Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / edac / sb_edac.c
blob5715b7c2c5177a6c76ed732fb6f20de9b7578220
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
27 #include "edac_core.h"
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.0.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
41 * Debug macros
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
56 * sbridge Memory Controller Registers
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development process. This table should be
62 * moved to pci_id.h when submitted upstream
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
90 #define MAX_SAD ARRAY_SIZE(dram_rule)
92 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
97 static char *get_dram_attr(u32 reg)
99 switch(DRAM_ATTR(reg)) {
100 case 0:
101 return "DRAM";
102 case 1:
103 return "MMCFG";
104 case 2:
105 return "NXM";
106 default:
107 return "unknown";
111 static const u32 interleave_list[] = {
112 0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
115 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
117 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
126 static inline int sad_pkg(u32 reg, int interleave)
128 switch (interleave) {
129 case 0:
130 return SAD_PKG0(reg);
131 case 1:
132 return SAD_PKG1(reg);
133 case 2:
134 return SAD_PKG2(reg);
135 case 3:
136 return SAD_PKG3(reg);
137 case 4:
138 return SAD_PKG4(reg);
139 case 5:
140 return SAD_PKG5(reg);
141 case 6:
142 return SAD_PKG6(reg);
143 case 7:
144 return SAD_PKG7(reg);
145 default:
146 return -EINVAL;
150 /* Devices 12 Function 7 */
152 #define TOLM 0x80
153 #define TOHM 0x84
155 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
158 /* Device 13 Function 6 */
160 #define SAD_TARGET 0xf0
162 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
164 #define SAD_CONTROL 0xf4
166 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
168 /* Device 14 function 0 */
170 static const u32 tad_dram_rule[] = {
171 0x40, 0x44, 0x48, 0x4c,
172 0x50, 0x54, 0x58, 0x5c,
173 0x60, 0x64, 0x68, 0x6c,
175 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
177 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
185 /* Device 15, function 0 */
187 #define MCMTR 0x7c
189 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
193 /* Device 15, function 1 */
195 #define RASENABLES 0xac
196 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
198 /* Device 15, functions 2-5 */
200 static const int mtr_regs[] = {
201 0x80, 0x84, 0x88,
204 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
210 static const u32 tad_ch_nilv_offset[] = {
211 0x90, 0x94, 0x98, 0x9c,
212 0xa0, 0xa4, 0xa8, 0xac,
213 0xb0, 0xb4, 0xb8, 0xbc,
215 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
218 static const u32 rir_way_limit[] = {
219 0x108, 0x10c, 0x110, 0x114, 0x118,
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
223 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
227 #define MAX_RIR_WAY 8
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
237 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
240 /* Device 16, functions 2-7 */
243 * FIXME: Implement the error count reads directly
246 static const u32 correrrcnt[] = {
247 0x104, 0x108, 0x10c, 0x110,
250 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
255 static const u32 correrrthrsld[] = {
256 0x11c, 0x120, 0x124, 0x128,
259 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
263 /* Device 17, function 0 */
265 #define RANK_CFG_A 0x0328
267 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
270 * sbridge structs
273 #define NUM_CHANNELS 4
274 #define MAX_DIMMS 3 /* Max DIMMS per channel */
276 struct sbridge_info {
277 u32 mcmtr;
280 struct sbridge_channel {
281 u32 ranks;
282 u32 dimms;
285 struct pci_id_descr {
286 int dev;
287 int func;
288 int dev_id;
289 int optional;
292 struct pci_id_table {
293 const struct pci_id_descr *descr;
294 int n_devs;
297 struct sbridge_dev {
298 struct list_head list;
299 u8 bus, mc;
300 u8 node_id, source_id;
301 struct pci_dev **pdev;
302 int n_devs;
303 struct mem_ctl_info *mci;
306 struct sbridge_pvt {
307 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
308 struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
309 struct pci_dev *pci_br;
310 struct pci_dev *pci_tad[NUM_CHANNELS];
312 struct sbridge_dev *sbridge_dev;
314 struct sbridge_info info;
315 struct sbridge_channel channel[NUM_CHANNELS];
317 /* Memory type detection */
318 bool is_mirrored, is_lockstep, is_close_pg;
320 /* Fifo double buffers */
321 struct mce mce_entry[MCE_LOG_LEN];
322 struct mce mce_outentry[MCE_LOG_LEN];
324 /* Fifo in/out counters */
325 unsigned mce_in, mce_out;
327 /* Count indicator to show errors not got */
328 unsigned mce_overrun;
330 /* Memory description */
331 u64 tolm, tohm;
334 #define PCI_DESCR(device, function, device_id) \
335 .dev = (device), \
336 .func = (function), \
337 .dev_id = (device_id)
339 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340 /* Processor Home Agent */
341 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
343 /* Memory controller */
344 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
345 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
346 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
347 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
348 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
349 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
350 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
352 /* System Address Decoder */
353 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
354 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
356 /* Broadcast Registers */
357 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
360 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363 {0,} /* 0 terminated list. */
367 * pci_device_id table for which devices we are looking for
369 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371 {0,} /* 0 terminated list. */
375 /****************************************************************************
376 Ancillary status routines
377 ****************************************************************************/
379 static inline int numrank(u32 mtr)
381 int ranks = (1 << RANK_CNT_BITS(mtr));
383 if (ranks > 4) {
384 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
385 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 return -EINVAL;
389 return ranks;
392 static inline int numrow(u32 mtr)
394 int rows = (RANK_WIDTH_BITS(mtr) + 12);
396 if (rows < 13 || rows > 18) {
397 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
398 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 return -EINVAL;
402 return 1 << rows;
405 static inline int numcol(u32 mtr)
407 int cols = (COL_WIDTH_BITS(mtr) + 10);
409 if (cols > 12) {
410 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
411 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 return -EINVAL;
415 return 1 << cols;
418 static struct sbridge_dev *get_sbridge_dev(u8 bus)
420 struct sbridge_dev *sbridge_dev;
422 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423 if (sbridge_dev->bus == bus)
424 return sbridge_dev;
427 return NULL;
430 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431 const struct pci_id_table *table)
433 struct sbridge_dev *sbridge_dev;
435 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436 if (!sbridge_dev)
437 return NULL;
439 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440 GFP_KERNEL);
441 if (!sbridge_dev->pdev) {
442 kfree(sbridge_dev);
443 return NULL;
446 sbridge_dev->bus = bus;
447 sbridge_dev->n_devs = table->n_devs;
448 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
450 return sbridge_dev;
453 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
455 list_del(&sbridge_dev->list);
456 kfree(sbridge_dev->pdev);
457 kfree(sbridge_dev);
460 /****************************************************************************
461 Memory check routines
462 ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464 unsigned func)
466 struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467 int i;
469 if (!sbridge_dev)
470 return NULL;
472 for (i = 0; i < sbridge_dev->n_devs; i++) {
473 if (!sbridge_dev->pdev[i])
474 continue;
476 if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477 PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
479 bus, slot, func, sbridge_dev->pdev[i]);
480 return sbridge_dev->pdev[i];
484 return NULL;
488 * check_if_ecc_is_active() - Checks if ECC is active
489 * bus: Device bus
491 static int check_if_ecc_is_active(const u8 bus)
493 struct pci_dev *pdev = NULL;
494 u32 mcmtr;
496 pdev = get_pdev_slot_func(bus, 15, 0);
497 if (!pdev) {
498 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499 "%2x.%02d.%d!!!\n",
500 bus, 15, 0);
501 return -ENODEV;
504 pci_read_config_dword(pdev, MCMTR, &mcmtr);
505 if (!IS_ECC_ENABLED(mcmtr)) {
506 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507 return -ENODEV;
509 return 0;
512 static int get_dimm_config(struct mem_ctl_info *mci)
514 struct sbridge_pvt *pvt = mci->pvt_info;
515 struct dimm_info *dimm;
516 unsigned i, j, banks, ranks, rows, cols, npages;
517 u64 size;
518 u32 reg;
519 enum edac_type mode;
520 enum mem_type mtype;
522 pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
523 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
525 pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
526 pvt->sbridge_dev->node_id = NODE_ID(reg);
527 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
528 pvt->sbridge_dev->mc,
529 pvt->sbridge_dev->node_id,
530 pvt->sbridge_dev->source_id);
532 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
533 if (IS_MIRROR_ENABLED(reg)) {
534 edac_dbg(0, "Memory mirror is enabled\n");
535 pvt->is_mirrored = true;
536 } else {
537 edac_dbg(0, "Memory mirror is disabled\n");
538 pvt->is_mirrored = false;
541 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
542 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
543 edac_dbg(0, "Lockstep is enabled\n");
544 mode = EDAC_S8ECD8ED;
545 pvt->is_lockstep = true;
546 } else {
547 edac_dbg(0, "Lockstep is disabled\n");
548 mode = EDAC_S4ECD4ED;
549 pvt->is_lockstep = false;
551 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
552 edac_dbg(0, "address map is on closed page mode\n");
553 pvt->is_close_pg = true;
554 } else {
555 edac_dbg(0, "address map is on open page mode\n");
556 pvt->is_close_pg = false;
559 pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
560 if (IS_RDIMM_ENABLED(reg)) {
561 /* FIXME: Can also be LRDIMM */
562 edac_dbg(0, "Memory is registered\n");
563 mtype = MEM_RDDR3;
564 } else {
565 edac_dbg(0, "Memory is unregistered\n");
566 mtype = MEM_DDR3;
569 /* On all supported DDR3 DIMM types, there are 8 banks available */
570 banks = 8;
572 for (i = 0; i < NUM_CHANNELS; i++) {
573 u32 mtr;
575 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
576 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
577 i, j, 0);
578 pci_read_config_dword(pvt->pci_tad[i],
579 mtr_regs[j], &mtr);
580 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
581 if (IS_DIMM_PRESENT(mtr)) {
582 pvt->channel[i].dimms++;
584 ranks = numrank(mtr);
585 rows = numrow(mtr);
586 cols = numcol(mtr);
588 /* DDR3 has 8 I/O banks */
589 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
590 npages = MiB_TO_PAGES(size);
592 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
593 pvt->sbridge_dev->mc, i, j,
594 size, npages,
595 banks, ranks, rows, cols);
597 dimm->nr_pages = npages;
598 dimm->grain = 32;
599 dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
600 dimm->mtype = mtype;
601 dimm->edac_mode = mode;
602 snprintf(dimm->label, sizeof(dimm->label),
603 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
604 pvt->sbridge_dev->source_id, i, j);
609 return 0;
612 static void get_memory_layout(const struct mem_ctl_info *mci)
614 struct sbridge_pvt *pvt = mci->pvt_info;
615 int i, j, k, n_sads, n_tads, sad_interl;
616 u32 reg;
617 u64 limit, prv = 0;
618 u64 tmp_mb;
619 u32 mb, kb;
620 u32 rir_way;
623 * Step 1) Get TOLM/TOHM ranges
626 /* Address range is 32:28 */
627 pci_read_config_dword(pvt->pci_sad1, TOLM,
628 &reg);
629 pvt->tolm = GET_TOLM(reg);
630 tmp_mb = (1 + pvt->tolm) >> 20;
632 mb = div_u64_rem(tmp_mb, 1000, &kb);
633 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
635 /* Address range is already 45:25 */
636 pci_read_config_dword(pvt->pci_sad1, TOHM,
637 &reg);
638 pvt->tohm = GET_TOHM(reg);
639 tmp_mb = (1 + pvt->tohm) >> 20;
641 mb = div_u64_rem(tmp_mb, 1000, &kb);
642 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
645 * Step 2) Get SAD range and SAD Interleave list
646 * TAD registers contain the interleave wayness. However, it
647 * seems simpler to just discover it indirectly, with the
648 * algorithm bellow.
650 prv = 0;
651 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
652 /* SAD_LIMIT Address range is 45:26 */
653 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
654 &reg);
655 limit = SAD_LIMIT(reg);
657 if (!DRAM_RULE_ENABLE(reg))
658 continue;
660 if (limit <= prv)
661 break;
663 tmp_mb = (limit + 1) >> 20;
664 mb = div_u64_rem(tmp_mb, 1000, &kb);
665 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
666 n_sads,
667 get_dram_attr(reg),
668 mb, kb,
669 ((u64)tmp_mb) << 20L,
670 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
671 reg);
672 prv = limit;
674 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
675 &reg);
676 sad_interl = sad_pkg(reg, 0);
677 for (j = 0; j < 8; j++) {
678 if (j > 0 && sad_interl == sad_pkg(reg, j))
679 break;
681 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
682 n_sads, j, sad_pkg(reg, j));
687 * Step 3) Get TAD range
689 prv = 0;
690 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
691 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
692 &reg);
693 limit = TAD_LIMIT(reg);
694 if (limit <= prv)
695 break;
696 tmp_mb = (limit + 1) >> 20;
698 mb = div_u64_rem(tmp_mb, 1000, &kb);
699 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
700 n_tads, mb, kb,
701 ((u64)tmp_mb) << 20L,
702 (u32)TAD_SOCK(reg),
703 (u32)TAD_CH(reg),
704 (u32)TAD_TGT0(reg),
705 (u32)TAD_TGT1(reg),
706 (u32)TAD_TGT2(reg),
707 (u32)TAD_TGT3(reg),
708 reg);
709 prv = limit;
713 * Step 4) Get TAD offsets, per each channel
715 for (i = 0; i < NUM_CHANNELS; i++) {
716 if (!pvt->channel[i].dimms)
717 continue;
718 for (j = 0; j < n_tads; j++) {
719 pci_read_config_dword(pvt->pci_tad[i],
720 tad_ch_nilv_offset[j],
721 &reg);
722 tmp_mb = TAD_OFFSET(reg) >> 20;
723 mb = div_u64_rem(tmp_mb, 1000, &kb);
724 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
725 i, j,
726 mb, kb,
727 ((u64)tmp_mb) << 20L,
728 reg);
733 * Step 6) Get RIR Wayness/Limit, per each channel
735 for (i = 0; i < NUM_CHANNELS; i++) {
736 if (!pvt->channel[i].dimms)
737 continue;
738 for (j = 0; j < MAX_RIR_RANGES; j++) {
739 pci_read_config_dword(pvt->pci_tad[i],
740 rir_way_limit[j],
741 &reg);
743 if (!IS_RIR_VALID(reg))
744 continue;
746 tmp_mb = RIR_LIMIT(reg) >> 20;
747 rir_way = 1 << RIR_WAY(reg);
748 mb = div_u64_rem(tmp_mb, 1000, &kb);
749 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
750 i, j,
751 mb, kb,
752 ((u64)tmp_mb) << 20L,
753 rir_way,
754 reg);
756 for (k = 0; k < rir_way; k++) {
757 pci_read_config_dword(pvt->pci_tad[i],
758 rir_offset[j][k],
759 &reg);
760 tmp_mb = RIR_OFFSET(reg) << 6;
762 mb = div_u64_rem(tmp_mb, 1000, &kb);
763 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
764 i, j, k,
765 mb, kb,
766 ((u64)tmp_mb) << 20L,
767 (u32)RIR_RNK_TGT(reg),
768 reg);
774 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
776 struct sbridge_dev *sbridge_dev;
778 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
779 if (sbridge_dev->node_id == node_id)
780 return sbridge_dev->mci;
782 return NULL;
785 static int get_memory_error_data(struct mem_ctl_info *mci,
786 u64 addr,
787 u8 *socket,
788 long *channel_mask,
789 u8 *rank,
790 char **area_type, char *msg)
792 struct mem_ctl_info *new_mci;
793 struct sbridge_pvt *pvt = mci->pvt_info;
794 int n_rir, n_sads, n_tads, sad_way, sck_xch;
795 int sad_interl, idx, base_ch;
796 int interleave_mode;
797 unsigned sad_interleave[MAX_INTERLEAVE];
798 u32 reg;
799 u8 ch_way,sck_way;
800 u32 tad_offset;
801 u32 rir_way;
802 u32 mb, kb;
803 u64 ch_addr, offset, limit, prv = 0;
807 * Step 0) Check if the address is at special memory ranges
808 * The check bellow is probably enough to fill all cases where
809 * the error is not inside a memory, except for the legacy
810 * range (e. g. VGA addresses). It is unlikely, however, that the
811 * memory controller would generate an error on that range.
813 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
814 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
815 return -EINVAL;
817 if (addr >= (u64)pvt->tohm) {
818 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
819 return -EINVAL;
823 * Step 1) Get socket
825 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
826 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
827 &reg);
829 if (!DRAM_RULE_ENABLE(reg))
830 continue;
832 limit = SAD_LIMIT(reg);
833 if (limit <= prv) {
834 sprintf(msg, "Can't discover the memory socket");
835 return -EINVAL;
837 if (addr <= limit)
838 break;
839 prv = limit;
841 if (n_sads == MAX_SAD) {
842 sprintf(msg, "Can't discover the memory socket");
843 return -EINVAL;
845 *area_type = get_dram_attr(reg);
846 interleave_mode = INTERLEAVE_MODE(reg);
848 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
849 &reg);
850 sad_interl = sad_pkg(reg, 0);
851 for (sad_way = 0; sad_way < 8; sad_way++) {
852 if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
853 break;
854 sad_interleave[sad_way] = sad_pkg(reg, sad_way);
855 edac_dbg(0, "SAD interleave #%d: %d\n",
856 sad_way, sad_interleave[sad_way]);
858 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
859 pvt->sbridge_dev->mc,
860 n_sads,
861 addr,
862 limit,
863 sad_way + 7,
864 interleave_mode ? "" : "XOR[18:16]");
865 if (interleave_mode)
866 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
867 else
868 idx = (addr >> 6) & 7;
869 switch (sad_way) {
870 case 1:
871 idx = 0;
872 break;
873 case 2:
874 idx = idx & 1;
875 break;
876 case 4:
877 idx = idx & 3;
878 break;
879 case 8:
880 break;
881 default:
882 sprintf(msg, "Can't discover socket interleave");
883 return -EINVAL;
885 *socket = sad_interleave[idx];
886 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
887 idx, sad_way, *socket);
890 * Move to the proper node structure, in order to access the
891 * right PCI registers
893 new_mci = get_mci_for_node_id(*socket);
894 if (!new_mci) {
895 sprintf(msg, "Struct for socket #%u wasn't initialized",
896 *socket);
897 return -EINVAL;
899 mci = new_mci;
900 pvt = mci->pvt_info;
903 * Step 2) Get memory channel
905 prv = 0;
906 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
907 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
908 &reg);
909 limit = TAD_LIMIT(reg);
910 if (limit <= prv) {
911 sprintf(msg, "Can't discover the memory channel");
912 return -EINVAL;
914 if (addr <= limit)
915 break;
916 prv = limit;
918 ch_way = TAD_CH(reg) + 1;
919 sck_way = TAD_SOCK(reg) + 1;
921 * FIXME: Is it right to always use channel 0 for offsets?
923 pci_read_config_dword(pvt->pci_tad[0],
924 tad_ch_nilv_offset[n_tads],
925 &tad_offset);
927 if (ch_way == 3)
928 idx = addr >> 6;
929 else
930 idx = addr >> (6 + sck_way);
931 idx = idx % ch_way;
934 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
936 switch (idx) {
937 case 0:
938 base_ch = TAD_TGT0(reg);
939 break;
940 case 1:
941 base_ch = TAD_TGT1(reg);
942 break;
943 case 2:
944 base_ch = TAD_TGT2(reg);
945 break;
946 case 3:
947 base_ch = TAD_TGT3(reg);
948 break;
949 default:
950 sprintf(msg, "Can't discover the TAD target");
951 return -EINVAL;
953 *channel_mask = 1 << base_ch;
955 if (pvt->is_mirrored) {
956 *channel_mask |= 1 << ((base_ch + 2) % 4);
957 switch(ch_way) {
958 case 2:
959 case 4:
960 sck_xch = 1 << sck_way * (ch_way >> 1);
961 break;
962 default:
963 sprintf(msg, "Invalid mirror set. Can't decode addr");
964 return -EINVAL;
966 } else
967 sck_xch = (1 << sck_way) * ch_way;
969 if (pvt->is_lockstep)
970 *channel_mask |= 1 << ((base_ch + 1) % 4);
972 offset = TAD_OFFSET(tad_offset);
974 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
975 n_tads,
976 addr,
977 limit,
978 (u32)TAD_SOCK(reg),
979 ch_way,
980 offset,
981 idx,
982 base_ch,
983 *channel_mask);
985 /* Calculate channel address */
986 /* Remove the TAD offset */
988 if (offset > addr) {
989 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
990 offset, addr);
991 return -EINVAL;
993 addr -= offset;
994 /* Store the low bits [0:6] of the addr */
995 ch_addr = addr & 0x7f;
996 /* Remove socket wayness and remove 6 bits */
997 addr >>= 6;
998 addr = div_u64(addr, sck_xch);
999 #if 0
1000 /* Divide by channel way */
1001 addr = addr / ch_way;
1002 #endif
1003 /* Recover the last 6 bits */
1004 ch_addr |= addr << 6;
1007 * Step 3) Decode rank
1009 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1010 pci_read_config_dword(pvt->pci_tad[base_ch],
1011 rir_way_limit[n_rir],
1012 &reg);
1014 if (!IS_RIR_VALID(reg))
1015 continue;
1017 limit = RIR_LIMIT(reg);
1018 mb = div_u64_rem(limit >> 20, 1000, &kb);
1019 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1020 n_rir,
1021 mb, kb,
1022 limit,
1023 1 << RIR_WAY(reg));
1024 if (ch_addr <= limit)
1025 break;
1027 if (n_rir == MAX_RIR_RANGES) {
1028 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1029 ch_addr);
1030 return -EINVAL;
1032 rir_way = RIR_WAY(reg);
1033 if (pvt->is_close_pg)
1034 idx = (ch_addr >> 6);
1035 else
1036 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1037 idx %= 1 << rir_way;
1039 pci_read_config_dword(pvt->pci_tad[base_ch],
1040 rir_offset[n_rir][idx],
1041 &reg);
1042 *rank = RIR_RNK_TGT(reg);
1044 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1045 n_rir,
1046 ch_addr,
1047 limit,
1048 rir_way,
1049 idx);
1051 return 0;
1054 /****************************************************************************
1055 Device initialization routines: put/get, init/exit
1056 ****************************************************************************/
1059 * sbridge_put_all_devices 'put' all the devices that we have
1060 * reserved via 'get'
1062 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1064 int i;
1066 edac_dbg(0, "\n");
1067 for (i = 0; i < sbridge_dev->n_devs; i++) {
1068 struct pci_dev *pdev = sbridge_dev->pdev[i];
1069 if (!pdev)
1070 continue;
1071 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1072 pdev->bus->number,
1073 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1074 pci_dev_put(pdev);
1078 static void sbridge_put_all_devices(void)
1080 struct sbridge_dev *sbridge_dev, *tmp;
1082 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1083 sbridge_put_devices(sbridge_dev);
1084 free_sbridge_dev(sbridge_dev);
1089 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1090 * device/functions we want to reference for this driver
1092 * Need to 'get' device 16 func 1 and func 2
1094 static int sbridge_get_onedevice(struct pci_dev **prev,
1095 u8 *num_mc,
1096 const struct pci_id_table *table,
1097 const unsigned devno)
1099 struct sbridge_dev *sbridge_dev;
1100 const struct pci_id_descr *dev_descr = &table->descr[devno];
1102 struct pci_dev *pdev = NULL;
1103 u8 bus = 0;
1105 sbridge_printk(KERN_INFO,
1106 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1107 dev_descr->dev, dev_descr->func,
1108 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1110 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1111 dev_descr->dev_id, *prev);
1113 if (!pdev) {
1114 if (*prev) {
1115 *prev = pdev;
1116 return 0;
1119 if (dev_descr->optional)
1120 return 0;
1122 if (devno == 0)
1123 return -ENODEV;
1125 sbridge_printk(KERN_INFO,
1126 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1127 dev_descr->dev, dev_descr->func,
1128 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1130 /* End of list, leave */
1131 return -ENODEV;
1133 bus = pdev->bus->number;
1135 sbridge_dev = get_sbridge_dev(bus);
1136 if (!sbridge_dev) {
1137 sbridge_dev = alloc_sbridge_dev(bus, table);
1138 if (!sbridge_dev) {
1139 pci_dev_put(pdev);
1140 return -ENOMEM;
1142 (*num_mc)++;
1145 if (sbridge_dev->pdev[devno]) {
1146 sbridge_printk(KERN_ERR,
1147 "Duplicated device for "
1148 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1149 bus, dev_descr->dev, dev_descr->func,
1150 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1151 pci_dev_put(pdev);
1152 return -ENODEV;
1155 sbridge_dev->pdev[devno] = pdev;
1157 /* Sanity check */
1158 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1159 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1160 sbridge_printk(KERN_ERR,
1161 "Device PCI ID %04x:%04x "
1162 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1163 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1164 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1165 bus, dev_descr->dev, dev_descr->func);
1166 return -ENODEV;
1169 /* Be sure that the device is enabled */
1170 if (unlikely(pci_enable_device(pdev) < 0)) {
1171 sbridge_printk(KERN_ERR,
1172 "Couldn't enable "
1173 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1174 bus, dev_descr->dev, dev_descr->func,
1175 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1176 return -ENODEV;
1179 edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1180 bus, dev_descr->dev, dev_descr->func,
1181 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1184 * As stated on drivers/pci/search.c, the reference count for
1185 * @from is always decremented if it is not %NULL. So, as we need
1186 * to get all devices up to null, we need to do a get for the device
1188 pci_dev_get(pdev);
1190 *prev = pdev;
1192 return 0;
1195 static int sbridge_get_all_devices(u8 *num_mc)
1197 int i, rc;
1198 struct pci_dev *pdev = NULL;
1199 const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1201 while (table && table->descr) {
1202 for (i = 0; i < table->n_devs; i++) {
1203 pdev = NULL;
1204 do {
1205 rc = sbridge_get_onedevice(&pdev, num_mc,
1206 table, i);
1207 if (rc < 0) {
1208 if (i == 0) {
1209 i = table->n_devs;
1210 break;
1212 sbridge_put_all_devices();
1213 return -ENODEV;
1215 } while (pdev);
1217 table++;
1220 return 0;
1223 static int mci_bind_devs(struct mem_ctl_info *mci,
1224 struct sbridge_dev *sbridge_dev)
1226 struct sbridge_pvt *pvt = mci->pvt_info;
1227 struct pci_dev *pdev;
1228 int i, func, slot;
1230 for (i = 0; i < sbridge_dev->n_devs; i++) {
1231 pdev = sbridge_dev->pdev[i];
1232 if (!pdev)
1233 continue;
1234 slot = PCI_SLOT(pdev->devfn);
1235 func = PCI_FUNC(pdev->devfn);
1236 switch (slot) {
1237 case 12:
1238 switch (func) {
1239 case 6:
1240 pvt->pci_sad0 = pdev;
1241 break;
1242 case 7:
1243 pvt->pci_sad1 = pdev;
1244 break;
1245 default:
1246 goto error;
1248 break;
1249 case 13:
1250 switch (func) {
1251 case 6:
1252 pvt->pci_br = pdev;
1253 break;
1254 default:
1255 goto error;
1257 break;
1258 case 14:
1259 switch (func) {
1260 case 0:
1261 pvt->pci_ha0 = pdev;
1262 break;
1263 default:
1264 goto error;
1266 break;
1267 case 15:
1268 switch (func) {
1269 case 0:
1270 pvt->pci_ta = pdev;
1271 break;
1272 case 1:
1273 pvt->pci_ras = pdev;
1274 break;
1275 case 2:
1276 case 3:
1277 case 4:
1278 case 5:
1279 pvt->pci_tad[func - 2] = pdev;
1280 break;
1281 default:
1282 goto error;
1284 break;
1285 case 17:
1286 switch (func) {
1287 case 0:
1288 pvt->pci_ddrio = pdev;
1289 break;
1290 default:
1291 goto error;
1293 break;
1294 default:
1295 goto error;
1298 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1299 sbridge_dev->bus,
1300 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1301 pdev);
1304 /* Check if everything were registered */
1305 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1306 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
1307 !pvt->pci_ddrio)
1308 goto enodev;
1310 for (i = 0; i < NUM_CHANNELS; i++) {
1311 if (!pvt->pci_tad[i])
1312 goto enodev;
1314 return 0;
1316 enodev:
1317 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1318 return -ENODEV;
1320 error:
1321 sbridge_printk(KERN_ERR, "Device %d, function %d "
1322 "is out of the expected range\n",
1323 slot, func);
1324 return -EINVAL;
1327 /****************************************************************************
1328 Error check routines
1329 ****************************************************************************/
1332 * While Sandy Bridge has error count registers, SMI BIOS read values from
1333 * and resets the counters. So, they are not reliable for the OS to read
1334 * from them. So, we have no option but to just trust on whatever MCE is
1335 * telling us about the errors.
1337 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1338 const struct mce *m)
1340 struct mem_ctl_info *new_mci;
1341 struct sbridge_pvt *pvt = mci->pvt_info;
1342 enum hw_event_mc_err_type tp_event;
1343 char *type, *optype, msg[256];
1344 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1345 bool overflow = GET_BITFIELD(m->status, 62, 62);
1346 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1347 bool recoverable = GET_BITFIELD(m->status, 56, 56);
1348 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1349 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1350 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1351 u32 channel = GET_BITFIELD(m->status, 0, 3);
1352 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1353 long channel_mask, first_channel;
1354 u8 rank, socket;
1355 int rc, dimm;
1356 char *area_type = NULL;
1358 if (uncorrected_error) {
1359 if (ripv) {
1360 type = "FATAL";
1361 tp_event = HW_EVENT_ERR_FATAL;
1362 } else {
1363 type = "NON_FATAL";
1364 tp_event = HW_EVENT_ERR_UNCORRECTED;
1366 } else {
1367 type = "CORRECTED";
1368 tp_event = HW_EVENT_ERR_CORRECTED;
1372 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1373 * memory errors should fit in this mask:
1374 * 000f 0000 1mmm cccc (binary)
1375 * where:
1376 * f = Correction Report Filtering Bit. If 1, subsequent errors
1377 * won't be shown
1378 * mmm = error type
1379 * cccc = channel
1380 * If the mask doesn't match, report an error to the parsing logic
1382 if (! ((errcode & 0xef80) == 0x80)) {
1383 optype = "Can't parse: it is not a mem";
1384 } else {
1385 switch (optypenum) {
1386 case 0:
1387 optype = "generic undef request error";
1388 break;
1389 case 1:
1390 optype = "memory read error";
1391 break;
1392 case 2:
1393 optype = "memory write error";
1394 break;
1395 case 3:
1396 optype = "addr/cmd error";
1397 break;
1398 case 4:
1399 optype = "memory scrubbing error";
1400 break;
1401 default:
1402 optype = "reserved";
1403 break;
1407 rc = get_memory_error_data(mci, m->addr, &socket,
1408 &channel_mask, &rank, &area_type, msg);
1409 if (rc < 0)
1410 goto err_parsing;
1411 new_mci = get_mci_for_node_id(socket);
1412 if (!new_mci) {
1413 strcpy(msg, "Error: socket got corrupted!");
1414 goto err_parsing;
1416 mci = new_mci;
1417 pvt = mci->pvt_info;
1419 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1421 if (rank < 4)
1422 dimm = 0;
1423 else if (rank < 8)
1424 dimm = 1;
1425 else
1426 dimm = 2;
1430 * FIXME: On some memory configurations (mirror, lockstep), the
1431 * Memory Controller can't point the error to a single DIMM. The
1432 * EDAC core should be handling the channel mask, in order to point
1433 * to the group of dimm's where the error may be happening.
1435 snprintf(msg, sizeof(msg),
1436 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1437 overflow ? " OVERFLOW" : "",
1438 (uncorrected_error && recoverable) ? " recoverable" : "",
1439 area_type,
1440 mscod, errcode,
1441 socket,
1442 channel_mask,
1443 rank);
1445 edac_dbg(0, "%s\n", msg);
1447 /* FIXME: need support for channel mask */
1449 /* Call the helper to output message */
1450 edac_mc_handle_error(tp_event, mci, core_err_cnt,
1451 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1452 channel, dimm, -1,
1453 optype, msg);
1454 return;
1455 err_parsing:
1456 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1457 -1, -1, -1,
1458 msg, "");
1463 * sbridge_check_error Retrieve and process errors reported by the
1464 * hardware. Called by the Core module.
1466 static void sbridge_check_error(struct mem_ctl_info *mci)
1468 struct sbridge_pvt *pvt = mci->pvt_info;
1469 int i;
1470 unsigned count = 0;
1471 struct mce *m;
1474 * MCE first step: Copy all mce errors into a temporary buffer
1475 * We use a double buffering here, to reduce the risk of
1476 * loosing an error.
1478 smp_rmb();
1479 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1480 % MCE_LOG_LEN;
1481 if (!count)
1482 return;
1484 m = pvt->mce_outentry;
1485 if (pvt->mce_in + count > MCE_LOG_LEN) {
1486 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1488 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1489 smp_wmb();
1490 pvt->mce_in = 0;
1491 count -= l;
1492 m += l;
1494 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1495 smp_wmb();
1496 pvt->mce_in += count;
1498 smp_rmb();
1499 if (pvt->mce_overrun) {
1500 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1501 pvt->mce_overrun);
1502 smp_wmb();
1503 pvt->mce_overrun = 0;
1507 * MCE second step: parse errors and display
1509 for (i = 0; i < count; i++)
1510 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1514 * sbridge_mce_check_error Replicates mcelog routine to get errors
1515 * This routine simply queues mcelog errors, and
1516 * return. The error itself should be handled later
1517 * by sbridge_check_error.
1518 * WARNING: As this routine should be called at NMI time, extra care should
1519 * be taken to avoid deadlocks, and to be as fast as possible.
1521 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1522 void *data)
1524 struct mce *mce = (struct mce *)data;
1525 struct mem_ctl_info *mci;
1526 struct sbridge_pvt *pvt;
1528 mci = get_mci_for_node_id(mce->socketid);
1529 if (!mci)
1530 return NOTIFY_BAD;
1531 pvt = mci->pvt_info;
1534 * Just let mcelog handle it if the error is
1535 * outside the memory controller. A memory error
1536 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1537 * bit 12 has an special meaning.
1539 if ((mce->status & 0xefff) >> 7 != 1)
1540 return NOTIFY_DONE;
1542 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1544 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1545 mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1546 printk("TSC %llx ", mce->tsc);
1547 printk("ADDR %llx ", mce->addr);
1548 printk("MISC %llx ", mce->misc);
1550 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1551 mce->cpuvendor, mce->cpuid, mce->time,
1552 mce->socketid, mce->apicid);
1554 /* Only handle if it is the right mc controller */
1555 if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1556 return NOTIFY_DONE;
1558 smp_rmb();
1559 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1560 smp_wmb();
1561 pvt->mce_overrun++;
1562 return NOTIFY_DONE;
1565 /* Copy memory error at the ringbuffer */
1566 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1567 smp_wmb();
1568 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1570 /* Handle fatal errors immediately */
1571 if (mce->mcgstatus & 1)
1572 sbridge_check_error(mci);
1574 /* Advice mcelog that the error were handled */
1575 return NOTIFY_STOP;
1578 static struct notifier_block sbridge_mce_dec = {
1579 .notifier_call = sbridge_mce_check_error,
1582 /****************************************************************************
1583 EDAC register/unregister logic
1584 ****************************************************************************/
1586 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1588 struct mem_ctl_info *mci = sbridge_dev->mci;
1589 struct sbridge_pvt *pvt;
1591 if (unlikely(!mci || !mci->pvt_info)) {
1592 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1594 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1595 return;
1598 pvt = mci->pvt_info;
1600 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1601 mci, &sbridge_dev->pdev[0]->dev);
1603 /* Remove MC sysfs nodes */
1604 edac_mc_del_mc(mci->pdev);
1606 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1607 kfree(mci->ctl_name);
1608 edac_mc_free(mci);
1609 sbridge_dev->mci = NULL;
1612 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1614 struct mem_ctl_info *mci;
1615 struct edac_mc_layer layers[2];
1616 struct sbridge_pvt *pvt;
1617 int rc;
1619 /* Check the number of active and not disabled channels */
1620 rc = check_if_ecc_is_active(sbridge_dev->bus);
1621 if (unlikely(rc < 0))
1622 return rc;
1624 /* allocate a new MC control structure */
1625 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1626 layers[0].size = NUM_CHANNELS;
1627 layers[0].is_virt_csrow = false;
1628 layers[1].type = EDAC_MC_LAYER_SLOT;
1629 layers[1].size = MAX_DIMMS;
1630 layers[1].is_virt_csrow = true;
1631 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1632 sizeof(*pvt));
1634 if (unlikely(!mci))
1635 return -ENOMEM;
1637 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1638 mci, &sbridge_dev->pdev[0]->dev);
1640 pvt = mci->pvt_info;
1641 memset(pvt, 0, sizeof(*pvt));
1643 /* Associate sbridge_dev and mci for future usage */
1644 pvt->sbridge_dev = sbridge_dev;
1645 sbridge_dev->mci = mci;
1647 mci->mtype_cap = MEM_FLAG_DDR3;
1648 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1649 mci->edac_cap = EDAC_FLAG_NONE;
1650 mci->mod_name = "sbridge_edac.c";
1651 mci->mod_ver = SBRIDGE_REVISION;
1652 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1653 mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1654 mci->ctl_page_to_phys = NULL;
1656 /* Set the function pointer to an actual operation function */
1657 mci->edac_check = sbridge_check_error;
1659 /* Store pci devices at mci for faster access */
1660 rc = mci_bind_devs(mci, sbridge_dev);
1661 if (unlikely(rc < 0))
1662 goto fail0;
1664 /* Get dimm basic config and the memory layout */
1665 get_dimm_config(mci);
1666 get_memory_layout(mci);
1668 /* record ptr to the generic device */
1669 mci->pdev = &sbridge_dev->pdev[0]->dev;
1671 /* add this new MC control structure to EDAC's list of MCs */
1672 if (unlikely(edac_mc_add_mc(mci))) {
1673 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1674 rc = -EINVAL;
1675 goto fail0;
1678 return 0;
1680 fail0:
1681 kfree(mci->ctl_name);
1682 edac_mc_free(mci);
1683 sbridge_dev->mci = NULL;
1684 return rc;
1688 * sbridge_probe Probe for ONE instance of device to see if it is
1689 * present.
1690 * return:
1691 * 0 for FOUND a device
1692 * < 0 for error code
1695 static int __devinit sbridge_probe(struct pci_dev *pdev,
1696 const struct pci_device_id *id)
1698 int rc;
1699 u8 mc, num_mc = 0;
1700 struct sbridge_dev *sbridge_dev;
1702 /* get the pci devices we want to reserve for our use */
1703 mutex_lock(&sbridge_edac_lock);
1706 * All memory controllers are allocated at the first pass.
1708 if (unlikely(probed >= 1)) {
1709 mutex_unlock(&sbridge_edac_lock);
1710 return -ENODEV;
1712 probed++;
1714 rc = sbridge_get_all_devices(&num_mc);
1715 if (unlikely(rc < 0))
1716 goto fail0;
1717 mc = 0;
1719 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1720 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1721 mc, mc + 1, num_mc);
1722 sbridge_dev->mc = mc++;
1723 rc = sbridge_register_mci(sbridge_dev);
1724 if (unlikely(rc < 0))
1725 goto fail1;
1728 sbridge_printk(KERN_INFO, "Driver loaded.\n");
1730 mutex_unlock(&sbridge_edac_lock);
1731 return 0;
1733 fail1:
1734 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1735 sbridge_unregister_mci(sbridge_dev);
1737 sbridge_put_all_devices();
1738 fail0:
1739 mutex_unlock(&sbridge_edac_lock);
1740 return rc;
1744 * sbridge_remove destructor for one instance of device
1747 static void __devexit sbridge_remove(struct pci_dev *pdev)
1749 struct sbridge_dev *sbridge_dev;
1751 edac_dbg(0, "\n");
1754 * we have a trouble here: pdev value for removal will be wrong, since
1755 * it will point to the X58 register used to detect that the machine
1756 * is a Nehalem or upper design. However, due to the way several PCI
1757 * devices are grouped together to provide MC functionality, we need
1758 * to use a different method for releasing the devices
1761 mutex_lock(&sbridge_edac_lock);
1763 if (unlikely(!probed)) {
1764 mutex_unlock(&sbridge_edac_lock);
1765 return;
1768 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1769 sbridge_unregister_mci(sbridge_dev);
1771 /* Release PCI resources */
1772 sbridge_put_all_devices();
1774 probed--;
1776 mutex_unlock(&sbridge_edac_lock);
1779 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1782 * sbridge_driver pci_driver structure for this module
1785 static struct pci_driver sbridge_driver = {
1786 .name = "sbridge_edac",
1787 .probe = sbridge_probe,
1788 .remove = __devexit_p(sbridge_remove),
1789 .id_table = sbridge_pci_tbl,
1793 * sbridge_init Module entry function
1794 * Try to initialize this module for its devices
1796 static int __init sbridge_init(void)
1798 int pci_rc;
1800 edac_dbg(2, "\n");
1802 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1803 opstate_init();
1805 pci_rc = pci_register_driver(&sbridge_driver);
1807 if (pci_rc >= 0) {
1808 mce_register_decode_chain(&sbridge_mce_dec);
1809 return 0;
1812 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1813 pci_rc);
1815 return pci_rc;
1819 * sbridge_exit() Module exit function
1820 * Unregister the driver
1822 static void __exit sbridge_exit(void)
1824 edac_dbg(2, "\n");
1825 pci_unregister_driver(&sbridge_driver);
1826 mce_unregister_decode_chain(&sbridge_mce_dec);
1829 module_init(sbridge_init);
1830 module_exit(sbridge_exit);
1832 module_param(edac_op_state, int, 0444);
1833 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1835 MODULE_LICENSE("GPL");
1836 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1837 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1838 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1839 SBRIDGE_REVISION);