Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / crypto / atmel-sha.c
blobf938b9d79b662357a3df324ee325bcd124189906
1 /*
2 * Cryptographic API.
4 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
13 * Some ideas are from omap-sham.c drivers.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
26 #include <linux/device.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/clk.h>
33 #include <linux/irq.h>
34 #include <linux/io.h>
35 #include <linux/platform_device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/crypto.h>
40 #include <linux/cryptohash.h>
41 #include <crypto/scatterwalk.h>
42 #include <crypto/algapi.h>
43 #include <crypto/sha.h>
44 #include <crypto/hash.h>
45 #include <crypto/internal/hash.h>
46 #include "atmel-sha-regs.h"
48 /* SHA flags */
49 #define SHA_FLAGS_BUSY BIT(0)
50 #define SHA_FLAGS_FINAL BIT(1)
51 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
52 #define SHA_FLAGS_OUTPUT_READY BIT(3)
53 #define SHA_FLAGS_INIT BIT(4)
54 #define SHA_FLAGS_CPU BIT(5)
55 #define SHA_FLAGS_DMA_READY BIT(6)
57 #define SHA_FLAGS_FINUP BIT(16)
58 #define SHA_FLAGS_SG BIT(17)
59 #define SHA_FLAGS_SHA1 BIT(18)
60 #define SHA_FLAGS_SHA256 BIT(19)
61 #define SHA_FLAGS_ERROR BIT(20)
62 #define SHA_FLAGS_PAD BIT(21)
64 #define SHA_FLAGS_DUALBUFF BIT(24)
66 #define SHA_OP_UPDATE 1
67 #define SHA_OP_FINAL 2
69 #define SHA_BUFFER_LEN PAGE_SIZE
71 #define ATMEL_SHA_DMA_THRESHOLD 56
74 struct atmel_sha_dev;
76 struct atmel_sha_reqctx {
77 struct atmel_sha_dev *dd;
78 unsigned long flags;
79 unsigned long op;
81 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
82 size_t digcnt;
83 size_t bufcnt;
84 size_t buflen;
85 dma_addr_t dma_addr;
87 /* walk state */
88 struct scatterlist *sg;
89 unsigned int offset; /* offset in current sg */
90 unsigned int total; /* total request */
92 u8 buffer[0] __aligned(sizeof(u32));
95 struct atmel_sha_ctx {
96 struct atmel_sha_dev *dd;
98 unsigned long flags;
100 /* fallback stuff */
101 struct crypto_shash *fallback;
105 #define ATMEL_SHA_QUEUE_LENGTH 1
107 struct atmel_sha_dev {
108 struct list_head list;
109 unsigned long phys_base;
110 struct device *dev;
111 struct clk *iclk;
112 int irq;
113 void __iomem *io_base;
115 spinlock_t lock;
116 int err;
117 struct tasklet_struct done_task;
119 unsigned long flags;
120 struct crypto_queue queue;
121 struct ahash_request *req;
124 struct atmel_sha_drv {
125 struct list_head dev_list;
126 spinlock_t lock;
129 static struct atmel_sha_drv atmel_sha = {
130 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
131 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
134 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
136 return readl_relaxed(dd->io_base + offset);
139 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
140 u32 offset, u32 value)
142 writel_relaxed(value, dd->io_base + offset);
145 static void atmel_sha_dualbuff_test(struct atmel_sha_dev *dd)
147 atmel_sha_write(dd, SHA_MR, SHA_MR_DUALBUFF);
149 if (atmel_sha_read(dd, SHA_MR) & SHA_MR_DUALBUFF)
150 dd->flags |= SHA_FLAGS_DUALBUFF;
153 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
155 size_t count;
157 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
158 count = min(ctx->sg->length - ctx->offset, ctx->total);
159 count = min(count, ctx->buflen - ctx->bufcnt);
161 if (count <= 0)
162 break;
164 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
165 ctx->offset, count, 0);
167 ctx->bufcnt += count;
168 ctx->offset += count;
169 ctx->total -= count;
171 if (ctx->offset == ctx->sg->length) {
172 ctx->sg = sg_next(ctx->sg);
173 if (ctx->sg)
174 ctx->offset = 0;
175 else
176 ctx->total = 0;
180 return 0;
184 * The purpose of this padding is to ensure that the padded message
185 * is a multiple of 512 bits. The bit "1" is appended at the end of
186 * the message followed by "padlen-1" zero bits. Then a 64 bits block
187 * equals to the message length in bits is appended.
189 * padlen is calculated as followed:
190 * - if message length < 56 bytes then padlen = 56 - message length
191 * - else padlen = 64 + 56 - message length
193 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
195 unsigned int index, padlen;
196 u64 bits;
197 u64 size;
199 bits = (ctx->bufcnt + ctx->digcnt + length) << 3;
200 size = cpu_to_be64(bits);
202 index = ctx->bufcnt & 0x3f;
203 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
204 *(ctx->buffer + ctx->bufcnt) = 0x80;
205 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
206 memcpy(ctx->buffer + ctx->bufcnt + padlen, &size, 8);
207 ctx->bufcnt += padlen + 8;
208 ctx->flags |= SHA_FLAGS_PAD;
211 static int atmel_sha_init(struct ahash_request *req)
213 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
214 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
215 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
216 struct atmel_sha_dev *dd = NULL;
217 struct atmel_sha_dev *tmp;
219 spin_lock_bh(&atmel_sha.lock);
220 if (!tctx->dd) {
221 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
222 dd = tmp;
223 break;
225 tctx->dd = dd;
226 } else {
227 dd = tctx->dd;
230 spin_unlock_bh(&atmel_sha.lock);
232 ctx->dd = dd;
234 ctx->flags = 0;
236 dev_dbg(dd->dev, "init: digest size: %d\n",
237 crypto_ahash_digestsize(tfm));
239 if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE)
240 ctx->flags |= SHA_FLAGS_SHA1;
241 else if (crypto_ahash_digestsize(tfm) == SHA256_DIGEST_SIZE)
242 ctx->flags |= SHA_FLAGS_SHA256;
244 ctx->bufcnt = 0;
245 ctx->digcnt = 0;
246 ctx->buflen = SHA_BUFFER_LEN;
248 return 0;
251 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
253 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
254 u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
256 if (likely(dma)) {
257 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
258 valmr = SHA_MR_MODE_PDC;
259 if (dd->flags & SHA_FLAGS_DUALBUFF)
260 valmr = SHA_MR_DUALBUFF;
261 } else {
262 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
265 if (ctx->flags & SHA_FLAGS_SHA256)
266 valmr |= SHA_MR_ALGO_SHA256;
268 /* Setting CR_FIRST only for the first iteration */
269 if (!ctx->digcnt)
270 valcr = SHA_CR_FIRST;
272 atmel_sha_write(dd, SHA_CR, valcr);
273 atmel_sha_write(dd, SHA_MR, valmr);
276 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
277 size_t length, int final)
279 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
280 int count, len32;
281 const u32 *buffer = (const u32 *)buf;
283 dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
284 ctx->digcnt, length, final);
286 atmel_sha_write_ctrl(dd, 0);
288 /* should be non-zero before next lines to disable clocks later */
289 ctx->digcnt += length;
291 if (final)
292 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
294 len32 = DIV_ROUND_UP(length, sizeof(u32));
296 dd->flags |= SHA_FLAGS_CPU;
298 for (count = 0; count < len32; count++)
299 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
301 return -EINPROGRESS;
304 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
305 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
307 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
308 int len32;
310 dev_dbg(dd->dev, "xmit_pdc: digcnt: %d, length: %d, final: %d\n",
311 ctx->digcnt, length1, final);
313 len32 = DIV_ROUND_UP(length1, sizeof(u32));
314 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
315 atmel_sha_write(dd, SHA_TPR, dma_addr1);
316 atmel_sha_write(dd, SHA_TCR, len32);
318 len32 = DIV_ROUND_UP(length2, sizeof(u32));
319 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
320 atmel_sha_write(dd, SHA_TNCR, len32);
322 atmel_sha_write_ctrl(dd, 1);
324 /* should be non-zero before next lines to disable clocks later */
325 ctx->digcnt += length1;
327 if (final)
328 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
330 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
332 /* Start DMA transfer */
333 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
335 return -EINPROGRESS;
338 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
340 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
341 int bufcnt;
343 atmel_sha_append_sg(ctx);
344 atmel_sha_fill_padding(ctx, 0);
346 bufcnt = ctx->bufcnt;
347 ctx->bufcnt = 0;
349 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
352 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
353 struct atmel_sha_reqctx *ctx,
354 size_t length, int final)
356 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
357 ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
358 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
359 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
360 SHA1_BLOCK_SIZE);
361 return -EINVAL;
364 ctx->flags &= ~SHA_FLAGS_SG;
366 /* next call does not fail... so no unmap in the case of error */
367 return atmel_sha_xmit_pdc(dd, ctx->dma_addr, length, 0, 0, final);
370 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
372 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
373 unsigned int final;
374 size_t count;
376 atmel_sha_append_sg(ctx);
378 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
380 dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n",
381 ctx->bufcnt, ctx->digcnt, final);
383 if (final)
384 atmel_sha_fill_padding(ctx, 0);
386 if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
387 count = ctx->bufcnt;
388 ctx->bufcnt = 0;
389 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
392 return 0;
395 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
397 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
398 unsigned int length, final, tail;
399 struct scatterlist *sg;
400 unsigned int count;
402 if (!ctx->total)
403 return 0;
405 if (ctx->bufcnt || ctx->offset)
406 return atmel_sha_update_dma_slow(dd);
408 dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n",
409 ctx->digcnt, ctx->bufcnt, ctx->total);
411 sg = ctx->sg;
413 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
414 return atmel_sha_update_dma_slow(dd);
416 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, SHA1_BLOCK_SIZE))
417 /* size is not SHA1_BLOCK_SIZE aligned */
418 return atmel_sha_update_dma_slow(dd);
420 length = min(ctx->total, sg->length);
422 if (sg_is_last(sg)) {
423 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
424 /* not last sg must be SHA1_BLOCK_SIZE aligned */
425 tail = length & (SHA1_BLOCK_SIZE - 1);
426 length -= tail;
427 if (length == 0) {
428 /* offset where to start slow */
429 ctx->offset = length;
430 return atmel_sha_update_dma_slow(dd);
435 ctx->total -= length;
436 ctx->offset = length; /* offset where to start slow */
438 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
440 /* Add padding */
441 if (final) {
442 tail = length & (SHA1_BLOCK_SIZE - 1);
443 length -= tail;
444 ctx->total += tail;
445 ctx->offset = length; /* offset where to start slow */
447 sg = ctx->sg;
448 atmel_sha_append_sg(ctx);
450 atmel_sha_fill_padding(ctx, length);
452 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
453 ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
454 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
455 dev_err(dd->dev, "dma %u bytes error\n",
456 ctx->buflen + SHA1_BLOCK_SIZE);
457 return -EINVAL;
460 if (length == 0) {
461 ctx->flags &= ~SHA_FLAGS_SG;
462 count = ctx->bufcnt;
463 ctx->bufcnt = 0;
464 return atmel_sha_xmit_pdc(dd, ctx->dma_addr, count, 0,
465 0, final);
466 } else {
467 ctx->sg = sg;
468 if (!dma_map_sg(dd->dev, ctx->sg, 1,
469 DMA_TO_DEVICE)) {
470 dev_err(dd->dev, "dma_map_sg error\n");
471 return -EINVAL;
474 ctx->flags |= SHA_FLAGS_SG;
476 count = ctx->bufcnt;
477 ctx->bufcnt = 0;
478 return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg),
479 length, ctx->dma_addr, count, final);
483 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
484 dev_err(dd->dev, "dma_map_sg error\n");
485 return -EINVAL;
488 ctx->flags |= SHA_FLAGS_SG;
490 /* next call does not fail... so no unmap in the case of error */
491 return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg), length, 0,
492 0, final);
495 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
497 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
499 if (ctx->flags & SHA_FLAGS_SG) {
500 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
501 if (ctx->sg->length == ctx->offset) {
502 ctx->sg = sg_next(ctx->sg);
503 if (ctx->sg)
504 ctx->offset = 0;
506 if (ctx->flags & SHA_FLAGS_PAD)
507 dma_unmap_single(dd->dev, ctx->dma_addr,
508 ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
509 } else {
510 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
511 SHA1_BLOCK_SIZE, DMA_TO_DEVICE);
514 return 0;
517 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
519 struct ahash_request *req = dd->req;
520 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
521 int err;
523 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
524 ctx->total, ctx->digcnt, (ctx->flags & SHA_FLAGS_FINUP) != 0);
526 if (ctx->flags & SHA_FLAGS_CPU)
527 err = atmel_sha_update_cpu(dd);
528 else
529 err = atmel_sha_update_dma_start(dd);
531 /* wait for dma completion before can take more data */
532 dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n",
533 err, ctx->digcnt);
535 return err;
538 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
540 struct ahash_request *req = dd->req;
541 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
542 int err = 0;
543 int count;
545 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
546 atmel_sha_fill_padding(ctx, 0);
547 count = ctx->bufcnt;
548 ctx->bufcnt = 0;
549 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
551 /* faster to handle last block with cpu */
552 else {
553 atmel_sha_fill_padding(ctx, 0);
554 count = ctx->bufcnt;
555 ctx->bufcnt = 0;
556 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
559 dev_dbg(dd->dev, "final_req: err: %d\n", err);
561 return err;
564 static void atmel_sha_copy_hash(struct ahash_request *req)
566 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
567 u32 *hash = (u32 *)ctx->digest;
568 int i;
570 if (likely(ctx->flags & SHA_FLAGS_SHA1))
571 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
572 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
573 else
574 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
575 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
578 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
580 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
582 if (!req->result)
583 return;
585 if (likely(ctx->flags & SHA_FLAGS_SHA1))
586 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
587 else
588 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
591 static int atmel_sha_finish(struct ahash_request *req)
593 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
594 struct atmel_sha_dev *dd = ctx->dd;
595 int err = 0;
597 if (ctx->digcnt)
598 atmel_sha_copy_ready_hash(req);
600 dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt,
601 ctx->bufcnt);
603 return err;
606 static void atmel_sha_finish_req(struct ahash_request *req, int err)
608 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
609 struct atmel_sha_dev *dd = ctx->dd;
611 if (!err) {
612 atmel_sha_copy_hash(req);
613 if (SHA_FLAGS_FINAL & dd->flags)
614 err = atmel_sha_finish(req);
615 } else {
616 ctx->flags |= SHA_FLAGS_ERROR;
619 /* atomic operation is not needed here */
620 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
621 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
623 clk_disable_unprepare(dd->iclk);
625 if (req->base.complete)
626 req->base.complete(&req->base, err);
628 /* handle new request */
629 tasklet_schedule(&dd->done_task);
632 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
634 clk_prepare_enable(dd->iclk);
636 if (SHA_FLAGS_INIT & dd->flags) {
637 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
638 atmel_sha_dualbuff_test(dd);
639 dd->flags |= SHA_FLAGS_INIT;
640 dd->err = 0;
643 return 0;
646 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
647 struct ahash_request *req)
649 struct crypto_async_request *async_req, *backlog;
650 struct atmel_sha_reqctx *ctx;
651 unsigned long flags;
652 int err = 0, ret = 0;
654 spin_lock_irqsave(&dd->lock, flags);
655 if (req)
656 ret = ahash_enqueue_request(&dd->queue, req);
658 if (SHA_FLAGS_BUSY & dd->flags) {
659 spin_unlock_irqrestore(&dd->lock, flags);
660 return ret;
663 backlog = crypto_get_backlog(&dd->queue);
664 async_req = crypto_dequeue_request(&dd->queue);
665 if (async_req)
666 dd->flags |= SHA_FLAGS_BUSY;
668 spin_unlock_irqrestore(&dd->lock, flags);
670 if (!async_req)
671 return ret;
673 if (backlog)
674 backlog->complete(backlog, -EINPROGRESS);
676 req = ahash_request_cast(async_req);
677 dd->req = req;
678 ctx = ahash_request_ctx(req);
680 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
681 ctx->op, req->nbytes);
683 err = atmel_sha_hw_init(dd);
685 if (err)
686 goto err1;
688 if (ctx->op == SHA_OP_UPDATE) {
689 err = atmel_sha_update_req(dd);
690 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) {
691 /* no final() after finup() */
692 err = atmel_sha_final_req(dd);
694 } else if (ctx->op == SHA_OP_FINAL) {
695 err = atmel_sha_final_req(dd);
698 err1:
699 if (err != -EINPROGRESS)
700 /* done_task will not finish it, so do it here */
701 atmel_sha_finish_req(req, err);
703 dev_dbg(dd->dev, "exit, err: %d\n", err);
705 return ret;
708 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
710 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
711 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
712 struct atmel_sha_dev *dd = tctx->dd;
714 ctx->op = op;
716 return atmel_sha_handle_queue(dd, req);
719 static int atmel_sha_update(struct ahash_request *req)
721 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
723 if (!req->nbytes)
724 return 0;
726 ctx->total = req->nbytes;
727 ctx->sg = req->src;
728 ctx->offset = 0;
730 if (ctx->flags & SHA_FLAGS_FINUP) {
731 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
732 /* faster to use CPU for short transfers */
733 ctx->flags |= SHA_FLAGS_CPU;
734 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
735 atmel_sha_append_sg(ctx);
736 return 0;
738 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
741 static int atmel_sha_final(struct ahash_request *req)
743 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
744 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
745 struct atmel_sha_dev *dd = tctx->dd;
747 int err = 0;
749 ctx->flags |= SHA_FLAGS_FINUP;
751 if (ctx->flags & SHA_FLAGS_ERROR)
752 return 0; /* uncompleted hash is not needed */
754 if (ctx->bufcnt) {
755 return atmel_sha_enqueue(req, SHA_OP_FINAL);
756 } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
757 err = atmel_sha_hw_init(dd);
758 if (err)
759 goto err1;
761 dd->flags |= SHA_FLAGS_BUSY;
762 err = atmel_sha_final_req(dd);
763 } else {
764 /* copy ready hash (+ finalize hmac) */
765 return atmel_sha_finish(req);
768 err1:
769 if (err != -EINPROGRESS)
770 /* done_task will not finish it, so do it here */
771 atmel_sha_finish_req(req, err);
773 return err;
776 static int atmel_sha_finup(struct ahash_request *req)
778 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
779 int err1, err2;
781 ctx->flags |= SHA_FLAGS_FINUP;
783 err1 = atmel_sha_update(req);
784 if (err1 == -EINPROGRESS || err1 == -EBUSY)
785 return err1;
788 * final() has to be always called to cleanup resources
789 * even if udpate() failed, except EINPROGRESS
791 err2 = atmel_sha_final(req);
793 return err1 ?: err2;
796 static int atmel_sha_digest(struct ahash_request *req)
798 return atmel_sha_init(req) ?: atmel_sha_finup(req);
801 static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
803 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
804 const char *alg_name = crypto_tfm_alg_name(tfm);
806 /* Allocate a fallback and abort if it failed. */
807 tctx->fallback = crypto_alloc_shash(alg_name, 0,
808 CRYPTO_ALG_NEED_FALLBACK);
809 if (IS_ERR(tctx->fallback)) {
810 pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
811 alg_name);
812 return PTR_ERR(tctx->fallback);
814 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
815 sizeof(struct atmel_sha_reqctx) +
816 SHA_BUFFER_LEN + SHA256_BLOCK_SIZE);
818 return 0;
821 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
823 return atmel_sha_cra_init_alg(tfm, NULL);
826 static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
828 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
830 crypto_free_shash(tctx->fallback);
831 tctx->fallback = NULL;
834 static struct ahash_alg sha_algs[] = {
836 .init = atmel_sha_init,
837 .update = atmel_sha_update,
838 .final = atmel_sha_final,
839 .finup = atmel_sha_finup,
840 .digest = atmel_sha_digest,
841 .halg = {
842 .digestsize = SHA1_DIGEST_SIZE,
843 .base = {
844 .cra_name = "sha1",
845 .cra_driver_name = "atmel-sha1",
846 .cra_priority = 100,
847 .cra_flags = CRYPTO_ALG_ASYNC |
848 CRYPTO_ALG_NEED_FALLBACK,
849 .cra_blocksize = SHA1_BLOCK_SIZE,
850 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
851 .cra_alignmask = 0,
852 .cra_module = THIS_MODULE,
853 .cra_init = atmel_sha_cra_init,
854 .cra_exit = atmel_sha_cra_exit,
859 .init = atmel_sha_init,
860 .update = atmel_sha_update,
861 .final = atmel_sha_final,
862 .finup = atmel_sha_finup,
863 .digest = atmel_sha_digest,
864 .halg = {
865 .digestsize = SHA256_DIGEST_SIZE,
866 .base = {
867 .cra_name = "sha256",
868 .cra_driver_name = "atmel-sha256",
869 .cra_priority = 100,
870 .cra_flags = CRYPTO_ALG_ASYNC |
871 CRYPTO_ALG_NEED_FALLBACK,
872 .cra_blocksize = SHA256_BLOCK_SIZE,
873 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
874 .cra_alignmask = 0,
875 .cra_module = THIS_MODULE,
876 .cra_init = atmel_sha_cra_init,
877 .cra_exit = atmel_sha_cra_exit,
883 static void atmel_sha_done_task(unsigned long data)
885 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
886 int err = 0;
888 if (!(SHA_FLAGS_BUSY & dd->flags)) {
889 atmel_sha_handle_queue(dd, NULL);
890 return;
893 if (SHA_FLAGS_CPU & dd->flags) {
894 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
895 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
896 goto finish;
898 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
899 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
900 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
901 atmel_sha_update_dma_stop(dd);
902 if (dd->err) {
903 err = dd->err;
904 goto finish;
907 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
908 /* hash or semi-hash ready */
909 dd->flags &= ~(SHA_FLAGS_DMA_READY |
910 SHA_FLAGS_OUTPUT_READY);
911 err = atmel_sha_update_dma_start(dd);
912 if (err != -EINPROGRESS)
913 goto finish;
916 return;
918 finish:
919 /* finish curent request */
920 atmel_sha_finish_req(dd->req, err);
923 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
925 struct atmel_sha_dev *sha_dd = dev_id;
926 u32 reg;
928 reg = atmel_sha_read(sha_dd, SHA_ISR);
929 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
930 atmel_sha_write(sha_dd, SHA_IDR, reg);
931 if (SHA_FLAGS_BUSY & sha_dd->flags) {
932 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
933 if (!(SHA_FLAGS_CPU & sha_dd->flags))
934 sha_dd->flags |= SHA_FLAGS_DMA_READY;
935 tasklet_schedule(&sha_dd->done_task);
936 } else {
937 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
939 return IRQ_HANDLED;
942 return IRQ_NONE;
945 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
947 int i;
949 for (i = 0; i < ARRAY_SIZE(sha_algs); i++)
950 crypto_unregister_ahash(&sha_algs[i]);
953 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
955 int err, i, j;
957 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
958 err = crypto_register_ahash(&sha_algs[i]);
959 if (err)
960 goto err_sha_algs;
963 return 0;
965 err_sha_algs:
966 for (j = 0; j < i; j++)
967 crypto_unregister_ahash(&sha_algs[j]);
969 return err;
972 static int __devinit atmel_sha_probe(struct platform_device *pdev)
974 struct atmel_sha_dev *sha_dd;
975 struct device *dev = &pdev->dev;
976 struct resource *sha_res;
977 unsigned long sha_phys_size;
978 int err;
980 sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
981 if (sha_dd == NULL) {
982 dev_err(dev, "unable to alloc data struct.\n");
983 err = -ENOMEM;
984 goto sha_dd_err;
987 sha_dd->dev = dev;
989 platform_set_drvdata(pdev, sha_dd);
991 INIT_LIST_HEAD(&sha_dd->list);
993 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
994 (unsigned long)sha_dd);
996 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
998 sha_dd->irq = -1;
1000 /* Get the base address */
1001 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1002 if (!sha_res) {
1003 dev_err(dev, "no MEM resource info\n");
1004 err = -ENODEV;
1005 goto res_err;
1007 sha_dd->phys_base = sha_res->start;
1008 sha_phys_size = resource_size(sha_res);
1010 /* Get the IRQ */
1011 sha_dd->irq = platform_get_irq(pdev, 0);
1012 if (sha_dd->irq < 0) {
1013 dev_err(dev, "no IRQ resource info\n");
1014 err = sha_dd->irq;
1015 goto res_err;
1018 err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1019 sha_dd);
1020 if (err) {
1021 dev_err(dev, "unable to request sha irq.\n");
1022 goto res_err;
1025 /* Initializing the clock */
1026 sha_dd->iclk = clk_get(&pdev->dev, NULL);
1027 if (IS_ERR(sha_dd->iclk)) {
1028 dev_err(dev, "clock intialization failed.\n");
1029 err = PTR_ERR(sha_dd->iclk);
1030 goto clk_err;
1033 sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1034 if (!sha_dd->io_base) {
1035 dev_err(dev, "can't ioremap\n");
1036 err = -ENOMEM;
1037 goto sha_io_err;
1040 spin_lock(&atmel_sha.lock);
1041 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1042 spin_unlock(&atmel_sha.lock);
1044 err = atmel_sha_register_algs(sha_dd);
1045 if (err)
1046 goto err_algs;
1048 dev_info(dev, "Atmel SHA1/SHA256\n");
1050 return 0;
1052 err_algs:
1053 spin_lock(&atmel_sha.lock);
1054 list_del(&sha_dd->list);
1055 spin_unlock(&atmel_sha.lock);
1056 iounmap(sha_dd->io_base);
1057 sha_io_err:
1058 clk_put(sha_dd->iclk);
1059 clk_err:
1060 free_irq(sha_dd->irq, sha_dd);
1061 res_err:
1062 tasklet_kill(&sha_dd->done_task);
1063 kfree(sha_dd);
1064 sha_dd = NULL;
1065 sha_dd_err:
1066 dev_err(dev, "initialization failed.\n");
1068 return err;
1071 static int __devexit atmel_sha_remove(struct platform_device *pdev)
1073 static struct atmel_sha_dev *sha_dd;
1075 sha_dd = platform_get_drvdata(pdev);
1076 if (!sha_dd)
1077 return -ENODEV;
1078 spin_lock(&atmel_sha.lock);
1079 list_del(&sha_dd->list);
1080 spin_unlock(&atmel_sha.lock);
1082 atmel_sha_unregister_algs(sha_dd);
1084 tasklet_kill(&sha_dd->done_task);
1086 iounmap(sha_dd->io_base);
1088 clk_put(sha_dd->iclk);
1090 if (sha_dd->irq >= 0)
1091 free_irq(sha_dd->irq, sha_dd);
1093 kfree(sha_dd);
1094 sha_dd = NULL;
1096 return 0;
1099 static struct platform_driver atmel_sha_driver = {
1100 .probe = atmel_sha_probe,
1101 .remove = __devexit_p(atmel_sha_remove),
1102 .driver = {
1103 .name = "atmel_sha",
1104 .owner = THIS_MODULE,
1108 module_platform_driver(atmel_sha_driver);
1110 MODULE_DESCRIPTION("Atmel SHA1/SHA256 hw acceleration support.");
1111 MODULE_LICENSE("GPL v2");
1112 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");