Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / crypto / picoxcell_crypto.c
blob410a03c01ca434065efde5b70e1cf4261c0dd057
1 /*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
46 #include "picoxcell_crypto_regs.h"
49 * The threshold for the number of entries in the CMD FIFO available before
50 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51 * number of interrupts raised to the CPU.
53 #define CMD0_IRQ_THRESHOLD 1
56 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58 * When there are packets in flight but lower than the threshold, we enable
59 * the timer and at expiry, attempt to remove any processed packets from the
60 * queue and if there are still packets left, schedule the timer again.
62 #define PACKET_TIMEOUT 1
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY 10000
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
74 #define SPACC_CRYPTO_L2_MAX_CTXS 128
75 #define SPACC_CRYPTO_L2_FIFO_SZ 128
77 #define MAX_DDT_LEN 16
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
81 dma_addr_t p;
82 u32 len;
86 * Asynchronous crypto request structure.
88 * This structure defines a request that is either queued for processing or
89 * being processed.
91 struct spacc_req {
92 struct list_head list;
93 struct spacc_engine *engine;
94 struct crypto_async_request *req;
95 int result;
96 bool is_encrypt;
97 unsigned ctx_id;
98 dma_addr_t src_addr, dst_addr;
99 struct spacc_ddt *src_ddt, *dst_ddt;
100 void (*complete)(struct spacc_req *req);
102 /* AEAD specific bits. */
103 u8 *giv;
104 size_t giv_len;
105 dma_addr_t giv_pa;
108 struct spacc_engine {
109 void __iomem *regs;
110 struct list_head pending;
111 int next_ctx;
112 spinlock_t hw_lock;
113 int in_flight;
114 struct list_head completed;
115 struct list_head in_progress;
116 struct tasklet_struct complete;
117 unsigned long fifo_sz;
118 void __iomem *cipher_ctx_base;
119 void __iomem *hash_key_base;
120 struct spacc_alg *algs;
121 unsigned num_algs;
122 struct list_head registered_algs;
123 size_t cipher_pg_sz;
124 size_t hash_pg_sz;
125 const char *name;
126 struct clk *clk;
127 struct device *dev;
128 unsigned max_ctxs;
129 struct timer_list packet_timeout;
130 unsigned stat_irq_thresh;
131 struct dma_pool *req_pool;
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK 0x7
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139 unsigned long ctrl_default;
140 unsigned long type;
141 struct crypto_alg alg;
142 struct spacc_engine *engine;
143 struct list_head entry;
144 int key_offs;
145 int iv_offs;
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx {
150 struct spacc_engine *engine;
151 int flags;
152 int key_offs;
153 int iv_offs;
156 /* Block cipher context. */
157 struct spacc_ablk_ctx {
158 struct spacc_generic_ctx generic;
159 u8 key[AES_MAX_KEY_SIZE];
160 u8 key_len;
162 * The fallback cipher. If the operation can't be done in hardware,
163 * fallback to a software version.
165 struct crypto_ablkcipher *sw_cipher;
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx {
170 struct spacc_generic_ctx generic;
171 u8 cipher_key[AES_MAX_KEY_SIZE];
172 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173 u8 cipher_key_len;
174 u8 hash_key_len;
175 struct crypto_aead *sw_cipher;
176 size_t auth_size;
177 u8 salt[AES_BLOCK_SIZE];
180 static int spacc_ablk_submit(struct spacc_req *req);
182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
184 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
189 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
191 return fifo_stat & SPA_FIFO_CMD_FULL;
195 * Given a cipher context, and a context number, get the base address of the
196 * context page.
198 * Returns the address of the context page where the key/context may
199 * be written.
201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 unsigned indx,
203 bool is_cipher_ctx)
205 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 (indx * ctx->engine->cipher_pg_sz) :
207 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 unsigned count)
214 const u32 *src32 = (const u32 *) src;
216 while (count--)
217 writel(*src32++, dst++);
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 void __iomem *page_addr, const u8 *key,
222 size_t key_len, const u8 *iv, size_t iv_len)
224 void __iomem *key_ptr = page_addr + ctx->key_offs;
225 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
227 memcpy_toio32(key_ptr, key, key_len / 4);
228 memcpy_toio32(iv_ptr, iv, iv_len / 4);
232 * Load a context into the engines context memory.
234 * Returns the index of the context page where the context was loaded.
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 const u8 *ciph_key, size_t ciph_len,
238 const u8 *iv, size_t ivlen, const u8 *hash_key,
239 size_t hash_len)
241 unsigned indx = ctx->engine->next_ctx++;
242 void __iomem *ciph_page_addr, *hash_page_addr;
244 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
247 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 ivlen);
250 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
254 if (hash_key) {
255 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
260 return indx;
263 /* Count the number of scatterlist entries in a scatterlist. */
264 static int sg_count(struct scatterlist *sg_list, int nbytes)
266 struct scatterlist *sg = sg_list;
267 int sg_nents = 0;
269 while (nbytes > 0) {
270 ++sg_nents;
271 nbytes -= sg->length;
272 sg = sg_next(sg);
275 return sg_nents;
278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
280 ddt->p = phys;
281 ddt->len = len;
285 * Take a crypto request and scatterlists for the data and turn them into DDTs
286 * for passing to the crypto engines. This also DMA maps the data so that the
287 * crypto engines can DMA to/from them.
289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290 struct scatterlist *payload,
291 unsigned nbytes,
292 enum dma_data_direction dir,
293 dma_addr_t *ddt_phys)
295 unsigned nents, mapped_ents;
296 struct scatterlist *cur;
297 struct spacc_ddt *ddt;
298 int i;
300 nents = sg_count(payload, nbytes);
301 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
303 if (mapped_ents + 1 > MAX_DDT_LEN)
304 goto out;
306 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307 if (!ddt)
308 goto out;
310 for_each_sg(payload, cur, mapped_ents, i)
311 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312 ddt_set(&ddt[mapped_ents], 0, 0);
314 return ddt;
316 out:
317 dma_unmap_sg(engine->dev, payload, nents, dir);
318 return NULL;
321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
323 struct aead_request *areq = container_of(req->req, struct aead_request,
324 base);
325 struct spacc_engine *engine = req->engine;
326 struct spacc_ddt *src_ddt, *dst_ddt;
327 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328 unsigned nents = sg_count(areq->src, areq->cryptlen);
329 dma_addr_t iv_addr;
330 struct scatterlist *cur;
331 int i, dst_ents, src_ents, assoc_ents;
332 u8 *iv = giv ? giv : areq->iv;
334 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335 if (!src_ddt)
336 return -ENOMEM;
338 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339 if (!dst_ddt) {
340 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341 return -ENOMEM;
344 req->src_ddt = src_ddt;
345 req->dst_ddt = dst_ddt;
347 assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349 if (areq->src != areq->dst) {
350 src_ents = dma_map_sg(engine->dev, areq->src, nents,
351 DMA_TO_DEVICE);
352 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353 DMA_FROM_DEVICE);
354 } else {
355 src_ents = dma_map_sg(engine->dev, areq->src, nents,
356 DMA_BIDIRECTIONAL);
357 dst_ents = 0;
361 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 * formed by the crypto block and sent as the ESP IV for IPSEC.
364 iv_addr = dma_map_single(engine->dev, iv, ivsize,
365 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366 req->giv_pa = iv_addr;
369 * Map the associated data. For decryption we don't copy the
370 * associated data.
372 for_each_sg(areq->assoc, cur, assoc_ents, i) {
373 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374 if (req->is_encrypt)
375 ddt_set(dst_ddt++, sg_dma_address(cur),
376 sg_dma_len(cur));
378 ddt_set(src_ddt++, iv_addr, ivsize);
380 if (giv || req->is_encrypt)
381 ddt_set(dst_ddt++, iv_addr, ivsize);
384 * Now map in the payload for the source and destination and terminate
385 * with the NULL pointers.
387 for_each_sg(areq->src, cur, src_ents, i) {
388 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389 if (areq->src == areq->dst)
390 ddt_set(dst_ddt++, sg_dma_address(cur),
391 sg_dma_len(cur));
394 for_each_sg(areq->dst, cur, dst_ents, i)
395 ddt_set(dst_ddt++, sg_dma_address(cur),
396 sg_dma_len(cur));
398 ddt_set(src_ddt, 0, 0);
399 ddt_set(dst_ddt, 0, 0);
401 return 0;
404 static void spacc_aead_free_ddts(struct spacc_req *req)
406 struct aead_request *areq = container_of(req->req, struct aead_request,
407 base);
408 struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409 struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410 struct spacc_engine *engine = aead_ctx->generic.engine;
411 unsigned ivsize = alg->alg.cra_aead.ivsize;
412 unsigned nents = sg_count(areq->src, areq->cryptlen);
414 if (areq->src != areq->dst) {
415 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416 dma_unmap_sg(engine->dev, areq->dst,
417 sg_count(areq->dst, areq->cryptlen),
418 DMA_FROM_DEVICE);
419 } else
420 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
422 dma_unmap_sg(engine->dev, areq->assoc,
423 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
425 dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
427 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432 dma_addr_t ddt_addr, struct scatterlist *payload,
433 unsigned nbytes, enum dma_data_direction dir)
435 unsigned nents = sg_count(payload, nbytes);
437 dma_unmap_sg(req->engine->dev, payload, nents, dir);
438 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
442 * Set key for a DES operation in an AEAD cipher. This also performs weak key
443 * checking if required.
445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446 unsigned int len)
448 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450 u32 tmp[DES_EXPKEY_WORDS];
452 if (unlikely(!des_ekey(tmp, key)) &&
453 (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455 return -EINVAL;
458 memcpy(ctx->cipher_key, key, len);
459 ctx->cipher_key_len = len;
461 return 0;
464 /* Set the key for the AES block cipher component of the AEAD transform. */
465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466 unsigned int len)
468 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
472 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 * request for any other size (192 bits) then we need to do a software
474 * fallback.
476 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
478 * Set the fallback transform to use the same request flags as
479 * the hardware transform.
481 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482 ctx->sw_cipher->base.crt_flags |=
483 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484 return crypto_aead_setkey(ctx->sw_cipher, key, len);
487 memcpy(ctx->cipher_key, key, len);
488 ctx->cipher_key_len = len;
490 return 0;
493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494 unsigned int keylen)
496 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498 struct rtattr *rta = (void *)key;
499 struct crypto_authenc_key_param *param;
500 unsigned int authkeylen, enckeylen;
501 int err = -EINVAL;
503 if (!RTA_OK(rta, keylen))
504 goto badkey;
506 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
507 goto badkey;
509 if (RTA_PAYLOAD(rta) < sizeof(*param))
510 goto badkey;
512 param = RTA_DATA(rta);
513 enckeylen = be32_to_cpu(param->enckeylen);
515 key += RTA_ALIGN(rta->rta_len);
516 keylen -= RTA_ALIGN(rta->rta_len);
518 if (keylen < enckeylen)
519 goto badkey;
521 authkeylen = keylen - enckeylen;
523 if (enckeylen > AES_MAX_KEY_SIZE)
524 goto badkey;
526 if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
527 SPA_CTRL_CIPH_ALG_AES)
528 err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
529 else
530 err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
532 if (err)
533 goto badkey;
535 memcpy(ctx->hash_ctx, key, authkeylen);
536 ctx->hash_key_len = authkeylen;
538 return 0;
540 badkey:
541 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
542 return -EINVAL;
545 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
546 unsigned int authsize)
548 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
550 ctx->auth_size = authsize;
552 return 0;
556 * Check if an AEAD request requires a fallback operation. Some requests can't
557 * be completed in hardware because the hardware may not support certain key
558 * sizes. In these cases we need to complete the request in software.
560 static int spacc_aead_need_fallback(struct spacc_req *req)
562 struct aead_request *aead_req;
563 struct crypto_tfm *tfm = req->req->tfm;
564 struct crypto_alg *alg = req->req->tfm->__crt_alg;
565 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
566 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
568 aead_req = container_of(req->req, struct aead_request, base);
570 * If we have a non-supported key-length, then we need to do a
571 * software fallback.
573 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
574 SPA_CTRL_CIPH_ALG_AES &&
575 ctx->cipher_key_len != AES_KEYSIZE_128 &&
576 ctx->cipher_key_len != AES_KEYSIZE_256)
577 return 1;
579 return 0;
582 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
583 bool is_encrypt)
585 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
586 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
587 int err;
589 if (ctx->sw_cipher) {
591 * Change the request to use the software fallback transform,
592 * and once the ciphering has completed, put the old transform
593 * back into the request.
595 aead_request_set_tfm(req, ctx->sw_cipher);
596 err = is_encrypt ? crypto_aead_encrypt(req) :
597 crypto_aead_decrypt(req);
598 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
599 } else
600 err = -EINVAL;
602 return err;
605 static void spacc_aead_complete(struct spacc_req *req)
607 spacc_aead_free_ddts(req);
608 req->req->complete(req->req, req->result);
611 static int spacc_aead_submit(struct spacc_req *req)
613 struct crypto_tfm *tfm = req->req->tfm;
614 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
615 struct crypto_alg *alg = req->req->tfm->__crt_alg;
616 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
617 struct spacc_engine *engine = ctx->generic.engine;
618 u32 ctrl, proc_len, assoc_len;
619 struct aead_request *aead_req =
620 container_of(req->req, struct aead_request, base);
622 req->result = -EINPROGRESS;
623 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
624 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
625 ctx->hash_ctx, ctx->hash_key_len);
627 /* Set the source and destination DDT pointers. */
628 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
629 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
630 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
632 assoc_len = aead_req->assoclen;
633 proc_len = aead_req->cryptlen + assoc_len;
636 * If we aren't generating an IV, then we need to include the IV in the
637 * associated data so that it is included in the hash.
639 if (!req->giv) {
640 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
641 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
642 } else
643 proc_len += req->giv_len;
646 * If we are decrypting, we need to take the length of the ICV out of
647 * the processing length.
649 if (!req->is_encrypt)
650 proc_len -= ctx->auth_size;
652 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
653 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
654 writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
655 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
656 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
658 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
659 (1 << SPA_CTRL_ICV_APPEND);
660 if (req->is_encrypt)
661 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
662 else
663 ctrl |= (1 << SPA_CTRL_KEY_EXP);
665 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
667 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
669 return -EINPROGRESS;
672 static int spacc_req_submit(struct spacc_req *req);
674 static void spacc_push(struct spacc_engine *engine)
676 struct spacc_req *req;
678 while (!list_empty(&engine->pending) &&
679 engine->in_flight + 1 <= engine->fifo_sz) {
681 ++engine->in_flight;
682 req = list_first_entry(&engine->pending, struct spacc_req,
683 list);
684 list_move_tail(&req->list, &engine->in_progress);
686 req->result = spacc_req_submit(req);
691 * Setup an AEAD request for processing. This will configure the engine, load
692 * the context and then start the packet processing.
694 * @giv Pointer to destination address for a generated IV. If the
695 * request does not need to generate an IV then this should be set to NULL.
697 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
698 unsigned alg_type, bool is_encrypt)
700 struct crypto_alg *alg = req->base.tfm->__crt_alg;
701 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
702 struct spacc_req *dev_req = aead_request_ctx(req);
703 int err = -EINPROGRESS;
704 unsigned long flags;
705 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
707 dev_req->giv = giv;
708 dev_req->giv_len = ivsize;
709 dev_req->req = &req->base;
710 dev_req->is_encrypt = is_encrypt;
711 dev_req->result = -EBUSY;
712 dev_req->engine = engine;
713 dev_req->complete = spacc_aead_complete;
715 if (unlikely(spacc_aead_need_fallback(dev_req)))
716 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
718 spacc_aead_make_ddts(dev_req, dev_req->giv);
720 err = -EINPROGRESS;
721 spin_lock_irqsave(&engine->hw_lock, flags);
722 if (unlikely(spacc_fifo_cmd_full(engine)) ||
723 engine->in_flight + 1 > engine->fifo_sz) {
724 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
725 err = -EBUSY;
726 spin_unlock_irqrestore(&engine->hw_lock, flags);
727 goto out_free_ddts;
729 list_add_tail(&dev_req->list, &engine->pending);
730 } else {
731 list_add_tail(&dev_req->list, &engine->pending);
732 spacc_push(engine);
734 spin_unlock_irqrestore(&engine->hw_lock, flags);
736 goto out;
738 out_free_ddts:
739 spacc_aead_free_ddts(dev_req);
740 out:
741 return err;
744 static int spacc_aead_encrypt(struct aead_request *req)
746 struct crypto_aead *aead = crypto_aead_reqtfm(req);
747 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
748 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
750 return spacc_aead_setup(req, NULL, alg->type, 1);
753 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
755 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
756 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
757 size_t ivsize = crypto_aead_ivsize(tfm);
758 struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
759 unsigned len;
760 __be64 seq;
762 memcpy(req->areq.iv, ctx->salt, ivsize);
763 len = ivsize;
764 if (ivsize > sizeof(u64)) {
765 memset(req->giv, 0, ivsize - sizeof(u64));
766 len = sizeof(u64);
768 seq = cpu_to_be64(req->seq);
769 memcpy(req->giv + ivsize - len, &seq, len);
771 return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
774 static int spacc_aead_decrypt(struct aead_request *req)
776 struct crypto_aead *aead = crypto_aead_reqtfm(req);
777 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
778 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
780 return spacc_aead_setup(req, NULL, alg->type, 0);
784 * Initialise a new AEAD context. This is responsible for allocating the
785 * fallback cipher and initialising the context.
787 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
789 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
790 struct crypto_alg *alg = tfm->__crt_alg;
791 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
792 struct spacc_engine *engine = spacc_alg->engine;
794 ctx->generic.flags = spacc_alg->type;
795 ctx->generic.engine = engine;
796 ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
797 CRYPTO_ALG_ASYNC |
798 CRYPTO_ALG_NEED_FALLBACK);
799 if (IS_ERR(ctx->sw_cipher)) {
800 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
801 alg->cra_name);
802 ctx->sw_cipher = NULL;
804 ctx->generic.key_offs = spacc_alg->key_offs;
805 ctx->generic.iv_offs = spacc_alg->iv_offs;
807 get_random_bytes(ctx->salt, sizeof(ctx->salt));
809 tfm->crt_aead.reqsize = sizeof(struct spacc_req);
811 return 0;
815 * Destructor for an AEAD context. This is called when the transform is freed
816 * and must free the fallback cipher.
818 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
820 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
822 if (ctx->sw_cipher)
823 crypto_free_aead(ctx->sw_cipher);
824 ctx->sw_cipher = NULL;
828 * Set the DES key for a block cipher transform. This also performs weak key
829 * checking if the transform has requested it.
831 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
832 unsigned int len)
834 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
835 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
836 u32 tmp[DES_EXPKEY_WORDS];
838 if (len > DES3_EDE_KEY_SIZE) {
839 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
840 return -EINVAL;
843 if (unlikely(!des_ekey(tmp, key)) &&
844 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
845 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
846 return -EINVAL;
849 memcpy(ctx->key, key, len);
850 ctx->key_len = len;
852 return 0;
856 * Set the key for an AES block cipher. Some key lengths are not supported in
857 * hardware so this must also check whether a fallback is needed.
859 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
860 unsigned int len)
862 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
863 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
864 int err = 0;
866 if (len > AES_MAX_KEY_SIZE) {
867 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
868 return -EINVAL;
872 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
873 * request for any other size (192 bits) then we need to do a software
874 * fallback.
876 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
877 ctx->sw_cipher) {
879 * Set the fallback transform to use the same request flags as
880 * the hardware transform.
882 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
883 ctx->sw_cipher->base.crt_flags |=
884 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
886 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
887 if (err)
888 goto sw_setkey_failed;
889 } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
890 !ctx->sw_cipher)
891 err = -EINVAL;
893 memcpy(ctx->key, key, len);
894 ctx->key_len = len;
896 sw_setkey_failed:
897 if (err && ctx->sw_cipher) {
898 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
899 tfm->crt_flags |=
900 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
903 return err;
906 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
907 const u8 *key, unsigned int len)
909 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
910 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
911 int err = 0;
913 if (len > AES_MAX_KEY_SIZE) {
914 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
915 err = -EINVAL;
916 goto out;
919 memcpy(ctx->key, key, len);
920 ctx->key_len = len;
922 out:
923 return err;
926 static int spacc_ablk_need_fallback(struct spacc_req *req)
928 struct spacc_ablk_ctx *ctx;
929 struct crypto_tfm *tfm = req->req->tfm;
930 struct crypto_alg *alg = req->req->tfm->__crt_alg;
931 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
933 ctx = crypto_tfm_ctx(tfm);
935 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
936 SPA_CTRL_CIPH_ALG_AES &&
937 ctx->key_len != AES_KEYSIZE_128 &&
938 ctx->key_len != AES_KEYSIZE_256;
941 static void spacc_ablk_complete(struct spacc_req *req)
943 struct ablkcipher_request *ablk_req =
944 container_of(req->req, struct ablkcipher_request, base);
946 if (ablk_req->src != ablk_req->dst) {
947 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
948 ablk_req->nbytes, DMA_TO_DEVICE);
949 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
950 ablk_req->nbytes, DMA_FROM_DEVICE);
951 } else
952 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
953 ablk_req->nbytes, DMA_BIDIRECTIONAL);
955 req->req->complete(req->req, req->result);
958 static int spacc_ablk_submit(struct spacc_req *req)
960 struct crypto_tfm *tfm = req->req->tfm;
961 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
962 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
963 struct crypto_alg *alg = req->req->tfm->__crt_alg;
964 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
965 struct spacc_engine *engine = ctx->generic.engine;
966 u32 ctrl;
968 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
969 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
970 NULL, 0);
972 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
973 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
974 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
976 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
977 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
978 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
979 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
981 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
982 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
983 (1 << SPA_CTRL_KEY_EXP));
985 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
987 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
989 return -EINPROGRESS;
992 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
993 unsigned alg_type, bool is_encrypt)
995 struct crypto_tfm *old_tfm =
996 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
997 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
998 int err;
1000 if (!ctx->sw_cipher)
1001 return -EINVAL;
1004 * Change the request to use the software fallback transform, and once
1005 * the ciphering has completed, put the old transform back into the
1006 * request.
1008 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
1009 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
1010 crypto_ablkcipher_decrypt(req);
1011 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
1013 return err;
1016 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1017 bool is_encrypt)
1019 struct crypto_alg *alg = req->base.tfm->__crt_alg;
1020 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1021 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1022 unsigned long flags;
1023 int err = -ENOMEM;
1025 dev_req->req = &req->base;
1026 dev_req->is_encrypt = is_encrypt;
1027 dev_req->engine = engine;
1028 dev_req->complete = spacc_ablk_complete;
1029 dev_req->result = -EINPROGRESS;
1031 if (unlikely(spacc_ablk_need_fallback(dev_req)))
1032 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1035 * Create the DDT's for the engine. If we share the same source and
1036 * destination then we can optimize by reusing the DDT's.
1038 if (req->src != req->dst) {
1039 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1040 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1041 if (!dev_req->src_ddt)
1042 goto out;
1044 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1045 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1046 if (!dev_req->dst_ddt)
1047 goto out_free_src;
1048 } else {
1049 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1050 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1051 if (!dev_req->dst_ddt)
1052 goto out;
1054 dev_req->src_ddt = NULL;
1055 dev_req->src_addr = dev_req->dst_addr;
1058 err = -EINPROGRESS;
1059 spin_lock_irqsave(&engine->hw_lock, flags);
1061 * Check if the engine will accept the operation now. If it won't then
1062 * we either stick it on the end of a pending list if we can backlog,
1063 * or bailout with an error if not.
1065 if (unlikely(spacc_fifo_cmd_full(engine)) ||
1066 engine->in_flight + 1 > engine->fifo_sz) {
1067 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1068 err = -EBUSY;
1069 spin_unlock_irqrestore(&engine->hw_lock, flags);
1070 goto out_free_ddts;
1072 list_add_tail(&dev_req->list, &engine->pending);
1073 } else {
1074 list_add_tail(&dev_req->list, &engine->pending);
1075 spacc_push(engine);
1077 spin_unlock_irqrestore(&engine->hw_lock, flags);
1079 goto out;
1081 out_free_ddts:
1082 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1083 req->nbytes, req->src == req->dst ?
1084 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1085 out_free_src:
1086 if (req->src != req->dst)
1087 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1088 req->src, req->nbytes, DMA_TO_DEVICE);
1089 out:
1090 return err;
1093 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1095 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1096 struct crypto_alg *alg = tfm->__crt_alg;
1097 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1098 struct spacc_engine *engine = spacc_alg->engine;
1100 ctx->generic.flags = spacc_alg->type;
1101 ctx->generic.engine = engine;
1102 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1103 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1104 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1105 if (IS_ERR(ctx->sw_cipher)) {
1106 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1107 alg->cra_name);
1108 ctx->sw_cipher = NULL;
1111 ctx->generic.key_offs = spacc_alg->key_offs;
1112 ctx->generic.iv_offs = spacc_alg->iv_offs;
1114 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1116 return 0;
1119 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1121 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1123 if (ctx->sw_cipher)
1124 crypto_free_ablkcipher(ctx->sw_cipher);
1125 ctx->sw_cipher = NULL;
1128 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1130 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1131 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1132 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1134 return spacc_ablk_setup(req, alg->type, 1);
1137 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1139 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1140 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1141 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1143 return spacc_ablk_setup(req, alg->type, 0);
1146 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1148 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1149 SPA_FIFO_STAT_EMPTY;
1152 static void spacc_process_done(struct spacc_engine *engine)
1154 struct spacc_req *req;
1155 unsigned long flags;
1157 spin_lock_irqsave(&engine->hw_lock, flags);
1159 while (!spacc_fifo_stat_empty(engine)) {
1160 req = list_first_entry(&engine->in_progress, struct spacc_req,
1161 list);
1162 list_move_tail(&req->list, &engine->completed);
1163 --engine->in_flight;
1165 /* POP the status register. */
1166 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1167 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1168 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1171 * Convert the SPAcc error status into the standard POSIX error
1172 * codes.
1174 if (unlikely(req->result)) {
1175 switch (req->result) {
1176 case SPA_STATUS_ICV_FAIL:
1177 req->result = -EBADMSG;
1178 break;
1180 case SPA_STATUS_MEMORY_ERROR:
1181 dev_warn(engine->dev,
1182 "memory error triggered\n");
1183 req->result = -EFAULT;
1184 break;
1186 case SPA_STATUS_BLOCK_ERROR:
1187 dev_warn(engine->dev,
1188 "block error triggered\n");
1189 req->result = -EIO;
1190 break;
1195 tasklet_schedule(&engine->complete);
1197 spin_unlock_irqrestore(&engine->hw_lock, flags);
1200 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1202 struct spacc_engine *engine = (struct spacc_engine *)dev;
1203 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1205 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1206 spacc_process_done(engine);
1208 return IRQ_HANDLED;
1211 static void spacc_packet_timeout(unsigned long data)
1213 struct spacc_engine *engine = (struct spacc_engine *)data;
1215 spacc_process_done(engine);
1218 static int spacc_req_submit(struct spacc_req *req)
1220 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1222 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1223 return spacc_aead_submit(req);
1224 else
1225 return spacc_ablk_submit(req);
1228 static void spacc_spacc_complete(unsigned long data)
1230 struct spacc_engine *engine = (struct spacc_engine *)data;
1231 struct spacc_req *req, *tmp;
1232 unsigned long flags;
1233 LIST_HEAD(completed);
1235 spin_lock_irqsave(&engine->hw_lock, flags);
1237 list_splice_init(&engine->completed, &completed);
1238 spacc_push(engine);
1239 if (engine->in_flight)
1240 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1242 spin_unlock_irqrestore(&engine->hw_lock, flags);
1244 list_for_each_entry_safe(req, tmp, &completed, list) {
1245 list_del(&req->list);
1246 req->complete(req);
1250 #ifdef CONFIG_PM
1251 static int spacc_suspend(struct device *dev)
1253 struct platform_device *pdev = to_platform_device(dev);
1254 struct spacc_engine *engine = platform_get_drvdata(pdev);
1257 * We only support standby mode. All we have to do is gate the clock to
1258 * the spacc. The hardware will preserve state until we turn it back
1259 * on again.
1261 clk_disable(engine->clk);
1263 return 0;
1266 static int spacc_resume(struct device *dev)
1268 struct platform_device *pdev = to_platform_device(dev);
1269 struct spacc_engine *engine = platform_get_drvdata(pdev);
1271 return clk_enable(engine->clk);
1274 static const struct dev_pm_ops spacc_pm_ops = {
1275 .suspend = spacc_suspend,
1276 .resume = spacc_resume,
1278 #endif /* CONFIG_PM */
1280 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1282 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1285 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1286 struct device_attribute *attr,
1287 char *buf)
1289 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1291 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1294 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1295 struct device_attribute *attr,
1296 const char *buf, size_t len)
1298 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1299 unsigned long thresh;
1301 if (strict_strtoul(buf, 0, &thresh))
1302 return -EINVAL;
1304 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1306 engine->stat_irq_thresh = thresh;
1307 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1308 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1310 return len;
1312 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1313 spacc_stat_irq_thresh_store);
1315 static struct spacc_alg ipsec_engine_algs[] = {
1317 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1318 .key_offs = 0,
1319 .iv_offs = AES_MAX_KEY_SIZE,
1320 .alg = {
1321 .cra_name = "cbc(aes)",
1322 .cra_driver_name = "cbc-aes-picoxcell",
1323 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1324 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1325 CRYPTO_ALG_KERN_DRIVER_ONLY |
1326 CRYPTO_ALG_ASYNC |
1327 CRYPTO_ALG_NEED_FALLBACK,
1328 .cra_blocksize = AES_BLOCK_SIZE,
1329 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1330 .cra_type = &crypto_ablkcipher_type,
1331 .cra_module = THIS_MODULE,
1332 .cra_ablkcipher = {
1333 .setkey = spacc_aes_setkey,
1334 .encrypt = spacc_ablk_encrypt,
1335 .decrypt = spacc_ablk_decrypt,
1336 .min_keysize = AES_MIN_KEY_SIZE,
1337 .max_keysize = AES_MAX_KEY_SIZE,
1338 .ivsize = AES_BLOCK_SIZE,
1340 .cra_init = spacc_ablk_cra_init,
1341 .cra_exit = spacc_ablk_cra_exit,
1345 .key_offs = 0,
1346 .iv_offs = AES_MAX_KEY_SIZE,
1347 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1348 .alg = {
1349 .cra_name = "ecb(aes)",
1350 .cra_driver_name = "ecb-aes-picoxcell",
1351 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1352 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1353 CRYPTO_ALG_KERN_DRIVER_ONLY |
1354 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1355 .cra_blocksize = AES_BLOCK_SIZE,
1356 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1357 .cra_type = &crypto_ablkcipher_type,
1358 .cra_module = THIS_MODULE,
1359 .cra_ablkcipher = {
1360 .setkey = spacc_aes_setkey,
1361 .encrypt = spacc_ablk_encrypt,
1362 .decrypt = spacc_ablk_decrypt,
1363 .min_keysize = AES_MIN_KEY_SIZE,
1364 .max_keysize = AES_MAX_KEY_SIZE,
1366 .cra_init = spacc_ablk_cra_init,
1367 .cra_exit = spacc_ablk_cra_exit,
1371 .key_offs = DES_BLOCK_SIZE,
1372 .iv_offs = 0,
1373 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1374 .alg = {
1375 .cra_name = "cbc(des)",
1376 .cra_driver_name = "cbc-des-picoxcell",
1377 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1378 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1379 CRYPTO_ALG_ASYNC |
1380 CRYPTO_ALG_KERN_DRIVER_ONLY,
1381 .cra_blocksize = DES_BLOCK_SIZE,
1382 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1383 .cra_type = &crypto_ablkcipher_type,
1384 .cra_module = THIS_MODULE,
1385 .cra_ablkcipher = {
1386 .setkey = spacc_des_setkey,
1387 .encrypt = spacc_ablk_encrypt,
1388 .decrypt = spacc_ablk_decrypt,
1389 .min_keysize = DES_KEY_SIZE,
1390 .max_keysize = DES_KEY_SIZE,
1391 .ivsize = DES_BLOCK_SIZE,
1393 .cra_init = spacc_ablk_cra_init,
1394 .cra_exit = spacc_ablk_cra_exit,
1398 .key_offs = DES_BLOCK_SIZE,
1399 .iv_offs = 0,
1400 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1401 .alg = {
1402 .cra_name = "ecb(des)",
1403 .cra_driver_name = "ecb-des-picoxcell",
1404 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1405 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1406 CRYPTO_ALG_ASYNC |
1407 CRYPTO_ALG_KERN_DRIVER_ONLY,
1408 .cra_blocksize = DES_BLOCK_SIZE,
1409 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1410 .cra_type = &crypto_ablkcipher_type,
1411 .cra_module = THIS_MODULE,
1412 .cra_ablkcipher = {
1413 .setkey = spacc_des_setkey,
1414 .encrypt = spacc_ablk_encrypt,
1415 .decrypt = spacc_ablk_decrypt,
1416 .min_keysize = DES_KEY_SIZE,
1417 .max_keysize = DES_KEY_SIZE,
1419 .cra_init = spacc_ablk_cra_init,
1420 .cra_exit = spacc_ablk_cra_exit,
1424 .key_offs = DES_BLOCK_SIZE,
1425 .iv_offs = 0,
1426 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1427 .alg = {
1428 .cra_name = "cbc(des3_ede)",
1429 .cra_driver_name = "cbc-des3-ede-picoxcell",
1430 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1431 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1432 CRYPTO_ALG_ASYNC |
1433 CRYPTO_ALG_KERN_DRIVER_ONLY,
1434 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1435 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1436 .cra_type = &crypto_ablkcipher_type,
1437 .cra_module = THIS_MODULE,
1438 .cra_ablkcipher = {
1439 .setkey = spacc_des_setkey,
1440 .encrypt = spacc_ablk_encrypt,
1441 .decrypt = spacc_ablk_decrypt,
1442 .min_keysize = DES3_EDE_KEY_SIZE,
1443 .max_keysize = DES3_EDE_KEY_SIZE,
1444 .ivsize = DES3_EDE_BLOCK_SIZE,
1446 .cra_init = spacc_ablk_cra_init,
1447 .cra_exit = spacc_ablk_cra_exit,
1451 .key_offs = DES_BLOCK_SIZE,
1452 .iv_offs = 0,
1453 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1454 .alg = {
1455 .cra_name = "ecb(des3_ede)",
1456 .cra_driver_name = "ecb-des3-ede-picoxcell",
1457 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1458 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1459 CRYPTO_ALG_ASYNC |
1460 CRYPTO_ALG_KERN_DRIVER_ONLY,
1461 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1462 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1463 .cra_type = &crypto_ablkcipher_type,
1464 .cra_module = THIS_MODULE,
1465 .cra_ablkcipher = {
1466 .setkey = spacc_des_setkey,
1467 .encrypt = spacc_ablk_encrypt,
1468 .decrypt = spacc_ablk_decrypt,
1469 .min_keysize = DES3_EDE_KEY_SIZE,
1470 .max_keysize = DES3_EDE_KEY_SIZE,
1472 .cra_init = spacc_ablk_cra_init,
1473 .cra_exit = spacc_ablk_cra_exit,
1477 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1478 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1479 .key_offs = 0,
1480 .iv_offs = AES_MAX_KEY_SIZE,
1481 .alg = {
1482 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1483 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1484 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1485 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1486 CRYPTO_ALG_ASYNC |
1487 CRYPTO_ALG_KERN_DRIVER_ONLY,
1488 .cra_blocksize = AES_BLOCK_SIZE,
1489 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1490 .cra_type = &crypto_aead_type,
1491 .cra_module = THIS_MODULE,
1492 .cra_aead = {
1493 .setkey = spacc_aead_setkey,
1494 .setauthsize = spacc_aead_setauthsize,
1495 .encrypt = spacc_aead_encrypt,
1496 .decrypt = spacc_aead_decrypt,
1497 .givencrypt = spacc_aead_givencrypt,
1498 .ivsize = AES_BLOCK_SIZE,
1499 .maxauthsize = SHA1_DIGEST_SIZE,
1501 .cra_init = spacc_aead_cra_init,
1502 .cra_exit = spacc_aead_cra_exit,
1506 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1507 SPA_CTRL_HASH_ALG_SHA256 |
1508 SPA_CTRL_HASH_MODE_HMAC,
1509 .key_offs = 0,
1510 .iv_offs = AES_MAX_KEY_SIZE,
1511 .alg = {
1512 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1513 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1514 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1516 CRYPTO_ALG_ASYNC |
1517 CRYPTO_ALG_KERN_DRIVER_ONLY,
1518 .cra_blocksize = AES_BLOCK_SIZE,
1519 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1520 .cra_type = &crypto_aead_type,
1521 .cra_module = THIS_MODULE,
1522 .cra_aead = {
1523 .setkey = spacc_aead_setkey,
1524 .setauthsize = spacc_aead_setauthsize,
1525 .encrypt = spacc_aead_encrypt,
1526 .decrypt = spacc_aead_decrypt,
1527 .givencrypt = spacc_aead_givencrypt,
1528 .ivsize = AES_BLOCK_SIZE,
1529 .maxauthsize = SHA256_DIGEST_SIZE,
1531 .cra_init = spacc_aead_cra_init,
1532 .cra_exit = spacc_aead_cra_exit,
1536 .key_offs = 0,
1537 .iv_offs = AES_MAX_KEY_SIZE,
1538 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1539 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1540 .alg = {
1541 .cra_name = "authenc(hmac(md5),cbc(aes))",
1542 .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1543 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1544 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1545 CRYPTO_ALG_ASYNC |
1546 CRYPTO_ALG_KERN_DRIVER_ONLY,
1547 .cra_blocksize = AES_BLOCK_SIZE,
1548 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1549 .cra_type = &crypto_aead_type,
1550 .cra_module = THIS_MODULE,
1551 .cra_aead = {
1552 .setkey = spacc_aead_setkey,
1553 .setauthsize = spacc_aead_setauthsize,
1554 .encrypt = spacc_aead_encrypt,
1555 .decrypt = spacc_aead_decrypt,
1556 .givencrypt = spacc_aead_givencrypt,
1557 .ivsize = AES_BLOCK_SIZE,
1558 .maxauthsize = MD5_DIGEST_SIZE,
1560 .cra_init = spacc_aead_cra_init,
1561 .cra_exit = spacc_aead_cra_exit,
1565 .key_offs = DES_BLOCK_SIZE,
1566 .iv_offs = 0,
1567 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1568 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1569 .alg = {
1570 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1571 .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1572 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1573 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1574 CRYPTO_ALG_ASYNC |
1575 CRYPTO_ALG_KERN_DRIVER_ONLY,
1576 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1577 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1578 .cra_type = &crypto_aead_type,
1579 .cra_module = THIS_MODULE,
1580 .cra_aead = {
1581 .setkey = spacc_aead_setkey,
1582 .setauthsize = spacc_aead_setauthsize,
1583 .encrypt = spacc_aead_encrypt,
1584 .decrypt = spacc_aead_decrypt,
1585 .givencrypt = spacc_aead_givencrypt,
1586 .ivsize = DES3_EDE_BLOCK_SIZE,
1587 .maxauthsize = SHA1_DIGEST_SIZE,
1589 .cra_init = spacc_aead_cra_init,
1590 .cra_exit = spacc_aead_cra_exit,
1594 .key_offs = DES_BLOCK_SIZE,
1595 .iv_offs = 0,
1596 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1597 SPA_CTRL_HASH_ALG_SHA256 |
1598 SPA_CTRL_HASH_MODE_HMAC,
1599 .alg = {
1600 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1601 .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1602 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1603 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1604 CRYPTO_ALG_ASYNC |
1605 CRYPTO_ALG_KERN_DRIVER_ONLY,
1606 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1607 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1608 .cra_type = &crypto_aead_type,
1609 .cra_module = THIS_MODULE,
1610 .cra_aead = {
1611 .setkey = spacc_aead_setkey,
1612 .setauthsize = spacc_aead_setauthsize,
1613 .encrypt = spacc_aead_encrypt,
1614 .decrypt = spacc_aead_decrypt,
1615 .givencrypt = spacc_aead_givencrypt,
1616 .ivsize = DES3_EDE_BLOCK_SIZE,
1617 .maxauthsize = SHA256_DIGEST_SIZE,
1619 .cra_init = spacc_aead_cra_init,
1620 .cra_exit = spacc_aead_cra_exit,
1624 .key_offs = DES_BLOCK_SIZE,
1625 .iv_offs = 0,
1626 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1627 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1628 .alg = {
1629 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1630 .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1631 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1632 .cra_flags = CRYPTO_ALG_TYPE_AEAD |
1633 CRYPTO_ALG_ASYNC |
1634 CRYPTO_ALG_KERN_DRIVER_ONLY,
1635 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1636 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1637 .cra_type = &crypto_aead_type,
1638 .cra_module = THIS_MODULE,
1639 .cra_aead = {
1640 .setkey = spacc_aead_setkey,
1641 .setauthsize = spacc_aead_setauthsize,
1642 .encrypt = spacc_aead_encrypt,
1643 .decrypt = spacc_aead_decrypt,
1644 .givencrypt = spacc_aead_givencrypt,
1645 .ivsize = DES3_EDE_BLOCK_SIZE,
1646 .maxauthsize = MD5_DIGEST_SIZE,
1648 .cra_init = spacc_aead_cra_init,
1649 .cra_exit = spacc_aead_cra_exit,
1654 static struct spacc_alg l2_engine_algs[] = {
1656 .key_offs = 0,
1657 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1658 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1659 SPA_CTRL_CIPH_MODE_F8,
1660 .alg = {
1661 .cra_name = "f8(kasumi)",
1662 .cra_driver_name = "f8-kasumi-picoxcell",
1663 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1664 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1665 CRYPTO_ALG_ASYNC |
1666 CRYPTO_ALG_KERN_DRIVER_ONLY,
1667 .cra_blocksize = 8,
1668 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1669 .cra_type = &crypto_ablkcipher_type,
1670 .cra_module = THIS_MODULE,
1671 .cra_ablkcipher = {
1672 .setkey = spacc_kasumi_f8_setkey,
1673 .encrypt = spacc_ablk_encrypt,
1674 .decrypt = spacc_ablk_decrypt,
1675 .min_keysize = 16,
1676 .max_keysize = 16,
1677 .ivsize = 8,
1679 .cra_init = spacc_ablk_cra_init,
1680 .cra_exit = spacc_ablk_cra_exit,
1685 #ifdef CONFIG_OF
1686 static const struct of_device_id spacc_of_id_table[] = {
1687 { .compatible = "picochip,spacc-ipsec" },
1688 { .compatible = "picochip,spacc-l2" },
1691 #else /* CONFIG_OF */
1692 #define spacc_of_id_table NULL
1693 #endif /* CONFIG_OF */
1695 static bool spacc_is_compatible(struct platform_device *pdev,
1696 const char *spacc_type)
1698 const struct platform_device_id *platid = platform_get_device_id(pdev);
1700 if (platid && !strcmp(platid->name, spacc_type))
1701 return true;
1703 #ifdef CONFIG_OF
1704 if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1705 return true;
1706 #endif /* CONFIG_OF */
1708 return false;
1711 static int __devinit spacc_probe(struct platform_device *pdev)
1713 int i, err, ret = -EINVAL;
1714 struct resource *mem, *irq;
1715 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1716 GFP_KERNEL);
1717 if (!engine)
1718 return -ENOMEM;
1720 if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1721 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1722 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1723 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1724 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1725 engine->algs = ipsec_engine_algs;
1726 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1727 } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1728 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1729 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1730 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1731 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1732 engine->algs = l2_engine_algs;
1733 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1734 } else {
1735 return -EINVAL;
1738 engine->name = dev_name(&pdev->dev);
1740 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1741 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1742 if (!mem || !irq) {
1743 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1744 return -ENXIO;
1747 if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1748 engine->name))
1749 return -ENOMEM;
1751 engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1752 if (!engine->regs) {
1753 dev_err(&pdev->dev, "memory map failed\n");
1754 return -ENOMEM;
1757 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1758 engine->name, engine)) {
1759 dev_err(engine->dev, "failed to request IRQ\n");
1760 return -EBUSY;
1763 engine->dev = &pdev->dev;
1764 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1765 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1767 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1768 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1769 if (!engine->req_pool)
1770 return -ENOMEM;
1772 spin_lock_init(&engine->hw_lock);
1774 engine->clk = clk_get(&pdev->dev, "ref");
1775 if (IS_ERR(engine->clk)) {
1776 dev_info(&pdev->dev, "clk unavailable\n");
1777 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1778 return PTR_ERR(engine->clk);
1781 if (clk_enable(engine->clk)) {
1782 dev_info(&pdev->dev, "unable to enable clk\n");
1783 clk_put(engine->clk);
1784 return -EIO;
1787 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788 if (err) {
1789 clk_disable(engine->clk);
1790 clk_put(engine->clk);
1791 return err;
1796 * Use an IRQ threshold of 50% as a default. This seems to be a
1797 * reasonable trade off of latency against throughput but can be
1798 * changed at runtime.
1800 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1803 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1804 * only submit a new packet for processing when we complete another in
1805 * the queue. This minimizes time spent in the interrupt handler.
1807 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1808 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1809 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1810 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1812 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1813 (unsigned long)engine);
1815 INIT_LIST_HEAD(&engine->pending);
1816 INIT_LIST_HEAD(&engine->completed);
1817 INIT_LIST_HEAD(&engine->in_progress);
1818 engine->in_flight = 0;
1819 tasklet_init(&engine->complete, spacc_spacc_complete,
1820 (unsigned long)engine);
1822 platform_set_drvdata(pdev, engine);
1824 INIT_LIST_HEAD(&engine->registered_algs);
1825 for (i = 0; i < engine->num_algs; ++i) {
1826 engine->algs[i].engine = engine;
1827 err = crypto_register_alg(&engine->algs[i].alg);
1828 if (!err) {
1829 list_add_tail(&engine->algs[i].entry,
1830 &engine->registered_algs);
1831 ret = 0;
1833 if (err)
1834 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1835 engine->algs[i].alg.cra_name);
1836 else
1837 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1838 engine->algs[i].alg.cra_name);
1841 return ret;
1844 static int __devexit spacc_remove(struct platform_device *pdev)
1846 struct spacc_alg *alg, *next;
1847 struct spacc_engine *engine = platform_get_drvdata(pdev);
1849 del_timer_sync(&engine->packet_timeout);
1850 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1852 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1853 list_del(&alg->entry);
1854 crypto_unregister_alg(&alg->alg);
1857 clk_disable(engine->clk);
1858 clk_put(engine->clk);
1860 return 0;
1863 static const struct platform_device_id spacc_id_table[] = {
1864 { "picochip,spacc-ipsec", },
1865 { "picochip,spacc-l2", },
1868 static struct platform_driver spacc_driver = {
1869 .probe = spacc_probe,
1870 .remove = __devexit_p(spacc_remove),
1871 .driver = {
1872 .name = "picochip,spacc",
1873 #ifdef CONFIG_PM
1874 .pm = &spacc_pm_ops,
1875 #endif /* CONFIG_PM */
1876 .of_match_table = spacc_of_id_table,
1878 .id_table = spacc_id_table,
1881 module_platform_driver(spacc_driver);
1883 MODULE_LICENSE("GPL");
1884 MODULE_AUTHOR("Jamie Iles");