysctl_header)
1077 unregister_sysctl_table(sysctl_header);
1078 misc_deregister(&hpet_misc);
1079 return result;
1082 return 0;
1085 static void __exit hpet_exit(void)
1087 acpi_bus_unregister_driver(&hpet_acpi_driver);
1089 if (sysctl_header)
1090 unregister_sysctl_table(sysctl_header);
1091 misc_deregister(&hpet_misc);
1093 return;
1096 module_init(hpet_init);
1097 module_exit(hpet_exit);
1098 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1099 MODULE_LICENSE("GPL");