Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / crypto / nx / nx-aes-xcbc.c
blob93923e4628c05b8af34bf19e90eb3cb692a4a0a0
1 /**
2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4 * Copyright (C) 2011-2012 International Business Machines Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Author: Kent Yoder <yoder1@us.ibm.com>
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
30 #include "nx_csbcpb.h"
31 #include "nx.h"
34 struct xcbc_state {
35 u8 state[AES_BLOCK_SIZE];
36 unsigned int count;
37 u8 buffer[AES_BLOCK_SIZE];
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 const u8 *in_key,
42 unsigned int key_len)
44 struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
46 switch (key_len) {
47 case AES_KEYSIZE_128:
48 nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 break;
50 default:
51 return -EINVAL;
54 memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
56 return 0;
59 static int nx_xcbc_init(struct shash_desc *desc)
61 struct xcbc_state *sctx = shash_desc_ctx(desc);
62 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
63 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
64 struct nx_sg *out_sg;
66 nx_ctx_init(nx_ctx, HCOP_FC_AES);
68 memset(sctx, 0, sizeof *sctx);
70 NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
71 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
73 memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
74 memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
76 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
77 AES_BLOCK_SIZE, nx_ctx->ap->sglen);
78 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
80 return 0;
83 static int nx_xcbc_update(struct shash_desc *desc,
84 const u8 *data,
85 unsigned int len)
87 struct xcbc_state *sctx = shash_desc_ctx(desc);
88 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
89 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
90 struct nx_sg *in_sg;
91 u32 to_process, leftover;
92 int rc = 0;
94 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
95 /* we've hit the nx chip previously and we're updating again,
96 * so copy over the partial digest */
97 memcpy(csbcpb->cpb.aes_xcbc.cv,
98 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
101 /* 2 cases for total data len:
102 * 1: <= AES_BLOCK_SIZE: copy into state, return 0
103 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
105 if (len + sctx->count <= AES_BLOCK_SIZE) {
106 memcpy(sctx->buffer + sctx->count, data, len);
107 sctx->count += len;
108 goto out;
111 /* to_process: the AES_BLOCK_SIZE data chunk to process in this
112 * update */
113 to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
114 leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
116 /* the hardware will not accept a 0 byte operation for this algorithm
117 * and the operation MUST be finalized to be correct. So if we happen
118 * to get an update that falls on a block sized boundary, we must
119 * save off the last block to finalize with later. */
120 if (!leftover) {
121 to_process -= AES_BLOCK_SIZE;
122 leftover = AES_BLOCK_SIZE;
125 if (sctx->count) {
126 in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
127 sctx->count, nx_ctx->ap->sglen);
128 in_sg = nx_build_sg_list(in_sg, (u8 *)data,
129 to_process - sctx->count,
130 nx_ctx->ap->sglen);
131 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
132 sizeof(struct nx_sg);
133 } else {
134 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
135 nx_ctx->ap->sglen);
136 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
137 sizeof(struct nx_sg);
140 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
142 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
143 rc = -EINVAL;
144 goto out;
147 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
148 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
149 if (rc)
150 goto out;
152 atomic_inc(&(nx_ctx->stats->aes_ops));
154 /* copy the leftover back into the state struct */
155 memcpy(sctx->buffer, data + len - leftover, leftover);
156 sctx->count = leftover;
158 /* everything after the first update is continuation */
159 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
160 out:
161 return rc;
164 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
166 struct xcbc_state *sctx = shash_desc_ctx(desc);
167 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
168 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
169 struct nx_sg *in_sg, *out_sg;
170 int rc = 0;
172 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
173 /* we've hit the nx chip previously, now we're finalizing,
174 * so copy over the partial digest */
175 memcpy(csbcpb->cpb.aes_xcbc.cv,
176 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
177 } else if (sctx->count == 0) {
178 /* we've never seen an update, so this is a 0 byte op. The
179 * hardware cannot handle a 0 byte op, so just copy out the
180 * known 0 byte result. This is cheaper than allocating a
181 * software context to do a 0 byte op */
182 u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c,
183 0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 };
184 memcpy(out, data, sizeof(data));
185 goto out;
188 /* final is represented by continuing the operation and indicating that
189 * this is not an intermediate operation */
190 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
192 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
193 sctx->count, nx_ctx->ap->sglen);
194 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE,
195 nx_ctx->ap->sglen);
197 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
198 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
200 if (!nx_ctx->op.outlen) {
201 rc = -EINVAL;
202 goto out;
205 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
206 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
207 if (rc)
208 goto out;
210 atomic_inc(&(nx_ctx->stats->aes_ops));
212 memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
213 out:
214 return rc;
217 struct shash_alg nx_shash_aes_xcbc_alg = {
218 .digestsize = AES_BLOCK_SIZE,
219 .init = nx_xcbc_init,
220 .update = nx_xcbc_update,
221 .final = nx_xcbc_final,
222 .setkey = nx_xcbc_set_key,
223 .descsize = sizeof(struct xcbc_state),
224 .statesize = sizeof(struct xcbc_state),
225 .base = {
226 .cra_name = "xcbc(aes)",
227 .cra_driver_name = "xcbc-aes-nx",
228 .cra_priority = 300,
229 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
230 .cra_blocksize = AES_BLOCK_SIZE,
231 .cra_module = THIS_MODULE,
232 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
233 .cra_init = nx_crypto_ctx_aes_xcbc_init,
234 .cra_exit = nx_crypto_ctx_exit,