2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address
;
77 __le16 transfer_status
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page
*pages
[AR_BUFFERS
];
98 struct descriptor
*descriptors
;
99 dma_addr_t descriptors_bus
;
101 unsigned int last_buffer_index
;
103 struct tasklet_struct tasklet
;
108 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
109 struct descriptor
*d
,
110 struct descriptor
*last
);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer
{
117 struct list_head list
;
118 dma_addr_t buffer_bus
;
121 struct descriptor buffer
[0];
125 struct fw_ohci
*ohci
;
127 int total_allocation
;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
137 struct list_head buffer_list
;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer
*buffer_tail
;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor
*last
;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor
*prev
;
157 descriptor_callback_t callback
;
159 struct tasklet_struct tasklet
;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct fw_iso_context base
;
171 struct context context
;
173 size_t header_length
;
174 unsigned long flushing_completions
;
182 #define CONFIG_ROM_SIZE 1024
187 __iomem
char *registers
;
190 int request_generation
; /* for timestamping incoming requests */
192 unsigned int pri_req_max
;
194 bool bus_time_running
;
196 bool csr_state_setclear_abdicate
;
200 * Spinlock for accessing fw_ohci data. Never call out of
201 * this driver with this lock held.
205 struct mutex phy_reg_mutex
;
208 dma_addr_t misc_buffer_bus
;
210 struct ar_context ar_request_ctx
;
211 struct ar_context ar_response_ctx
;
212 struct context at_request_ctx
;
213 struct context at_response_ctx
;
215 u32 it_context_support
;
216 u32 it_context_mask
; /* unoccupied IT contexts */
217 struct iso_context
*it_context_list
;
218 u64 ir_context_channels
; /* unoccupied channels */
219 u32 ir_context_support
;
220 u32 ir_context_mask
; /* unoccupied IR contexts */
221 struct iso_context
*ir_context_list
;
222 u64 mc_channels
; /* channels in use by the multichannel IR context */
226 dma_addr_t config_rom_bus
;
227 __be32
*next_config_rom
;
228 dma_addr_t next_config_rom_bus
;
232 dma_addr_t self_id_bus
;
233 struct work_struct bus_reset_work
;
235 u32 self_id_buffer
[512];
238 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
240 return container_of(card
, struct fw_ohci
, card
);
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_TCODE_PHY_PACKET 0x0e
263 #define OHCI_VERSION_1_1 0x010010
265 static char ohci_driver_name
[] = KBUILD_MODNAME
;
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
275 #define QUIRK_CYCLE_TIMER 1
276 #define QUIRK_RESET_PACKET 2
277 #define QUIRK_BE_HEADERS 4
278 #define QUIRK_NO_1394A 8
279 #define QUIRK_NO_MSI 16
280 #define QUIRK_TI_SLLZ059 32
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor
, device
, revision
, flags
;
286 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
289 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
292 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
295 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
298 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
301 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
304 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
307 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
308 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
310 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
311 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
313 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
314 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
316 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
317 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
319 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
322 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
323 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
326 /* This overrides anything that was found in ohci_quirks[]. */
327 static int param_quirks
;
328 module_param_named(quirks
, param_quirks
, int, 0644);
329 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
330 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
331 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
332 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
333 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
334 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
335 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
338 #define OHCI_PARAM_DEBUG_AT_AR 1
339 #define OHCI_PARAM_DEBUG_SELFIDS 2
340 #define OHCI_PARAM_DEBUG_IRQS 4
341 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
343 static int param_debug
;
344 module_param_named(debug
, param_debug
, int, 0644);
345 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
346 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
347 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
348 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
349 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
350 ", or a combination, or all = -1)");
352 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
354 if (likely(!(param_debug
&
355 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
358 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
359 !(evt
& OHCI1394_busReset
))
362 dev_notice(ohci
->card
.device
,
363 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
364 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
365 evt
& OHCI1394_RQPkt
? " AR_req" : "",
366 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
367 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
368 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
369 evt
& OHCI1394_isochRx
? " IR" : "",
370 evt
& OHCI1394_isochTx
? " IT" : "",
371 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
372 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
373 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
374 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
375 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
376 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
377 evt
& OHCI1394_busReset
? " busReset" : "",
378 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
379 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
380 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
381 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
382 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
383 OHCI1394_cycleInconsistent
|
384 OHCI1394_regAccessFail
| OHCI1394_busReset
)
388 static const char *speed
[] = {
389 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
391 static const char *power
[] = {
392 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
395 static const char port
[] = { '.', '-', 'p', 'c', };
397 static char _p(u32
*s
, int shift
)
399 return port
[*s
>> shift
& 3];
402 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
406 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
409 dev_notice(ohci
->card
.device
,
410 "%d selfIDs, generation %d, local node ID %04x\n",
411 self_id_count
, generation
, ohci
->node_id
);
413 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
414 if ((*s
& 1 << 23) == 0)
415 dev_notice(ohci
->card
.device
,
416 "selfID 0: %08x, phy %d [%c%c%c] "
417 "%s gc=%d %s %s%s%s\n",
418 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
419 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
420 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
421 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
423 dev_notice(ohci
->card
.device
,
424 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
426 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
427 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
430 static const char *evts
[] = {
431 [0x00] = "evt_no_status", [0x01] = "-reserved-",
432 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439 [0x10] = "-reserved-", [0x11] = "ack_complete",
440 [0x12] = "ack_pending ", [0x13] = "-reserved-",
441 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443 [0x18] = "-reserved-", [0x19] = "-reserved-",
444 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447 [0x20] = "pending/cancelled",
449 static const char *tcodes
[] = {
450 [0x0] = "QW req", [0x1] = "BW req",
451 [0x2] = "W resp", [0x3] = "-reserved-",
452 [0x4] = "QR req", [0x5] = "BR req",
453 [0x6] = "QR resp", [0x7] = "BR resp",
454 [0x8] = "cycle start", [0x9] = "Lk req",
455 [0xa] = "async stream packet", [0xb] = "Lk resp",
456 [0xc] = "-reserved-", [0xd] = "-reserved-",
457 [0xe] = "link internal", [0xf] = "-reserved-",
460 static void log_ar_at_event(struct fw_ohci
*ohci
,
461 char dir
, int speed
, u32
*header
, int evt
)
463 int tcode
= header
[0] >> 4 & 0xf;
466 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
469 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
472 if (evt
== OHCI1394_evt_bus_reset
) {
473 dev_notice(ohci
->card
.device
,
474 "A%c evt_bus_reset, generation %d\n",
475 dir
, (header
[2] >> 16) & 0xff);
480 case 0x0: case 0x6: case 0x8:
481 snprintf(specific
, sizeof(specific
), " = %08x",
482 be32_to_cpu((__force __be32
)header
[3]));
484 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485 snprintf(specific
, sizeof(specific
), " %x,%x",
486 header
[3] >> 16, header
[3] & 0xffff);
494 dev_notice(ohci
->card
.device
,
496 dir
, evts
[evt
], tcodes
[tcode
]);
499 dev_notice(ohci
->card
.device
,
500 "A%c %s, PHY %08x %08x\n",
501 dir
, evts
[evt
], header
[1], header
[2]);
503 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504 dev_notice(ohci
->card
.device
,
505 "A%c spd %x tl %02x, "
508 dir
, speed
, header
[0] >> 10 & 0x3f,
509 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
510 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
513 dev_notice(ohci
->card
.device
,
514 "A%c spd %x tl %02x, "
517 dir
, speed
, header
[0] >> 10 & 0x3f,
518 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
519 tcodes
[tcode
], specific
);
523 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
525 writel(data
, ohci
->registers
+ offset
);
528 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
530 return readl(ohci
->registers
+ offset
);
533 static inline void flush_writes(const struct fw_ohci
*ohci
)
535 /* Do a dummy read to flush writes. */
536 reg_read(ohci
, OHCI1394_Version
);
540 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
545 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
550 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
551 for (i
= 0; i
< 3 + 100; i
++) {
552 val
= reg_read(ohci
, OHCI1394_PhyControl
);
554 return -ENODEV
; /* Card was ejected. */
556 if (val
& OHCI1394_PhyControl_ReadDone
)
557 return OHCI1394_PhyControl_ReadData(val
);
560 * Try a few times without waiting. Sleeping is necessary
561 * only when the link/PHY interface is busy.
566 dev_err(ohci
->card
.device
, "failed to read phy reg\n");
571 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
575 reg_write(ohci
, OHCI1394_PhyControl
,
576 OHCI1394_PhyControl_Write(addr
, val
));
577 for (i
= 0; i
< 3 + 100; i
++) {
578 val
= reg_read(ohci
, OHCI1394_PhyControl
);
580 return -ENODEV
; /* Card was ejected. */
582 if (!(val
& OHCI1394_PhyControl_WritePending
))
588 dev_err(ohci
->card
.device
, "failed to write phy reg\n");
593 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
594 int clear_bits
, int set_bits
)
596 int ret
= read_phy_reg(ohci
, addr
);
601 * The interrupt status bits are cleared by writing a one bit.
602 * Avoid clearing them unless explicitly requested in set_bits.
605 clear_bits
|= PHY_INT_STATUS_BITS
;
607 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
610 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
614 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
618 return read_phy_reg(ohci
, addr
);
621 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
623 struct fw_ohci
*ohci
= fw_ohci(card
);
626 mutex_lock(&ohci
->phy_reg_mutex
);
627 ret
= read_phy_reg(ohci
, addr
);
628 mutex_unlock(&ohci
->phy_reg_mutex
);
633 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
634 int clear_bits
, int set_bits
)
636 struct fw_ohci
*ohci
= fw_ohci(card
);
639 mutex_lock(&ohci
->phy_reg_mutex
);
640 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
641 mutex_unlock(&ohci
->phy_reg_mutex
);
646 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
648 return page_private(ctx
->pages
[i
]);
651 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
653 struct descriptor
*d
;
655 d
= &ctx
->descriptors
[index
];
656 d
->branch_address
&= cpu_to_le32(~0xf);
657 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
658 d
->transfer_status
= 0;
660 wmb(); /* finish init of new descriptors before branch_address update */
661 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
662 d
->branch_address
|= cpu_to_le32(1);
664 ctx
->last_buffer_index
= index
;
666 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
669 static void ar_context_release(struct ar_context
*ctx
)
674 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
676 for (i
= 0; i
< AR_BUFFERS
; i
++)
678 dma_unmap_page(ctx
->ohci
->card
.device
,
679 ar_buffer_bus(ctx
, i
),
680 PAGE_SIZE
, DMA_FROM_DEVICE
);
681 __free_page(ctx
->pages
[i
]);
685 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
687 struct fw_ohci
*ohci
= ctx
->ohci
;
689 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
690 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
693 dev_err(ohci
->card
.device
, "AR error: %s; DMA stopped\n",
696 /* FIXME: restart? */
699 static inline unsigned int ar_next_buffer_index(unsigned int index
)
701 return (index
+ 1) % AR_BUFFERS
;
704 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
706 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
709 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
711 return ar_next_buffer_index(ctx
->last_buffer_index
);
715 * We search for the buffer that contains the last AR packet DMA data written
718 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
719 unsigned int *buffer_offset
)
721 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
722 __le16 res_count
, next_res_count
;
724 i
= ar_first_buffer_index(ctx
);
725 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
727 /* A buffer that is not yet completely filled must be the last one. */
728 while (i
!= last
&& res_count
== 0) {
730 /* Peek at the next descriptor. */
731 next_i
= ar_next_buffer_index(i
);
732 rmb(); /* read descriptors in order */
733 next_res_count
= ACCESS_ONCE(
734 ctx
->descriptors
[next_i
].res_count
);
736 * If the next descriptor is still empty, we must stop at this
739 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
741 * The exception is when the DMA data for one packet is
742 * split over three buffers; in this case, the middle
743 * buffer's descriptor might be never updated by the
744 * controller and look still empty, and we have to peek
747 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
748 next_i
= ar_next_buffer_index(next_i
);
750 next_res_count
= ACCESS_ONCE(
751 ctx
->descriptors
[next_i
].res_count
);
752 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
753 goto next_buffer_is_active
;
759 next_buffer_is_active
:
761 res_count
= next_res_count
;
764 rmb(); /* read res_count before the DMA data */
766 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
767 if (*buffer_offset
> PAGE_SIZE
) {
769 ar_context_abort(ctx
, "corrupted descriptor");
775 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
776 unsigned int end_buffer_index
,
777 unsigned int end_buffer_offset
)
781 i
= ar_first_buffer_index(ctx
);
782 while (i
!= end_buffer_index
) {
783 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
784 ar_buffer_bus(ctx
, i
),
785 PAGE_SIZE
, DMA_FROM_DEVICE
);
786 i
= ar_next_buffer_index(i
);
788 if (end_buffer_offset
> 0)
789 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
790 ar_buffer_bus(ctx
, i
),
791 end_buffer_offset
, DMA_FROM_DEVICE
);
794 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795 #define cond_le32_to_cpu(v) \
796 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
798 #define cond_le32_to_cpu(v) le32_to_cpu(v)
801 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
803 struct fw_ohci
*ohci
= ctx
->ohci
;
805 u32 status
, length
, tcode
;
808 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
809 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
810 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
812 tcode
= (p
.header
[0] >> 4) & 0x0f;
814 case TCODE_WRITE_QUADLET_REQUEST
:
815 case TCODE_READ_QUADLET_RESPONSE
:
816 p
.header
[3] = (__force __u32
) buffer
[3];
817 p
.header_length
= 16;
818 p
.payload_length
= 0;
821 case TCODE_READ_BLOCK_REQUEST
:
822 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
823 p
.header_length
= 16;
824 p
.payload_length
= 0;
827 case TCODE_WRITE_BLOCK_REQUEST
:
828 case TCODE_READ_BLOCK_RESPONSE
:
829 case TCODE_LOCK_REQUEST
:
830 case TCODE_LOCK_RESPONSE
:
831 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
832 p
.header_length
= 16;
833 p
.payload_length
= p
.header
[3] >> 16;
834 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
835 ar_context_abort(ctx
, "invalid packet length");
840 case TCODE_WRITE_RESPONSE
:
841 case TCODE_READ_QUADLET_REQUEST
:
842 case OHCI_TCODE_PHY_PACKET
:
843 p
.header_length
= 12;
844 p
.payload_length
= 0;
848 ar_context_abort(ctx
, "invalid tcode");
852 p
.payload
= (void *) buffer
+ p
.header_length
;
854 /* FIXME: What to do about evt_* errors? */
855 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
856 status
= cond_le32_to_cpu(buffer
[length
]);
857 evt
= (status
>> 16) & 0x1f;
860 p
.speed
= (status
>> 21) & 0x7;
861 p
.timestamp
= status
& 0xffff;
862 p
.generation
= ohci
->request_generation
;
864 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
867 * Several controllers, notably from NEC and VIA, forget to
868 * write ack_complete status at PHY packet reception.
870 if (evt
== OHCI1394_evt_no_status
&&
871 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
872 p
.ack
= ACK_COMPLETE
;
875 * The OHCI bus reset handler synthesizes a PHY packet with
876 * the new generation number when a bus reset happens (see
877 * section 8.4.2.3). This helps us determine when a request
878 * was received and make sure we send the response in the same
879 * generation. We only need this for requests; for responses
880 * we use the unique tlabel for finding the matching
883 * Alas some chips sometimes emit bus reset packets with a
884 * wrong generation. We set the correct generation for these
885 * at a slightly incorrect time (in bus_reset_work).
887 if (evt
== OHCI1394_evt_bus_reset
) {
888 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
889 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
890 } else if (ctx
== &ohci
->ar_request_ctx
) {
891 fw_core_handle_request(&ohci
->card
, &p
);
893 fw_core_handle_response(&ohci
->card
, &p
);
896 return buffer
+ length
+ 1;
899 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
904 next
= handle_ar_packet(ctx
, p
);
913 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
917 i
= ar_first_buffer_index(ctx
);
918 while (i
!= end_buffer
) {
919 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
920 ar_buffer_bus(ctx
, i
),
921 PAGE_SIZE
, DMA_FROM_DEVICE
);
922 ar_context_link_page(ctx
, i
);
923 i
= ar_next_buffer_index(i
);
927 static void ar_context_tasklet(unsigned long data
)
929 struct ar_context
*ctx
= (struct ar_context
*)data
;
930 unsigned int end_buffer_index
, end_buffer_offset
;
937 end_buffer_index
= ar_search_last_active_buffer(ctx
,
939 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
940 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
942 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
944 * The filled part of the overall buffer wraps around; handle
945 * all packets up to the buffer end here. If the last packet
946 * wraps around, its tail will be visible after the buffer end
947 * because the buffer start pages are mapped there again.
949 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
950 p
= handle_ar_packets(ctx
, p
, buffer_end
);
953 /* adjust p to point back into the actual buffer */
954 p
-= AR_BUFFERS
* PAGE_SIZE
;
957 p
= handle_ar_packets(ctx
, p
, end
);
960 ar_context_abort(ctx
, "inconsistent descriptor");
965 ar_recycle_buffers(ctx
, end_buffer_index
);
973 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
974 unsigned int descriptors_offset
, u32 regs
)
978 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
979 struct descriptor
*d
;
983 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
985 for (i
= 0; i
< AR_BUFFERS
; i
++) {
986 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
989 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
990 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
991 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
992 __free_page(ctx
->pages
[i
]);
993 ctx
->pages
[i
] = NULL
;
996 set_page_private(ctx
->pages
[i
], dma_addr
);
999 for (i
= 0; i
< AR_BUFFERS
; i
++)
1000 pages
[i
] = ctx
->pages
[i
];
1001 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1002 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1003 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
1008 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1009 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1011 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1012 d
= &ctx
->descriptors
[i
];
1013 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1014 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1016 DESCRIPTOR_BRANCH_ALWAYS
);
1017 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1018 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1019 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1025 ar_context_release(ctx
);
1030 static void ar_context_run(struct ar_context
*ctx
)
1034 for (i
= 0; i
< AR_BUFFERS
; i
++)
1035 ar_context_link_page(ctx
, i
);
1037 ctx
->pointer
= ctx
->buffer
;
1039 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1040 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1043 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1047 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1049 /* figure out which descriptor the branch address goes in */
1050 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1056 static void context_tasklet(unsigned long data
)
1058 struct context
*ctx
= (struct context
*) data
;
1059 struct descriptor
*d
, *last
;
1062 struct descriptor_buffer
*desc
;
1064 desc
= list_entry(ctx
->buffer_list
.next
,
1065 struct descriptor_buffer
, list
);
1067 while (last
->branch_address
!= 0) {
1068 struct descriptor_buffer
*old_desc
= desc
;
1069 address
= le32_to_cpu(last
->branch_address
);
1072 ctx
->current_bus
= address
;
1074 /* If the branch address points to a buffer outside of the
1075 * current buffer, advance to the next buffer. */
1076 if (address
< desc
->buffer_bus
||
1077 address
>= desc
->buffer_bus
+ desc
->used
)
1078 desc
= list_entry(desc
->list
.next
,
1079 struct descriptor_buffer
, list
);
1080 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1081 last
= find_branch_descriptor(d
, z
);
1083 if (!ctx
->callback(ctx
, d
, last
))
1086 if (old_desc
!= desc
) {
1087 /* If we've advanced to the next buffer, move the
1088 * previous buffer to the free list. */
1089 unsigned long flags
;
1091 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1092 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1093 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1100 * Allocate a new buffer and add it to the list of free buffers for this
1101 * context. Must be called with ohci->lock held.
1103 static int context_add_buffer(struct context
*ctx
)
1105 struct descriptor_buffer
*desc
;
1106 dma_addr_t
uninitialized_var(bus_addr
);
1110 * 16MB of descriptors should be far more than enough for any DMA
1111 * program. This will catch run-away userspace or DoS attacks.
1113 if (ctx
->total_allocation
>= 16*1024*1024)
1116 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1117 &bus_addr
, GFP_ATOMIC
);
1121 offset
= (void *)&desc
->buffer
- (void *)desc
;
1122 desc
->buffer_size
= PAGE_SIZE
- offset
;
1123 desc
->buffer_bus
= bus_addr
+ offset
;
1126 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1127 ctx
->total_allocation
+= PAGE_SIZE
;
1132 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1133 u32 regs
, descriptor_callback_t callback
)
1137 ctx
->total_allocation
= 0;
1139 INIT_LIST_HEAD(&ctx
->buffer_list
);
1140 if (context_add_buffer(ctx
) < 0)
1143 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1144 struct descriptor_buffer
, list
);
1146 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1147 ctx
->callback
= callback
;
1150 * We put a dummy descriptor in the buffer that has a NULL
1151 * branch address and looks like it's been sent. That way we
1152 * have a descriptor to append DMA programs to.
1154 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1155 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1156 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1157 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1158 ctx
->last
= ctx
->buffer_tail
->buffer
;
1159 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1164 static void context_release(struct context
*ctx
)
1166 struct fw_card
*card
= &ctx
->ohci
->card
;
1167 struct descriptor_buffer
*desc
, *tmp
;
1169 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1170 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1172 ((void *)&desc
->buffer
- (void *)desc
));
1175 /* Must be called with ohci->lock held */
1176 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1177 int z
, dma_addr_t
*d_bus
)
1179 struct descriptor
*d
= NULL
;
1180 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1182 if (z
* sizeof(*d
) > desc
->buffer_size
)
1185 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1186 /* No room for the descriptor in this buffer, so advance to the
1189 if (desc
->list
.next
== &ctx
->buffer_list
) {
1190 /* If there is no free buffer next in the list,
1192 if (context_add_buffer(ctx
) < 0)
1195 desc
= list_entry(desc
->list
.next
,
1196 struct descriptor_buffer
, list
);
1197 ctx
->buffer_tail
= desc
;
1200 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1201 memset(d
, 0, z
* sizeof(*d
));
1202 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1207 static void context_run(struct context
*ctx
, u32 extra
)
1209 struct fw_ohci
*ohci
= ctx
->ohci
;
1211 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1212 le32_to_cpu(ctx
->last
->branch_address
));
1213 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1214 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1215 ctx
->running
= true;
1219 static void context_append(struct context
*ctx
,
1220 struct descriptor
*d
, int z
, int extra
)
1223 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1225 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1227 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1229 wmb(); /* finish init of new descriptors before branch_address update */
1230 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1231 ctx
->prev
= find_branch_descriptor(d
, z
);
1234 static void context_stop(struct context
*ctx
)
1236 struct fw_ohci
*ohci
= ctx
->ohci
;
1240 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1241 ctx
->running
= false;
1243 for (i
= 0; i
< 1000; i
++) {
1244 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1245 if ((reg
& CONTEXT_ACTIVE
) == 0)
1251 dev_err(ohci
->card
.device
, "DMA context still active (0x%08x)\n", reg
);
1254 struct driver_data
{
1256 struct fw_packet
*packet
;
1260 * This function apppends a packet to the DMA queue for transmission.
1261 * Must always be called with the ochi->lock held to ensure proper
1262 * generation handling and locking around packet queue manipulation.
1264 static int at_context_queue_packet(struct context
*ctx
,
1265 struct fw_packet
*packet
)
1267 struct fw_ohci
*ohci
= ctx
->ohci
;
1268 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1269 struct driver_data
*driver_data
;
1270 struct descriptor
*d
, *last
;
1274 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1276 packet
->ack
= RCODE_SEND_ERROR
;
1280 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1281 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1284 * The DMA format for asyncronous link packets is different
1285 * from the IEEE1394 layout, so shift the fields around
1289 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1290 header
= (__le32
*) &d
[1];
1292 case TCODE_WRITE_QUADLET_REQUEST
:
1293 case TCODE_WRITE_BLOCK_REQUEST
:
1294 case TCODE_WRITE_RESPONSE
:
1295 case TCODE_READ_QUADLET_REQUEST
:
1296 case TCODE_READ_BLOCK_REQUEST
:
1297 case TCODE_READ_QUADLET_RESPONSE
:
1298 case TCODE_READ_BLOCK_RESPONSE
:
1299 case TCODE_LOCK_REQUEST
:
1300 case TCODE_LOCK_RESPONSE
:
1301 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1302 (packet
->speed
<< 16));
1303 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1304 (packet
->header
[0] & 0xffff0000));
1305 header
[2] = cpu_to_le32(packet
->header
[2]);
1307 if (TCODE_IS_BLOCK_PACKET(tcode
))
1308 header
[3] = cpu_to_le32(packet
->header
[3]);
1310 header
[3] = (__force __le32
) packet
->header
[3];
1312 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1315 case TCODE_LINK_INTERNAL
:
1316 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1317 (packet
->speed
<< 16));
1318 header
[1] = cpu_to_le32(packet
->header
[1]);
1319 header
[2] = cpu_to_le32(packet
->header
[2]);
1320 d
[0].req_count
= cpu_to_le16(12);
1322 if (is_ping_packet(&packet
->header
[1]))
1323 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1326 case TCODE_STREAM_DATA
:
1327 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1328 (packet
->speed
<< 16));
1329 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1330 d
[0].req_count
= cpu_to_le16(8);
1335 packet
->ack
= RCODE_SEND_ERROR
;
1339 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1340 driver_data
= (struct driver_data
*) &d
[3];
1341 driver_data
->packet
= packet
;
1342 packet
->driver_data
= driver_data
;
1344 if (packet
->payload_length
> 0) {
1345 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1346 payload_bus
= dma_map_single(ohci
->card
.device
,
1348 packet
->payload_length
,
1350 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1351 packet
->ack
= RCODE_SEND_ERROR
;
1354 packet
->payload_bus
= payload_bus
;
1355 packet
->payload_mapped
= true;
1357 memcpy(driver_data
->inline_data
, packet
->payload
,
1358 packet
->payload_length
);
1359 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1362 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1363 d
[2].data_address
= cpu_to_le32(payload_bus
);
1371 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1372 DESCRIPTOR_IRQ_ALWAYS
|
1373 DESCRIPTOR_BRANCH_ALWAYS
);
1375 /* FIXME: Document how the locking works. */
1376 if (ohci
->generation
!= packet
->generation
) {
1377 if (packet
->payload_mapped
)
1378 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1379 packet
->payload_length
, DMA_TO_DEVICE
);
1380 packet
->ack
= RCODE_GENERATION
;
1384 context_append(ctx
, d
, z
, 4 - z
);
1387 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1389 context_run(ctx
, 0);
1394 static void at_context_flush(struct context
*ctx
)
1396 tasklet_disable(&ctx
->tasklet
);
1398 ctx
->flushing
= true;
1399 context_tasklet((unsigned long)ctx
);
1400 ctx
->flushing
= false;
1402 tasklet_enable(&ctx
->tasklet
);
1405 static int handle_at_packet(struct context
*context
,
1406 struct descriptor
*d
,
1407 struct descriptor
*last
)
1409 struct driver_data
*driver_data
;
1410 struct fw_packet
*packet
;
1411 struct fw_ohci
*ohci
= context
->ohci
;
1414 if (last
->transfer_status
== 0 && !context
->flushing
)
1415 /* This descriptor isn't done yet, stop iteration. */
1418 driver_data
= (struct driver_data
*) &d
[3];
1419 packet
= driver_data
->packet
;
1421 /* This packet was cancelled, just continue. */
1424 if (packet
->payload_mapped
)
1425 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1426 packet
->payload_length
, DMA_TO_DEVICE
);
1428 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1429 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1431 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1434 case OHCI1394_evt_timeout
:
1435 /* Async response transmit timed out. */
1436 packet
->ack
= RCODE_CANCELLED
;
1439 case OHCI1394_evt_flushed
:
1441 * The packet was flushed should give same error as
1442 * when we try to use a stale generation count.
1444 packet
->ack
= RCODE_GENERATION
;
1447 case OHCI1394_evt_missing_ack
:
1448 if (context
->flushing
)
1449 packet
->ack
= RCODE_GENERATION
;
1452 * Using a valid (current) generation count, but the
1453 * node is not on the bus or not sending acks.
1455 packet
->ack
= RCODE_NO_ACK
;
1459 case ACK_COMPLETE
+ 0x10:
1460 case ACK_PENDING
+ 0x10:
1461 case ACK_BUSY_X
+ 0x10:
1462 case ACK_BUSY_A
+ 0x10:
1463 case ACK_BUSY_B
+ 0x10:
1464 case ACK_DATA_ERROR
+ 0x10:
1465 case ACK_TYPE_ERROR
+ 0x10:
1466 packet
->ack
= evt
- 0x10;
1469 case OHCI1394_evt_no_status
:
1470 if (context
->flushing
) {
1471 packet
->ack
= RCODE_GENERATION
;
1477 packet
->ack
= RCODE_SEND_ERROR
;
1481 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1486 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1492 static void handle_local_rom(struct fw_ohci
*ohci
,
1493 struct fw_packet
*packet
, u32 csr
)
1495 struct fw_packet response
;
1496 int tcode
, length
, i
;
1498 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1499 if (TCODE_IS_BLOCK_PACKET(tcode
))
1500 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1504 i
= csr
- CSR_CONFIG_ROM
;
1505 if (i
+ length
> CONFIG_ROM_SIZE
) {
1506 fw_fill_response(&response
, packet
->header
,
1507 RCODE_ADDRESS_ERROR
, NULL
, 0);
1508 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1509 fw_fill_response(&response
, packet
->header
,
1510 RCODE_TYPE_ERROR
, NULL
, 0);
1512 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1513 (void *) ohci
->config_rom
+ i
, length
);
1516 fw_core_handle_response(&ohci
->card
, &response
);
1519 static void handle_local_lock(struct fw_ohci
*ohci
,
1520 struct fw_packet
*packet
, u32 csr
)
1522 struct fw_packet response
;
1523 int tcode
, length
, ext_tcode
, sel
, try;
1524 __be32
*payload
, lock_old
;
1525 u32 lock_arg
, lock_data
;
1527 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1528 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1529 payload
= packet
->payload
;
1530 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1532 if (tcode
== TCODE_LOCK_REQUEST
&&
1533 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1534 lock_arg
= be32_to_cpu(payload
[0]);
1535 lock_data
= be32_to_cpu(payload
[1]);
1536 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1540 fw_fill_response(&response
, packet
->header
,
1541 RCODE_TYPE_ERROR
, NULL
, 0);
1545 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1546 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1547 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1548 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1550 for (try = 0; try < 20; try++)
1551 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1552 lock_old
= cpu_to_be32(reg_read(ohci
,
1554 fw_fill_response(&response
, packet
->header
,
1556 &lock_old
, sizeof(lock_old
));
1560 dev_err(ohci
->card
.device
, "swap not done (CSR lock timeout)\n");
1561 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1564 fw_core_handle_response(&ohci
->card
, &response
);
1567 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1571 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1572 packet
->ack
= ACK_PENDING
;
1573 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1577 ((unsigned long long)
1578 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1580 csr
= offset
- CSR_REGISTER_BASE
;
1582 /* Handle config rom reads. */
1583 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1584 handle_local_rom(ctx
->ohci
, packet
, csr
);
1586 case CSR_BUS_MANAGER_ID
:
1587 case CSR_BANDWIDTH_AVAILABLE
:
1588 case CSR_CHANNELS_AVAILABLE_HI
:
1589 case CSR_CHANNELS_AVAILABLE_LO
:
1590 handle_local_lock(ctx
->ohci
, packet
, csr
);
1593 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1594 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1596 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1600 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1601 packet
->ack
= ACK_COMPLETE
;
1602 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1606 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1608 unsigned long flags
;
1611 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1613 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1614 ctx
->ohci
->generation
== packet
->generation
) {
1615 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1616 handle_local_request(ctx
, packet
);
1620 ret
= at_context_queue_packet(ctx
, packet
);
1621 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1624 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1628 static void detect_dead_context(struct fw_ohci
*ohci
,
1629 const char *name
, unsigned int regs
)
1633 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1634 if (ctl
& CONTEXT_DEAD
)
1635 dev_err(ohci
->card
.device
,
1636 "DMA context %s has stopped, error code: %s\n",
1637 name
, evts
[ctl
& 0x1f]);
1640 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1645 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1646 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1647 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1648 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1649 for (i
= 0; i
< 32; ++i
) {
1650 if (!(ohci
->it_context_support
& (1 << i
)))
1652 sprintf(name
, "IT%u", i
);
1653 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1655 for (i
= 0; i
< 32; ++i
) {
1656 if (!(ohci
->ir_context_support
& (1 << i
)))
1658 sprintf(name
, "IR%u", i
);
1659 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1661 /* TODO: maybe try to flush and restart the dead contexts */
1664 static u32
cycle_timer_ticks(u32 cycle_timer
)
1668 ticks
= cycle_timer
& 0xfff;
1669 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1670 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1676 * Some controllers exhibit one or more of the following bugs when updating the
1677 * iso cycle timer register:
1678 * - When the lowest six bits are wrapping around to zero, a read that happens
1679 * at the same time will return garbage in the lowest ten bits.
1680 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681 * not incremented for about 60 ns.
1682 * - Occasionally, the entire register reads zero.
1684 * To catch these, we read the register three times and ensure that the
1685 * difference between each two consecutive reads is approximately the same, i.e.
1686 * less than twice the other. Furthermore, any negative difference indicates an
1687 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688 * execute, so we have enough precision to compute the ratio of the differences.)
1690 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1697 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1699 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1702 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1706 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1707 t0
= cycle_timer_ticks(c0
);
1708 t1
= cycle_timer_ticks(c1
);
1709 t2
= cycle_timer_ticks(c2
);
1712 } while ((diff01
<= 0 || diff12
<= 0 ||
1713 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1721 * This function has to be called at least every 64 seconds. The bus_time
1722 * field stores not only the upper 25 bits of the BUS_TIME register but also
1723 * the most significant bit of the cycle timer in bit 6 so that we can detect
1724 * changes in this bit.
1726 static u32
update_bus_time(struct fw_ohci
*ohci
)
1728 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1730 if (unlikely(!ohci
->bus_time_running
)) {
1731 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1732 ohci
->bus_time
= (lower_32_bits(get_seconds()) & ~0x7f) |
1733 (cycle_time_seconds
& 0x40);
1734 ohci
->bus_time_running
= true;
1737 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1738 ohci
->bus_time
+= 0x40;
1740 return ohci
->bus_time
| cycle_time_seconds
;
1743 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1747 mutex_lock(&ohci
->phy_reg_mutex
);
1748 reg
= write_phy_reg(ohci
, 7, port_index
);
1750 reg
= read_phy_reg(ohci
, 8);
1751 mutex_unlock(&ohci
->phy_reg_mutex
);
1755 switch (reg
& 0x0f) {
1757 return 2; /* is child node (connected to parent node) */
1759 return 3; /* is parent node (connected to child node) */
1761 return 1; /* not connected */
1764 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1770 for (i
= 0; i
< self_id_count
; i
++) {
1771 entry
= ohci
->self_id_buffer
[i
];
1772 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1774 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1781 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1782 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1783 * Construct the selfID from phy register contents.
1784 * FIXME: How to determine the selfID.i flag?
1786 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1788 int reg
, i
, pos
, status
;
1789 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1790 u32 self_id
= 0x8040c800;
1792 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1793 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1794 dev_notice(ohci
->card
.device
,
1795 "node ID not valid, new bus reset in progress\n");
1798 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1800 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1803 self_id
|= ((reg
& 0x07) << 8); /* power class */
1805 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1808 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1810 for (i
= 0; i
< 3; i
++) {
1811 status
= get_status_for_port(ohci
, i
);
1814 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1817 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1819 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1820 &(ohci
->self_id_buffer
[pos
]),
1821 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1822 ohci
->self_id_buffer
[pos
] = self_id
;
1825 return self_id_count
;
1828 static void bus_reset_work(struct work_struct
*work
)
1830 struct fw_ohci
*ohci
=
1831 container_of(work
, struct fw_ohci
, bus_reset_work
);
1832 int self_id_count
, generation
, new_generation
, i
, j
;
1834 void *free_rom
= NULL
;
1835 dma_addr_t free_rom_bus
= 0;
1838 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1839 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1840 dev_notice(ohci
->card
.device
,
1841 "node ID not valid, new bus reset in progress\n");
1844 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1845 dev_notice(ohci
->card
.device
, "malconfigured bus\n");
1848 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1849 OHCI1394_NodeID_nodeNumber
);
1851 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1852 if (!(ohci
->is_root
&& is_new_root
))
1853 reg_write(ohci
, OHCI1394_LinkControlSet
,
1854 OHCI1394_LinkControl_cycleMaster
);
1855 ohci
->is_root
= is_new_root
;
1857 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1858 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1859 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1863 * The count in the SelfIDCount register is the number of
1864 * bytes in the self ID receive buffer. Since we also receive
1865 * the inverted quadlets and a header quadlet, we shift one
1866 * bit extra to get the actual number of self IDs.
1868 self_id_count
= (reg
>> 3) & 0xff;
1870 if (self_id_count
> 252) {
1871 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1875 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1878 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1879 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1881 * If the invalid data looks like a cycle start packet,
1882 * it's likely to be the result of the cycle master
1883 * having a wrong gap count. In this case, the self IDs
1884 * so far are valid and should be processed so that the
1885 * bus manager can then correct the gap count.
1887 if (cond_le32_to_cpu(ohci
->self_id_cpu
[i
])
1889 dev_notice(ohci
->card
.device
,
1890 "ignoring spurious self IDs\n");
1894 dev_notice(ohci
->card
.device
,
1895 "inconsistent self IDs\n");
1899 ohci
->self_id_buffer
[j
] =
1900 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1903 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1904 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1905 if (self_id_count
< 0) {
1906 dev_notice(ohci
->card
.device
,
1907 "could not construct local self ID\n");
1912 if (self_id_count
== 0) {
1913 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1919 * Check the consistency of the self IDs we just read. The
1920 * problem we face is that a new bus reset can start while we
1921 * read out the self IDs from the DMA buffer. If this happens,
1922 * the DMA buffer will be overwritten with new self IDs and we
1923 * will read out inconsistent data. The OHCI specification
1924 * (section 11.2) recommends a technique similar to
1925 * linux/seqlock.h, where we remember the generation of the
1926 * self IDs in the buffer before reading them out and compare
1927 * it to the current generation after reading them out. If
1928 * the two generations match we know we have a consistent set
1932 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1933 if (new_generation
!= generation
) {
1934 dev_notice(ohci
->card
.device
,
1935 "new bus reset, discarding self ids\n");
1939 /* FIXME: Document how the locking works. */
1940 spin_lock_irq(&ohci
->lock
);
1942 ohci
->generation
= -1; /* prevent AT packet queueing */
1943 context_stop(&ohci
->at_request_ctx
);
1944 context_stop(&ohci
->at_response_ctx
);
1946 spin_unlock_irq(&ohci
->lock
);
1949 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1950 * packets in the AT queues and software needs to drain them.
1951 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1953 at_context_flush(&ohci
->at_request_ctx
);
1954 at_context_flush(&ohci
->at_response_ctx
);
1956 spin_lock_irq(&ohci
->lock
);
1958 ohci
->generation
= generation
;
1959 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1961 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1962 ohci
->request_generation
= generation
;
1965 * This next bit is unrelated to the AT context stuff but we
1966 * have to do it under the spinlock also. If a new config rom
1967 * was set up before this reset, the old one is now no longer
1968 * in use and we can free it. Update the config rom pointers
1969 * to point to the current config rom and clear the
1970 * next_config_rom pointer so a new update can take place.
1973 if (ohci
->next_config_rom
!= NULL
) {
1974 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1975 free_rom
= ohci
->config_rom
;
1976 free_rom_bus
= ohci
->config_rom_bus
;
1978 ohci
->config_rom
= ohci
->next_config_rom
;
1979 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1980 ohci
->next_config_rom
= NULL
;
1983 * Restore config_rom image and manually update
1984 * config_rom registers. Writing the header quadlet
1985 * will indicate that the config rom is ready, so we
1988 reg_write(ohci
, OHCI1394_BusOptions
,
1989 be32_to_cpu(ohci
->config_rom
[2]));
1990 ohci
->config_rom
[0] = ohci
->next_header
;
1991 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1992 be32_to_cpu(ohci
->next_header
));
1995 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1996 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1997 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2000 spin_unlock_irq(&ohci
->lock
);
2003 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2004 free_rom
, free_rom_bus
);
2006 log_selfids(ohci
, generation
, self_id_count
);
2008 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2009 self_id_count
, ohci
->self_id_buffer
,
2010 ohci
->csr_state_setclear_abdicate
);
2011 ohci
->csr_state_setclear_abdicate
= false;
2014 static irqreturn_t
irq_handler(int irq
, void *data
)
2016 struct fw_ohci
*ohci
= data
;
2017 u32 event
, iso_event
;
2020 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2022 if (!event
|| !~event
)
2026 * busReset and postedWriteErr must not be cleared yet
2027 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2029 reg_write(ohci
, OHCI1394_IntEventClear
,
2030 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2031 log_irqs(ohci
, event
);
2033 if (event
& OHCI1394_selfIDComplete
)
2034 queue_work(fw_workqueue
, &ohci
->bus_reset_work
);
2036 if (event
& OHCI1394_RQPkt
)
2037 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2039 if (event
& OHCI1394_RSPkt
)
2040 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2042 if (event
& OHCI1394_reqTxComplete
)
2043 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2045 if (event
& OHCI1394_respTxComplete
)
2046 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2048 if (event
& OHCI1394_isochRx
) {
2049 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2050 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2053 i
= ffs(iso_event
) - 1;
2055 &ohci
->ir_context_list
[i
].context
.tasklet
);
2056 iso_event
&= ~(1 << i
);
2060 if (event
& OHCI1394_isochTx
) {
2061 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2062 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2065 i
= ffs(iso_event
) - 1;
2067 &ohci
->it_context_list
[i
].context
.tasklet
);
2068 iso_event
&= ~(1 << i
);
2072 if (unlikely(event
& OHCI1394_regAccessFail
))
2073 dev_err(ohci
->card
.device
, "register access failure\n");
2075 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2076 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2077 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2078 reg_write(ohci
, OHCI1394_IntEventClear
,
2079 OHCI1394_postedWriteErr
);
2080 if (printk_ratelimit())
2081 dev_err(ohci
->card
.device
, "PCI posted write error\n");
2084 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2085 if (printk_ratelimit())
2086 dev_notice(ohci
->card
.device
,
2087 "isochronous cycle too long\n");
2088 reg_write(ohci
, OHCI1394_LinkControlSet
,
2089 OHCI1394_LinkControl_cycleMaster
);
2092 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2094 * We need to clear this event bit in order to make
2095 * cycleMatch isochronous I/O work. In theory we should
2096 * stop active cycleMatch iso contexts now and restart
2097 * them at least two cycles later. (FIXME?)
2099 if (printk_ratelimit())
2100 dev_notice(ohci
->card
.device
,
2101 "isochronous cycle inconsistent\n");
2104 if (unlikely(event
& OHCI1394_unrecoverableError
))
2105 handle_dead_contexts(ohci
);
2107 if (event
& OHCI1394_cycle64Seconds
) {
2108 spin_lock(&ohci
->lock
);
2109 update_bus_time(ohci
);
2110 spin_unlock(&ohci
->lock
);
2117 static int software_reset(struct fw_ohci
*ohci
)
2122 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2123 for (i
= 0; i
< 500; i
++) {
2124 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2126 return -ENODEV
; /* Card was ejected. */
2128 if (!(val
& OHCI1394_HCControl_softReset
))
2137 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2139 size_t size
= length
* 4;
2141 memcpy(dest
, src
, size
);
2142 if (size
< CONFIG_ROM_SIZE
)
2143 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2146 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2149 int ret
, clear
, set
, offset
;
2151 /* Check if the driver should configure link and PHY. */
2152 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2153 OHCI1394_HCControl_programPhyEnable
))
2156 /* Paranoia: check whether the PHY supports 1394a, too. */
2157 enable_1394a
= false;
2158 ret
= read_phy_reg(ohci
, 2);
2161 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2162 ret
= read_paged_phy_reg(ohci
, 1, 8);
2166 enable_1394a
= true;
2169 if (ohci
->quirks
& QUIRK_NO_1394A
)
2170 enable_1394a
= false;
2172 /* Configure PHY and link consistently. */
2175 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2177 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2180 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2185 offset
= OHCI1394_HCControlSet
;
2187 offset
= OHCI1394_HCControlClear
;
2188 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2190 /* Clean up: configuration has been taken care of. */
2191 reg_write(ohci
, OHCI1394_HCControlClear
,
2192 OHCI1394_HCControl_programPhyEnable
);
2197 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2199 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2200 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2203 reg
= read_phy_reg(ohci
, 2);
2206 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2209 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2210 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2219 static int ohci_enable(struct fw_card
*card
,
2220 const __be32
*config_rom
, size_t length
)
2222 struct fw_ohci
*ohci
= fw_ohci(card
);
2223 struct pci_dev
*dev
= to_pci_dev(card
->device
);
2224 u32 lps
, version
, irqs
;
2227 if (software_reset(ohci
)) {
2228 dev_err(card
->device
, "failed to reset ohci card\n");
2233 * Now enable LPS, which we need in order to start accessing
2234 * most of the registers. In fact, on some cards (ALI M5251),
2235 * accessing registers in the SClk domain without LPS enabled
2236 * will lock up the machine. Wait 50msec to make sure we have
2237 * full link enabled. However, with some cards (well, at least
2238 * a JMicron PCIe card), we have to try again sometimes.
2240 reg_write(ohci
, OHCI1394_HCControlSet
,
2241 OHCI1394_HCControl_LPS
|
2242 OHCI1394_HCControl_postedWriteEnable
);
2245 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2247 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2248 OHCI1394_HCControl_LPS
;
2252 dev_err(card
->device
, "failed to set Link Power Status\n");
2256 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2257 ret
= probe_tsb41ba3d(ohci
);
2261 dev_notice(card
->device
, "local TSB41BA3D phy\n");
2263 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2266 reg_write(ohci
, OHCI1394_HCControlClear
,
2267 OHCI1394_HCControl_noByteSwapData
);
2269 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2270 reg_write(ohci
, OHCI1394_LinkControlSet
,
2271 OHCI1394_LinkControl_cycleTimerEnable
|
2272 OHCI1394_LinkControl_cycleMaster
);
2274 reg_write(ohci
, OHCI1394_ATRetries
,
2275 OHCI1394_MAX_AT_REQ_RETRIES
|
2276 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2277 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2280 ohci
->bus_time_running
= false;
2282 for (i
= 0; i
< 32; i
++)
2283 if (ohci
->ir_context_support
& (1 << i
))
2284 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2285 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2287 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2288 if (version
>= OHCI_VERSION_1_1
) {
2289 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2291 card
->broadcast_channel_auto_allocated
= true;
2294 /* Get implemented bits of the priority arbitration request counter. */
2295 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2296 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2297 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2298 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2300 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2301 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2302 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2304 ret
= configure_1394a_enhancements(ohci
);
2308 /* Activate link_on bit and contender bit in our self ID packets.*/
2309 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2314 * When the link is not yet enabled, the atomic config rom
2315 * update mechanism described below in ohci_set_config_rom()
2316 * is not active. We have to update ConfigRomHeader and
2317 * BusOptions manually, and the write to ConfigROMmap takes
2318 * effect immediately. We tie this to the enabling of the
2319 * link, so we have a valid config rom before enabling - the
2320 * OHCI requires that ConfigROMhdr and BusOptions have valid
2321 * values before enabling.
2323 * However, when the ConfigROMmap is written, some controllers
2324 * always read back quadlets 0 and 2 from the config rom to
2325 * the ConfigRomHeader and BusOptions registers on bus reset.
2326 * They shouldn't do that in this initial case where the link
2327 * isn't enabled. This means we have to use the same
2328 * workaround here, setting the bus header to 0 and then write
2329 * the right values in the bus reset tasklet.
2333 ohci
->next_config_rom
=
2334 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2335 &ohci
->next_config_rom_bus
,
2337 if (ohci
->next_config_rom
== NULL
)
2340 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2343 * In the suspend case, config_rom is NULL, which
2344 * means that we just reuse the old config rom.
2346 ohci
->next_config_rom
= ohci
->config_rom
;
2347 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2350 ohci
->next_header
= ohci
->next_config_rom
[0];
2351 ohci
->next_config_rom
[0] = 0;
2352 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2353 reg_write(ohci
, OHCI1394_BusOptions
,
2354 be32_to_cpu(ohci
->next_config_rom
[2]));
2355 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2357 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2359 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
2360 pci_enable_msi(dev
);
2361 if (request_irq(dev
->irq
, irq_handler
,
2362 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
2363 ohci_driver_name
, ohci
)) {
2364 dev_err(card
->device
, "failed to allocate interrupt %d\n",
2366 pci_disable_msi(dev
);
2369 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2370 ohci
->next_config_rom
,
2371 ohci
->next_config_rom_bus
);
2372 ohci
->next_config_rom
= NULL
;
2377 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2378 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2379 OHCI1394_isochTx
| OHCI1394_isochRx
|
2380 OHCI1394_postedWriteErr
|
2381 OHCI1394_selfIDComplete
|
2382 OHCI1394_regAccessFail
|
2383 OHCI1394_cycleInconsistent
|
2384 OHCI1394_unrecoverableError
|
2385 OHCI1394_cycleTooLong
|
2386 OHCI1394_masterIntEnable
;
2387 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2388 irqs
|= OHCI1394_busReset
;
2389 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2391 reg_write(ohci
, OHCI1394_HCControlSet
,
2392 OHCI1394_HCControl_linkEnable
|
2393 OHCI1394_HCControl_BIBimageValid
);
2395 reg_write(ohci
, OHCI1394_LinkControlSet
,
2396 OHCI1394_LinkControl_rcvSelfID
|
2397 OHCI1394_LinkControl_rcvPhyPkt
);
2399 ar_context_run(&ohci
->ar_request_ctx
);
2400 ar_context_run(&ohci
->ar_response_ctx
);
2404 /* We are ready to go, reset bus to finish initialization. */
2405 fw_schedule_bus_reset(&ohci
->card
, false, true);
2410 static int ohci_set_config_rom(struct fw_card
*card
,
2411 const __be32
*config_rom
, size_t length
)
2413 struct fw_ohci
*ohci
;
2414 __be32
*next_config_rom
;
2415 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2417 ohci
= fw_ohci(card
);
2420 * When the OHCI controller is enabled, the config rom update
2421 * mechanism is a bit tricky, but easy enough to use. See
2422 * section 5.5.6 in the OHCI specification.
2424 * The OHCI controller caches the new config rom address in a
2425 * shadow register (ConfigROMmapNext) and needs a bus reset
2426 * for the changes to take place. When the bus reset is
2427 * detected, the controller loads the new values for the
2428 * ConfigRomHeader and BusOptions registers from the specified
2429 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2430 * shadow register. All automatically and atomically.
2432 * Now, there's a twist to this story. The automatic load of
2433 * ConfigRomHeader and BusOptions doesn't honor the
2434 * noByteSwapData bit, so with a be32 config rom, the
2435 * controller will load be32 values in to these registers
2436 * during the atomic update, even on litte endian
2437 * architectures. The workaround we use is to put a 0 in the
2438 * header quadlet; 0 is endian agnostic and means that the
2439 * config rom isn't ready yet. In the bus reset tasklet we
2440 * then set up the real values for the two registers.
2442 * We use ohci->lock to avoid racing with the code that sets
2443 * ohci->next_config_rom to NULL (see bus_reset_work).
2447 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2448 &next_config_rom_bus
, GFP_KERNEL
);
2449 if (next_config_rom
== NULL
)
2452 spin_lock_irq(&ohci
->lock
);
2455 * If there is not an already pending config_rom update,
2456 * push our new allocation into the ohci->next_config_rom
2457 * and then mark the local variable as null so that we
2458 * won't deallocate the new buffer.
2460 * OTOH, if there is a pending config_rom update, just
2461 * use that buffer with the new config_rom data, and
2462 * let this routine free the unused DMA allocation.
2465 if (ohci
->next_config_rom
== NULL
) {
2466 ohci
->next_config_rom
= next_config_rom
;
2467 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2468 next_config_rom
= NULL
;
2471 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2473 ohci
->next_header
= config_rom
[0];
2474 ohci
->next_config_rom
[0] = 0;
2476 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2478 spin_unlock_irq(&ohci
->lock
);
2480 /* If we didn't use the DMA allocation, delete it. */
2481 if (next_config_rom
!= NULL
)
2482 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2483 next_config_rom
, next_config_rom_bus
);
2486 * Now initiate a bus reset to have the changes take
2487 * effect. We clean up the old config rom memory and DMA
2488 * mappings in the bus reset tasklet, since the OHCI
2489 * controller could need to access it before the bus reset
2493 fw_schedule_bus_reset(&ohci
->card
, true, true);
2498 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2500 struct fw_ohci
*ohci
= fw_ohci(card
);
2502 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2505 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2507 struct fw_ohci
*ohci
= fw_ohci(card
);
2509 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2512 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2514 struct fw_ohci
*ohci
= fw_ohci(card
);
2515 struct context
*ctx
= &ohci
->at_request_ctx
;
2516 struct driver_data
*driver_data
= packet
->driver_data
;
2519 tasklet_disable(&ctx
->tasklet
);
2521 if (packet
->ack
!= 0)
2524 if (packet
->payload_mapped
)
2525 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2526 packet
->payload_length
, DMA_TO_DEVICE
);
2528 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2529 driver_data
->packet
= NULL
;
2530 packet
->ack
= RCODE_CANCELLED
;
2531 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2534 tasklet_enable(&ctx
->tasklet
);
2539 static int ohci_enable_phys_dma(struct fw_card
*card
,
2540 int node_id
, int generation
)
2542 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2545 struct fw_ohci
*ohci
= fw_ohci(card
);
2546 unsigned long flags
;
2550 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2551 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2554 spin_lock_irqsave(&ohci
->lock
, flags
);
2556 if (ohci
->generation
!= generation
) {
2562 * Note, if the node ID contains a non-local bus ID, physical DMA is
2563 * enabled for _all_ nodes on remote buses.
2566 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2568 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2570 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2574 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2577 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2580 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2582 struct fw_ohci
*ohci
= fw_ohci(card
);
2583 unsigned long flags
;
2586 switch (csr_offset
) {
2587 case CSR_STATE_CLEAR
:
2589 if (ohci
->is_root
&&
2590 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2591 OHCI1394_LinkControl_cycleMaster
))
2592 value
= CSR_STATE_BIT_CMSTR
;
2595 if (ohci
->csr_state_setclear_abdicate
)
2596 value
|= CSR_STATE_BIT_ABDICATE
;
2601 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2603 case CSR_CYCLE_TIME
:
2604 return get_cycle_time(ohci
);
2608 * We might be called just after the cycle timer has wrapped
2609 * around but just before the cycle64Seconds handler, so we
2610 * better check here, too, if the bus time needs to be updated.
2612 spin_lock_irqsave(&ohci
->lock
, flags
);
2613 value
= update_bus_time(ohci
);
2614 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2617 case CSR_BUSY_TIMEOUT
:
2618 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2619 return (value
>> 4) & 0x0ffff00f;
2621 case CSR_PRIORITY_BUDGET
:
2622 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2623 (ohci
->pri_req_max
<< 8);
2631 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2633 struct fw_ohci
*ohci
= fw_ohci(card
);
2634 unsigned long flags
;
2636 switch (csr_offset
) {
2637 case CSR_STATE_CLEAR
:
2638 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2639 reg_write(ohci
, OHCI1394_LinkControlClear
,
2640 OHCI1394_LinkControl_cycleMaster
);
2643 if (value
& CSR_STATE_BIT_ABDICATE
)
2644 ohci
->csr_state_setclear_abdicate
= false;
2648 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2649 reg_write(ohci
, OHCI1394_LinkControlSet
,
2650 OHCI1394_LinkControl_cycleMaster
);
2653 if (value
& CSR_STATE_BIT_ABDICATE
)
2654 ohci
->csr_state_setclear_abdicate
= true;
2658 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2662 case CSR_CYCLE_TIME
:
2663 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2664 reg_write(ohci
, OHCI1394_IntEventSet
,
2665 OHCI1394_cycleInconsistent
);
2670 spin_lock_irqsave(&ohci
->lock
, flags
);
2671 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2673 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2676 case CSR_BUSY_TIMEOUT
:
2677 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2678 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2679 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2683 case CSR_PRIORITY_BUDGET
:
2684 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2694 static void flush_iso_completions(struct iso_context
*ctx
)
2696 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2697 ctx
->header_length
, ctx
->header
,
2698 ctx
->base
.callback_data
);
2699 ctx
->header_length
= 0;
2702 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2706 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
)
2707 flush_iso_completions(ctx
);
2709 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2710 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2713 * The two iso header quadlets are byteswapped to little
2714 * endian by the controller, but we want to present them
2715 * as big endian for consistency with the bus endianness.
2717 if (ctx
->base
.header_size
> 0)
2718 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2719 if (ctx
->base
.header_size
> 4)
2720 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2721 if (ctx
->base
.header_size
> 8)
2722 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2723 ctx
->header_length
+= ctx
->base
.header_size
;
2726 static int handle_ir_packet_per_buffer(struct context
*context
,
2727 struct descriptor
*d
,
2728 struct descriptor
*last
)
2730 struct iso_context
*ctx
=
2731 container_of(context
, struct iso_context
, context
);
2732 struct descriptor
*pd
;
2735 for (pd
= d
; pd
<= last
; pd
++)
2736 if (pd
->transfer_status
)
2739 /* Descriptor(s) not done yet, stop iteration */
2742 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2744 buffer_dma
= le32_to_cpu(d
->data_address
);
2745 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2746 buffer_dma
& PAGE_MASK
,
2747 buffer_dma
& ~PAGE_MASK
,
2748 le16_to_cpu(d
->req_count
),
2752 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2754 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2755 flush_iso_completions(ctx
);
2760 /* d == last because each descriptor block is only a single descriptor. */
2761 static int handle_ir_buffer_fill(struct context
*context
,
2762 struct descriptor
*d
,
2763 struct descriptor
*last
)
2765 struct iso_context
*ctx
=
2766 container_of(context
, struct iso_context
, context
);
2767 unsigned int req_count
, res_count
, completed
;
2770 req_count
= le16_to_cpu(last
->req_count
);
2771 res_count
= le16_to_cpu(ACCESS_ONCE(last
->res_count
));
2772 completed
= req_count
- res_count
;
2773 buffer_dma
= le32_to_cpu(last
->data_address
);
2775 if (completed
> 0) {
2776 ctx
->mc_buffer_bus
= buffer_dma
;
2777 ctx
->mc_completed
= completed
;
2781 /* Descriptor(s) not done yet, stop iteration */
2784 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2785 buffer_dma
& PAGE_MASK
,
2786 buffer_dma
& ~PAGE_MASK
,
2787 completed
, DMA_FROM_DEVICE
);
2789 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2790 ctx
->base
.callback
.mc(&ctx
->base
,
2791 buffer_dma
+ completed
,
2792 ctx
->base
.callback_data
);
2793 ctx
->mc_completed
= 0;
2799 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2801 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2802 ctx
->mc_buffer_bus
& PAGE_MASK
,
2803 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2804 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2806 ctx
->base
.callback
.mc(&ctx
->base
,
2807 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2808 ctx
->base
.callback_data
);
2809 ctx
->mc_completed
= 0;
2812 static inline void sync_it_packet_for_cpu(struct context
*context
,
2813 struct descriptor
*pd
)
2818 /* only packets beginning with OUTPUT_MORE* have data buffers */
2819 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2822 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2826 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2827 * data buffer is in the context program's coherent page and must not
2830 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2831 (context
->current_bus
& PAGE_MASK
)) {
2832 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2838 buffer_dma
= le32_to_cpu(pd
->data_address
);
2839 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2840 buffer_dma
& PAGE_MASK
,
2841 buffer_dma
& ~PAGE_MASK
,
2842 le16_to_cpu(pd
->req_count
),
2844 control
= pd
->control
;
2846 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2849 static int handle_it_packet(struct context
*context
,
2850 struct descriptor
*d
,
2851 struct descriptor
*last
)
2853 struct iso_context
*ctx
=
2854 container_of(context
, struct iso_context
, context
);
2855 struct descriptor
*pd
;
2858 for (pd
= d
; pd
<= last
; pd
++)
2859 if (pd
->transfer_status
)
2862 /* Descriptor(s) not done yet, stop iteration */
2865 sync_it_packet_for_cpu(context
, d
);
2867 if (ctx
->header_length
+ 4 > PAGE_SIZE
)
2868 flush_iso_completions(ctx
);
2870 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2871 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2872 /* Present this value as big-endian to match the receive code */
2873 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2874 le16_to_cpu(pd
->res_count
));
2875 ctx
->header_length
+= 4;
2877 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2878 flush_iso_completions(ctx
);
2883 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2885 u32 hi
= channels
>> 32, lo
= channels
;
2887 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2888 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2889 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2890 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2892 ohci
->mc_channels
= channels
;
2895 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2896 int type
, int channel
, size_t header_size
)
2898 struct fw_ohci
*ohci
= fw_ohci(card
);
2899 struct iso_context
*uninitialized_var(ctx
);
2900 descriptor_callback_t
uninitialized_var(callback
);
2901 u64
*uninitialized_var(channels
);
2902 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2903 int index
, ret
= -EBUSY
;
2905 spin_lock_irq(&ohci
->lock
);
2908 case FW_ISO_CONTEXT_TRANSMIT
:
2909 mask
= &ohci
->it_context_mask
;
2910 callback
= handle_it_packet
;
2911 index
= ffs(*mask
) - 1;
2913 *mask
&= ~(1 << index
);
2914 regs
= OHCI1394_IsoXmitContextBase(index
);
2915 ctx
= &ohci
->it_context_list
[index
];
2919 case FW_ISO_CONTEXT_RECEIVE
:
2920 channels
= &ohci
->ir_context_channels
;
2921 mask
= &ohci
->ir_context_mask
;
2922 callback
= handle_ir_packet_per_buffer
;
2923 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2925 *channels
&= ~(1ULL << channel
);
2926 *mask
&= ~(1 << index
);
2927 regs
= OHCI1394_IsoRcvContextBase(index
);
2928 ctx
= &ohci
->ir_context_list
[index
];
2932 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2933 mask
= &ohci
->ir_context_mask
;
2934 callback
= handle_ir_buffer_fill
;
2935 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2937 ohci
->mc_allocated
= true;
2938 *mask
&= ~(1 << index
);
2939 regs
= OHCI1394_IsoRcvContextBase(index
);
2940 ctx
= &ohci
->ir_context_list
[index
];
2949 spin_unlock_irq(&ohci
->lock
);
2952 return ERR_PTR(ret
);
2954 memset(ctx
, 0, sizeof(*ctx
));
2955 ctx
->header_length
= 0;
2956 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2957 if (ctx
->header
== NULL
) {
2961 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2963 goto out_with_header
;
2965 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
2966 set_multichannel_mask(ohci
, 0);
2967 ctx
->mc_completed
= 0;
2973 free_page((unsigned long)ctx
->header
);
2975 spin_lock_irq(&ohci
->lock
);
2978 case FW_ISO_CONTEXT_RECEIVE
:
2979 *channels
|= 1ULL << channel
;
2982 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2983 ohci
->mc_allocated
= false;
2986 *mask
|= 1 << index
;
2988 spin_unlock_irq(&ohci
->lock
);
2990 return ERR_PTR(ret
);
2993 static int ohci_start_iso(struct fw_iso_context
*base
,
2994 s32 cycle
, u32 sync
, u32 tags
)
2996 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2997 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2998 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3001 /* the controller cannot start without any queued packets */
3002 if (ctx
->context
.last
->branch_address
== 0)
3005 switch (ctx
->base
.type
) {
3006 case FW_ISO_CONTEXT_TRANSMIT
:
3007 index
= ctx
- ohci
->it_context_list
;
3010 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3011 (cycle
& 0x7fff) << 16;
3013 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3014 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3015 context_run(&ctx
->context
, match
);
3018 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3019 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3021 case FW_ISO_CONTEXT_RECEIVE
:
3022 index
= ctx
- ohci
->ir_context_list
;
3023 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3025 match
|= (cycle
& 0x07fff) << 12;
3026 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3029 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3030 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3031 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3032 context_run(&ctx
->context
, control
);
3043 static int ohci_stop_iso(struct fw_iso_context
*base
)
3045 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3046 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3049 switch (ctx
->base
.type
) {
3050 case FW_ISO_CONTEXT_TRANSMIT
:
3051 index
= ctx
- ohci
->it_context_list
;
3052 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3055 case FW_ISO_CONTEXT_RECEIVE
:
3056 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3057 index
= ctx
- ohci
->ir_context_list
;
3058 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3062 context_stop(&ctx
->context
);
3063 tasklet_kill(&ctx
->context
.tasklet
);
3068 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3070 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3071 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3072 unsigned long flags
;
3075 ohci_stop_iso(base
);
3076 context_release(&ctx
->context
);
3077 free_page((unsigned long)ctx
->header
);
3079 spin_lock_irqsave(&ohci
->lock
, flags
);
3081 switch (base
->type
) {
3082 case FW_ISO_CONTEXT_TRANSMIT
:
3083 index
= ctx
- ohci
->it_context_list
;
3084 ohci
->it_context_mask
|= 1 << index
;
3087 case FW_ISO_CONTEXT_RECEIVE
:
3088 index
= ctx
- ohci
->ir_context_list
;
3089 ohci
->ir_context_mask
|= 1 << index
;
3090 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3093 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3094 index
= ctx
- ohci
->ir_context_list
;
3095 ohci
->ir_context_mask
|= 1 << index
;
3096 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3097 ohci
->mc_channels
= 0;
3098 ohci
->mc_allocated
= false;
3102 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3105 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3107 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3108 unsigned long flags
;
3111 switch (base
->type
) {
3112 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3114 spin_lock_irqsave(&ohci
->lock
, flags
);
3116 /* Don't allow multichannel to grab other contexts' channels. */
3117 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3118 *channels
= ohci
->ir_context_channels
;
3121 set_multichannel_mask(ohci
, *channels
);
3125 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3136 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3139 struct iso_context
*ctx
;
3141 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3142 ctx
= &ohci
->ir_context_list
[i
];
3143 if (ctx
->context
.running
)
3144 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3147 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3148 ctx
= &ohci
->it_context_list
[i
];
3149 if (ctx
->context
.running
)
3150 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3155 static int queue_iso_transmit(struct iso_context
*ctx
,
3156 struct fw_iso_packet
*packet
,
3157 struct fw_iso_buffer
*buffer
,
3158 unsigned long payload
)
3160 struct descriptor
*d
, *last
, *pd
;
3161 struct fw_iso_packet
*p
;
3163 dma_addr_t d_bus
, page_bus
;
3164 u32 z
, header_z
, payload_z
, irq
;
3165 u32 payload_index
, payload_end_index
, next_page_index
;
3166 int page
, end_page
, i
, length
, offset
;
3169 payload_index
= payload
;
3175 if (p
->header_length
> 0)
3178 /* Determine the first page the payload isn't contained in. */
3179 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3180 if (p
->payload_length
> 0)
3181 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3187 /* Get header size in number of descriptors. */
3188 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3190 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3195 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3196 d
[0].req_count
= cpu_to_le16(8);
3198 * Link the skip address to this descriptor itself. This causes
3199 * a context to skip a cycle whenever lost cycles or FIFO
3200 * overruns occur, without dropping the data. The application
3201 * should then decide whether this is an error condition or not.
3202 * FIXME: Make the context's cycle-lost behaviour configurable?
3204 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3206 header
= (__le32
*) &d
[1];
3207 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3208 IT_HEADER_TAG(p
->tag
) |
3209 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3210 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3211 IT_HEADER_SPEED(ctx
->base
.speed
));
3213 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3214 p
->payload_length
));
3217 if (p
->header_length
> 0) {
3218 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3219 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3220 memcpy(&d
[z
], p
->header
, p
->header_length
);
3223 pd
= d
+ z
- payload_z
;
3224 payload_end_index
= payload_index
+ p
->payload_length
;
3225 for (i
= 0; i
< payload_z
; i
++) {
3226 page
= payload_index
>> PAGE_SHIFT
;
3227 offset
= payload_index
& ~PAGE_MASK
;
3228 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3230 min(next_page_index
, payload_end_index
) - payload_index
;
3231 pd
[i
].req_count
= cpu_to_le16(length
);
3233 page_bus
= page_private(buffer
->pages
[page
]);
3234 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3236 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3237 page_bus
, offset
, length
,
3240 payload_index
+= length
;
3244 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3246 irq
= DESCRIPTOR_NO_IRQ
;
3248 last
= z
== 2 ? d
: d
+ z
- 1;
3249 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3251 DESCRIPTOR_BRANCH_ALWAYS
|
3254 context_append(&ctx
->context
, d
, z
, header_z
);
3259 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3260 struct fw_iso_packet
*packet
,
3261 struct fw_iso_buffer
*buffer
,
3262 unsigned long payload
)
3264 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3265 struct descriptor
*d
, *pd
;
3266 dma_addr_t d_bus
, page_bus
;
3267 u32 z
, header_z
, rest
;
3269 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3272 * The OHCI controller puts the isochronous header and trailer in the
3273 * buffer, so we need at least 8 bytes.
3275 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3276 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3278 /* Get header size in number of descriptors. */
3279 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3280 page
= payload
>> PAGE_SHIFT
;
3281 offset
= payload
& ~PAGE_MASK
;
3282 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3284 for (i
= 0; i
< packet_count
; i
++) {
3285 /* d points to the header descriptor */
3286 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3287 d
= context_get_descriptors(&ctx
->context
,
3288 z
+ header_z
, &d_bus
);
3292 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3293 DESCRIPTOR_INPUT_MORE
);
3294 if (packet
->skip
&& i
== 0)
3295 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3296 d
->req_count
= cpu_to_le16(header_size
);
3297 d
->res_count
= d
->req_count
;
3298 d
->transfer_status
= 0;
3299 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3301 rest
= payload_per_buffer
;
3303 for (j
= 1; j
< z
; j
++) {
3305 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3306 DESCRIPTOR_INPUT_MORE
);
3308 if (offset
+ rest
< PAGE_SIZE
)
3311 length
= PAGE_SIZE
- offset
;
3312 pd
->req_count
= cpu_to_le16(length
);
3313 pd
->res_count
= pd
->req_count
;
3314 pd
->transfer_status
= 0;
3316 page_bus
= page_private(buffer
->pages
[page
]);
3317 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3319 dma_sync_single_range_for_device(device
, page_bus
,
3323 offset
= (offset
+ length
) & ~PAGE_MASK
;
3328 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3329 DESCRIPTOR_INPUT_LAST
|
3330 DESCRIPTOR_BRANCH_ALWAYS
);
3331 if (packet
->interrupt
&& i
== packet_count
- 1)
3332 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3334 context_append(&ctx
->context
, d
, z
, header_z
);
3340 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3341 struct fw_iso_packet
*packet
,
3342 struct fw_iso_buffer
*buffer
,
3343 unsigned long payload
)
3345 struct descriptor
*d
;
3346 dma_addr_t d_bus
, page_bus
;
3347 int page
, offset
, rest
, z
, i
, length
;
3349 page
= payload
>> PAGE_SHIFT
;
3350 offset
= payload
& ~PAGE_MASK
;
3351 rest
= packet
->payload_length
;
3353 /* We need one descriptor for each page in the buffer. */
3354 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3356 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3359 for (i
= 0; i
< z
; i
++) {
3360 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3364 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3365 DESCRIPTOR_BRANCH_ALWAYS
);
3366 if (packet
->skip
&& i
== 0)
3367 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3368 if (packet
->interrupt
&& i
== z
- 1)
3369 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3371 if (offset
+ rest
< PAGE_SIZE
)
3374 length
= PAGE_SIZE
- offset
;
3375 d
->req_count
= cpu_to_le16(length
);
3376 d
->res_count
= d
->req_count
;
3377 d
->transfer_status
= 0;
3379 page_bus
= page_private(buffer
->pages
[page
]);
3380 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3382 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3383 page_bus
, offset
, length
,
3390 context_append(&ctx
->context
, d
, 1, 0);
3396 static int ohci_queue_iso(struct fw_iso_context
*base
,
3397 struct fw_iso_packet
*packet
,
3398 struct fw_iso_buffer
*buffer
,
3399 unsigned long payload
)
3401 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3402 unsigned long flags
;
3405 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3406 switch (base
->type
) {
3407 case FW_ISO_CONTEXT_TRANSMIT
:
3408 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3410 case FW_ISO_CONTEXT_RECEIVE
:
3411 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3413 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3414 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3417 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3422 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3424 struct context
*ctx
=
3425 &container_of(base
, struct iso_context
, base
)->context
;
3427 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3430 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3432 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3435 tasklet_disable(&ctx
->context
.tasklet
);
3437 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3438 context_tasklet((unsigned long)&ctx
->context
);
3440 switch (base
->type
) {
3441 case FW_ISO_CONTEXT_TRANSMIT
:
3442 case FW_ISO_CONTEXT_RECEIVE
:
3443 if (ctx
->header_length
!= 0)
3444 flush_iso_completions(ctx
);
3446 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3447 if (ctx
->mc_completed
!= 0)
3448 flush_ir_buffer_fill(ctx
);
3454 clear_bit_unlock(0, &ctx
->flushing_completions
);
3455 smp_mb__after_clear_bit();
3458 tasklet_enable(&ctx
->context
.tasklet
);
3463 static const struct fw_card_driver ohci_driver
= {
3464 .enable
= ohci_enable
,
3465 .read_phy_reg
= ohci_read_phy_reg
,
3466 .update_phy_reg
= ohci_update_phy_reg
,
3467 .set_config_rom
= ohci_set_config_rom
,
3468 .send_request
= ohci_send_request
,
3469 .send_response
= ohci_send_response
,
3470 .cancel_packet
= ohci_cancel_packet
,
3471 .enable_phys_dma
= ohci_enable_phys_dma
,
3472 .read_csr
= ohci_read_csr
,
3473 .write_csr
= ohci_write_csr
,
3475 .allocate_iso_context
= ohci_allocate_iso_context
,
3476 .free_iso_context
= ohci_free_iso_context
,
3477 .set_iso_channels
= ohci_set_iso_channels
,
3478 .queue_iso
= ohci_queue_iso
,
3479 .flush_queue_iso
= ohci_flush_queue_iso
,
3480 .flush_iso_completions
= ohci_flush_iso_completions
,
3481 .start_iso
= ohci_start_iso
,
3482 .stop_iso
= ohci_stop_iso
,
3485 #ifdef CONFIG_PPC_PMAC
3486 static void pmac_ohci_on(struct pci_dev
*dev
)
3488 if (machine_is(powermac
)) {
3489 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3492 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3493 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3498 static void pmac_ohci_off(struct pci_dev
*dev
)
3500 if (machine_is(powermac
)) {
3501 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3504 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3505 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3510 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3511 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3512 #endif /* CONFIG_PPC_PMAC */
3514 static int __devinit
pci_probe(struct pci_dev
*dev
,
3515 const struct pci_device_id
*ent
)
3517 struct fw_ohci
*ohci
;
3518 u32 bus_options
, max_receive
, link_speed
, version
;
3523 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3524 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3528 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3534 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3538 err
= pci_enable_device(dev
);
3540 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3544 pci_set_master(dev
);
3545 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3546 pci_set_drvdata(dev
, ohci
);
3548 spin_lock_init(&ohci
->lock
);
3549 mutex_init(&ohci
->phy_reg_mutex
);
3551 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3553 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3554 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3555 dev_err(&dev
->dev
, "invalid MMIO resource\n");
3560 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3562 dev_err(&dev
->dev
, "MMIO resource unavailable\n");
3566 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3567 if (ohci
->registers
== NULL
) {
3568 dev_err(&dev
->dev
, "failed to remap registers\n");
3573 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3574 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3575 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3576 ohci_quirks
[i
].device
== dev
->device
) &&
3577 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3578 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3579 ohci
->quirks
= ohci_quirks
[i
].flags
;
3583 ohci
->quirks
= param_quirks
;
3586 * Because dma_alloc_coherent() allocates at least one page,
3587 * we save space by using a common buffer for the AR request/
3588 * response descriptors and the self IDs buffer.
3590 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3591 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3592 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3594 &ohci
->misc_buffer_bus
,
3596 if (!ohci
->misc_buffer
) {
3601 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3602 OHCI1394_AsReqRcvContextControlSet
);
3606 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3607 OHCI1394_AsRspRcvContextControlSet
);
3609 goto fail_arreq_ctx
;
3611 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3612 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3614 goto fail_arrsp_ctx
;
3616 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3617 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3619 goto fail_atreq_ctx
;
3621 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3622 ohci
->ir_context_channels
= ~0ULL;
3623 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3624 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3625 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3626 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3627 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3628 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3630 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3631 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3632 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3633 ohci
->it_context_mask
= ohci
->it_context_support
;
3634 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3635 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3636 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3638 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3643 ohci
->self_id_cpu
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3644 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3646 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3647 max_receive
= (bus_options
>> 12) & 0xf;
3648 link_speed
= bus_options
& 0x7;
3649 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3650 reg_read(ohci
, OHCI1394_GUIDLo
);
3652 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3656 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3657 dev_notice(&dev
->dev
,
3658 "added OHCI v%x.%x device as card %d, "
3659 "%d IR + %d IT contexts, quirks 0x%x\n",
3660 version
>> 16, version
& 0xff, ohci
->card
.index
,
3661 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3666 kfree(ohci
->ir_context_list
);
3667 kfree(ohci
->it_context_list
);
3668 context_release(&ohci
->at_response_ctx
);
3670 context_release(&ohci
->at_request_ctx
);
3672 ar_context_release(&ohci
->ar_response_ctx
);
3674 ar_context_release(&ohci
->ar_request_ctx
);
3676 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3677 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3679 pci_iounmap(dev
, ohci
->registers
);
3681 pci_release_region(dev
, 0);
3683 pci_disable_device(dev
);
3689 dev_err(&dev
->dev
, "out of memory\n");
3694 static void pci_remove(struct pci_dev
*dev
)
3696 struct fw_ohci
*ohci
;
3698 ohci
= pci_get_drvdata(dev
);
3699 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3701 cancel_work_sync(&ohci
->bus_reset_work
);
3702 fw_core_remove_card(&ohci
->card
);
3705 * FIXME: Fail all pending packets here, now that the upper
3706 * layers can't queue any more.
3709 software_reset(ohci
);
3710 free_irq(dev
->irq
, ohci
);
3712 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3713 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3714 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3715 if (ohci
->config_rom
)
3716 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3717 ohci
->config_rom
, ohci
->config_rom_bus
);
3718 ar_context_release(&ohci
->ar_request_ctx
);
3719 ar_context_release(&ohci
->ar_response_ctx
);
3720 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3721 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3722 context_release(&ohci
->at_request_ctx
);
3723 context_release(&ohci
->at_response_ctx
);
3724 kfree(ohci
->it_context_list
);
3725 kfree(ohci
->ir_context_list
);
3726 pci_disable_msi(dev
);
3727 pci_iounmap(dev
, ohci
->registers
);
3728 pci_release_region(dev
, 0);
3729 pci_disable_device(dev
);
3733 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3737 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3739 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3742 software_reset(ohci
);
3743 free_irq(dev
->irq
, ohci
);
3744 pci_disable_msi(dev
);
3745 err
= pci_save_state(dev
);
3747 dev_err(&dev
->dev
, "pci_save_state failed\n");
3750 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3752 dev_err(&dev
->dev
, "pci_set_power_state failed with %d\n", err
);
3758 static int pci_resume(struct pci_dev
*dev
)
3760 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3764 pci_set_power_state(dev
, PCI_D0
);
3765 pci_restore_state(dev
);
3766 err
= pci_enable_device(dev
);
3768 dev_err(&dev
->dev
, "pci_enable_device failed\n");
3772 /* Some systems don't setup GUID register on resume from ram */
3773 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3774 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3775 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3776 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3779 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3783 ohci_resume_iso_dma(ohci
);
3789 static const struct pci_device_id pci_table
[] = {
3790 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3794 MODULE_DEVICE_TABLE(pci
, pci_table
);
3796 static struct pci_driver fw_ohci_pci_driver
= {
3797 .name
= ohci_driver_name
,
3798 .id_table
= pci_table
,
3800 .remove
= pci_remove
,
3802 .resume
= pci_resume
,
3803 .suspend
= pci_suspend
,
3807 module_pci_driver(fw_ohci_pci_driver
);
3809 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3810 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3811 MODULE_LICENSE("GPL");
3813 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3814 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3815 MODULE_ALIAS("ohci1394");