Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / gpu / drm / gma500 / cdv_intel_display.c
bloba68509ba22a8ae705421307e17c6a9c13d08331c
1 /*
2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
34 struct cdv_intel_range_t {
35 int min, max;
38 struct cdv_intel_p2_t {
39 int dot_limit;
40 int p2_slow, p2_fast;
43 struct cdv_intel_clock_t {
44 /* given values */
45 int n;
46 int m1, m2;
47 int p1, p2;
48 /* derived values */
49 int dot;
50 int vco;
51 int m;
52 int p;
55 #define INTEL_P2_NUM 2
57 struct cdv_intel_limit_t {
58 struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1;
59 struct cdv_intel_p2_t p2;
62 #define CDV_LIMIT_SINGLE_LVDS_96 0
63 #define CDV_LIMIT_SINGLE_LVDS_100 1
64 #define CDV_LIMIT_DAC_HDMI_27 2
65 #define CDV_LIMIT_DAC_HDMI_96 3
67 static const struct cdv_intel_limit_t cdv_intel_limits[] = {
68 { /* CDV_SIGNLE_LVDS_96MHz */
69 .dot = {.min = 20000, .max = 115500},
70 .vco = {.min = 1800000, .max = 3600000},
71 .n = {.min = 2, .max = 6},
72 .m = {.min = 60, .max = 160},
73 .m1 = {.min = 0, .max = 0},
74 .m2 = {.min = 58, .max = 158},
75 .p = {.min = 28, .max = 140},
76 .p1 = {.min = 2, .max = 10},
77 .p2 = {.dot_limit = 200000,
78 .p2_slow = 14, .p2_fast = 14},
80 { /* CDV_SINGLE_LVDS_100MHz */
81 .dot = {.min = 20000, .max = 115500},
82 .vco = {.min = 1800000, .max = 3600000},
83 .n = {.min = 2, .max = 6},
84 .m = {.min = 60, .max = 160},
85 .m1 = {.min = 0, .max = 0},
86 .m2 = {.min = 58, .max = 158},
87 .p = {.min = 28, .max = 140},
88 .p1 = {.min = 2, .max = 10},
89 /* The single-channel range is 25-112Mhz, and dual-channel
90 * is 80-224Mhz. Prefer single channel as much as possible.
92 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
94 { /* CDV_DAC_HDMI_27MHz */
95 .dot = {.min = 20000, .max = 400000},
96 .vco = {.min = 1809000, .max = 3564000},
97 .n = {.min = 1, .max = 1},
98 .m = {.min = 67, .max = 132},
99 .m1 = {.min = 0, .max = 0},
100 .m2 = {.min = 65, .max = 130},
101 .p = {.min = 5, .max = 90},
102 .p1 = {.min = 1, .max = 9},
103 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
105 { /* CDV_DAC_HDMI_96MHz */
106 .dot = {.min = 20000, .max = 400000},
107 .vco = {.min = 1800000, .max = 3600000},
108 .n = {.min = 2, .max = 6},
109 .m = {.min = 60, .max = 160},
110 .m1 = {.min = 0, .max = 0},
111 .m2 = {.min = 58, .max = 158},
112 .p = {.min = 5, .max = 100},
113 .p1 = {.min = 1, .max = 10},
114 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
118 #define _wait_for(COND, MS, W) ({ \
119 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
120 int ret__ = 0; \
121 while (!(COND)) { \
122 if (time_after(jiffies, timeout__)) { \
123 ret__ = -ETIMEDOUT; \
124 break; \
126 if (W && !in_dbg_master()) \
127 msleep(W); \
129 ret__; \
132 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
135 static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
137 int ret;
139 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
140 if (ret) {
141 DRM_ERROR("timeout waiting for SB to idle before read\n");
142 return ret;
145 REG_WRITE(SB_ADDR, reg);
146 REG_WRITE(SB_PCKT,
147 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
148 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
149 SET_FIELD(0xf, SB_BYTE_ENABLE));
151 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
152 if (ret) {
153 DRM_ERROR("timeout waiting for SB to idle after read\n");
154 return ret;
157 *val = REG_READ(SB_DATA);
159 return 0;
162 static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
164 int ret;
165 static bool dpio_debug = true;
166 u32 temp;
168 if (dpio_debug) {
169 if (cdv_sb_read(dev, reg, &temp) == 0)
170 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
171 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
174 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
175 if (ret) {
176 DRM_ERROR("timeout waiting for SB to idle before write\n");
177 return ret;
180 REG_WRITE(SB_ADDR, reg);
181 REG_WRITE(SB_DATA, val);
182 REG_WRITE(SB_PCKT,
183 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
184 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
185 SET_FIELD(0xf, SB_BYTE_ENABLE));
187 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
188 if (ret) {
189 DRM_ERROR("timeout waiting for SB to idle after write\n");
190 return ret;
193 if (dpio_debug) {
194 if (cdv_sb_read(dev, reg, &temp) == 0)
195 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
198 return 0;
201 /* Reset the DPIO configuration register. The BIOS does this at every
202 * mode set.
204 static void cdv_sb_reset(struct drm_device *dev)
207 REG_WRITE(DPIO_CFG, 0);
208 REG_READ(DPIO_CFG);
209 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
212 /* Unlike most Intel display engines, on Cedarview the DPLL registers
213 * are behind this sideband bus. They must be programmed while the
214 * DPLL reference clock is on in the DPLL control register, but before
215 * the DPLL is enabled in the DPLL control register.
217 static int
218 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
219 struct cdv_intel_clock_t *clock, bool is_lvds)
221 struct psb_intel_crtc *psb_crtc = to_psb_intel_crtc(crtc);
222 int pipe = psb_crtc->pipe;
223 u32 m, n_vco, p;
224 int ret = 0;
225 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
226 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
227 u32 ref_value;
228 u32 lane_reg, lane_value;
230 cdv_sb_reset(dev);
232 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
234 udelay(100);
236 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
237 ref_value = 0x68A701;
239 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
241 /* We don't know what the other fields of these regs are, so
242 * leave them in place.
245 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
246 * for the pipe A/B. Display spec 1.06 has wrong definition.
247 * Correct definition is like below:
249 * refclka mean use clock from same PLL
251 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
253 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
256 ret = cdv_sb_read(dev, ref_sfr, &ref_value);
257 if (ret)
258 return ret;
259 ref_value &= ~(REF_CLK_MASK);
261 /* use DPLL_A for pipeB on CRT/HDMI */
262 if (pipe == 1 && !is_lvds) {
263 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
264 ref_value |= REF_CLK_DPLLA;
265 } else {
266 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
267 ref_value |= REF_CLK_DPLL;
269 ret = cdv_sb_write(dev, ref_sfr, ref_value);
270 if (ret)
271 return ret;
273 ret = cdv_sb_read(dev, SB_M(pipe), &m);
274 if (ret)
275 return ret;
276 m &= ~SB_M_DIVIDER_MASK;
277 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
278 ret = cdv_sb_write(dev, SB_M(pipe), m);
279 if (ret)
280 return ret;
282 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
283 if (ret)
284 return ret;
286 /* Follow the BIOS to program the N_DIVIDER REG */
287 n_vco &= 0xFFFF;
288 n_vco |= 0x107;
289 n_vco &= ~(SB_N_VCO_SEL_MASK |
290 SB_N_DIVIDER_MASK |
291 SB_N_CB_TUNE_MASK);
293 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
295 if (clock->vco < 2250000) {
296 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
297 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
298 } else if (clock->vco < 2750000) {
299 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
300 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
301 } else if (clock->vco < 3300000) {
302 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
303 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
304 } else {
305 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
306 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
309 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
310 if (ret)
311 return ret;
313 ret = cdv_sb_read(dev, SB_P(pipe), &p);
314 if (ret)
315 return ret;
316 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
317 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
318 switch (clock->p2) {
319 case 5:
320 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
321 break;
322 case 10:
323 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
324 break;
325 case 14:
326 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
327 break;
328 case 7:
329 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
330 break;
331 default:
332 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
333 return -EINVAL;
335 ret = cdv_sb_write(dev, SB_P(pipe), p);
336 if (ret)
337 return ret;
339 lane_reg = PSB_LANE0;
340 cdv_sb_read(dev, lane_reg, &lane_value);
341 lane_value &= ~(LANE_PLL_MASK);
342 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
343 cdv_sb_write(dev, lane_reg, lane_value);
345 lane_reg = PSB_LANE1;
346 cdv_sb_read(dev, lane_reg, &lane_value);
347 lane_value &= ~(LANE_PLL_MASK);
348 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
349 cdv_sb_write(dev, lane_reg, lane_value);
351 lane_reg = PSB_LANE2;
352 cdv_sb_read(dev, lane_reg, &lane_value);
353 lane_value &= ~(LANE_PLL_MASK);
354 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
355 cdv_sb_write(dev, lane_reg, lane_value);
357 lane_reg = PSB_LANE3;
358 cdv_sb_read(dev, lane_reg, &lane_value);
359 lane_value &= ~(LANE_PLL_MASK);
360 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
361 cdv_sb_write(dev, lane_reg, lane_value);
363 return 0;
367 * Returns whether any encoder on the specified pipe is of the specified type
369 static bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type)
371 struct drm_device *dev = crtc->dev;
372 struct drm_mode_config *mode_config = &dev->mode_config;
373 struct drm_connector *l_entry;
375 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
376 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
377 struct psb_intel_encoder *psb_intel_encoder =
378 psb_intel_attached_encoder(l_entry);
379 if (psb_intel_encoder->type == type)
380 return true;
383 return false;
386 static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
387 int refclk)
389 const struct cdv_intel_limit_t *limit;
390 if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
392 * Now only single-channel LVDS is supported on CDV. If it is
393 * incorrect, please add the dual-channel LVDS.
395 if (refclk == 96000)
396 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
397 else
398 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
399 } else {
400 if (refclk == 27000)
401 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
402 else
403 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
405 return limit;
408 /* m1 is reserved as 0 in CDV, n is a ring counter */
409 static void cdv_intel_clock(struct drm_device *dev,
410 int refclk, struct cdv_intel_clock_t *clock)
412 clock->m = clock->m2 + 2;
413 clock->p = clock->p1 * clock->p2;
414 clock->vco = (refclk * clock->m) / clock->n;
415 clock->dot = clock->vco / clock->p;
419 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
420 static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc,
421 const struct cdv_intel_limit_t *limit,
422 struct cdv_intel_clock_t *clock)
424 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
425 INTELPllInvalid("p1 out of range\n");
426 if (clock->p < limit->p.min || limit->p.max < clock->p)
427 INTELPllInvalid("p out of range\n");
428 /* unnecessary to check the range of m(m1/M2)/n again */
429 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
430 INTELPllInvalid("vco out of range\n");
431 /* XXX: We may need to be checking "Dot clock"
432 * depending on the multiplier, connector, etc.,
433 * rather than just a single range.
435 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
436 INTELPllInvalid("dot out of range\n");
438 return true;
441 static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target,
442 int refclk,
443 struct cdv_intel_clock_t *best_clock)
445 struct drm_device *dev = crtc->dev;
446 struct cdv_intel_clock_t clock;
447 const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk);
448 int err = target;
451 if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
452 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
454 * For LVDS, if the panel is on, just rely on its current
455 * settings for dual-channel. We haven't figured out how to
456 * reliably set up different single/dual channel state, if we
457 * even can.
459 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
460 LVDS_CLKB_POWER_UP)
461 clock.p2 = limit->p2.p2_fast;
462 else
463 clock.p2 = limit->p2.p2_slow;
464 } else {
465 if (target < limit->p2.dot_limit)
466 clock.p2 = limit->p2.p2_slow;
467 else
468 clock.p2 = limit->p2.p2_fast;
471 memset(best_clock, 0, sizeof(*best_clock));
472 clock.m1 = 0;
473 /* m1 is reserved as 0 in CDV, n is a ring counter.
474 So skip the m1 loop */
475 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
476 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max;
477 clock.m2++) {
478 for (clock.p1 = limit->p1.min;
479 clock.p1 <= limit->p1.max;
480 clock.p1++) {
481 int this_err;
483 cdv_intel_clock(dev, refclk, &clock);
485 if (!cdv_intel_PLL_is_valid(crtc,
486 limit, &clock))
487 continue;
489 this_err = abs(clock.dot - target);
490 if (this_err < err) {
491 *best_clock = clock;
492 err = this_err;
498 return err != target;
501 static int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
502 int x, int y, struct drm_framebuffer *old_fb)
504 struct drm_device *dev = crtc->dev;
505 struct drm_psb_private *dev_priv = dev->dev_private;
506 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
507 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
508 int pipe = psb_intel_crtc->pipe;
509 const struct psb_offset *map = &dev_priv->regmap[pipe];
510 unsigned long start, offset;
511 u32 dspcntr;
512 int ret = 0;
514 if (!gma_power_begin(dev, true))
515 return 0;
517 /* no fb bound */
518 if (!crtc->fb) {
519 dev_err(dev->dev, "No FB bound\n");
520 goto psb_intel_pipe_cleaner;
524 /* We are displaying this buffer, make sure it is actually loaded
525 into the GTT */
526 ret = psb_gtt_pin(psbfb->gtt);
527 if (ret < 0)
528 goto psb_intel_pipe_set_base_exit;
529 start = psbfb->gtt->offset;
530 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
532 REG_WRITE(map->stride, crtc->fb->pitches[0]);
534 dspcntr = REG_READ(map->cntr);
535 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
537 switch (crtc->fb->bits_per_pixel) {
538 case 8:
539 dspcntr |= DISPPLANE_8BPP;
540 break;
541 case 16:
542 if (crtc->fb->depth == 15)
543 dspcntr |= DISPPLANE_15_16BPP;
544 else
545 dspcntr |= DISPPLANE_16BPP;
546 break;
547 case 24:
548 case 32:
549 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
550 break;
551 default:
552 dev_err(dev->dev, "Unknown color depth\n");
553 ret = -EINVAL;
554 goto psb_intel_pipe_set_base_exit;
556 REG_WRITE(map->cntr, dspcntr);
558 dev_dbg(dev->dev,
559 "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
561 REG_WRITE(map->base, offset);
562 REG_READ(map->base);
563 REG_WRITE(map->surf, start);
564 REG_READ(map->surf);
566 psb_intel_pipe_cleaner:
567 /* If there was a previous display we can now unpin it */
568 if (old_fb)
569 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
571 psb_intel_pipe_set_base_exit:
572 gma_power_end(dev);
573 return ret;
576 #define FIFO_PIPEA (1 << 0)
577 #define FIFO_PIPEB (1 << 1)
579 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
581 struct drm_crtc *crtc;
582 struct drm_psb_private *dev_priv = dev->dev_private;
583 struct psb_intel_crtc *psb_intel_crtc = NULL;
585 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
586 psb_intel_crtc = to_psb_intel_crtc(crtc);
588 if (crtc->fb == NULL || !psb_intel_crtc->active)
589 return false;
590 return true;
593 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
595 uint32_t pipe_enabled = 0;
597 if (cdv_intel_pipe_enabled(dev, 0))
598 pipe_enabled |= FIFO_PIPEA;
600 if (cdv_intel_pipe_enabled(dev, 1))
601 pipe_enabled |= FIFO_PIPEB;
604 DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
606 if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
607 return true;
608 else
609 return false;
612 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
614 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
615 struct drm_mode_config *mode_config = &dev->mode_config;
616 struct drm_connector *connector;
618 if (psb_intel_crtc->pipe != 1)
619 return false;
621 list_for_each_entry(connector, &mode_config->connector_list, head) {
622 struct psb_intel_encoder *psb_intel_encoder =
623 psb_intel_attached_encoder(connector);
625 if (!connector->encoder
626 || connector->encoder->crtc != crtc)
627 continue;
629 if (psb_intel_encoder->type == INTEL_OUTPUT_LVDS)
630 return true;
633 return false;
636 static void cdv_intel_disable_self_refresh (struct drm_device *dev)
638 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
640 /* Disable self-refresh before adjust WM */
641 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
642 REG_READ(FW_BLC_SELF);
644 cdv_intel_wait_for_vblank(dev);
646 /* Cedarview workaround to write ovelay plane, which force to leave
647 * MAX_FIFO state.
649 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
650 REG_READ(OV_OVADD);
652 cdv_intel_wait_for_vblank(dev);
657 static void cdv_intel_update_watermark (struct drm_device *dev, struct drm_crtc *crtc)
660 if (cdv_intel_single_pipe_active(dev)) {
661 u32 fw;
663 fw = REG_READ(DSPFW1);
664 fw &= ~DSP_FIFO_SR_WM_MASK;
665 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
666 fw &= ~CURSOR_B_FIFO_WM_MASK;
667 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
668 REG_WRITE(DSPFW1, fw);
670 fw = REG_READ(DSPFW2);
671 fw &= ~CURSOR_A_FIFO_WM_MASK;
672 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
673 fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
674 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
675 REG_WRITE(DSPFW2, fw);
677 REG_WRITE(DSPFW3, 0x36000000);
679 /* ignore FW4 */
681 if (is_pipeb_lvds(dev, crtc)) {
682 REG_WRITE(DSPFW5, 0x00040330);
683 } else {
684 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
685 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
686 (3 << CURSOR_B_FIFO_WM1_SHIFT) |
687 (4 << CURSOR_FIFO_SR_WM1_SHIFT);
688 REG_WRITE(DSPFW5, fw);
691 REG_WRITE(DSPFW6, 0x10);
693 cdv_intel_wait_for_vblank(dev);
695 /* enable self-refresh for single pipe active */
696 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
697 REG_READ(FW_BLC_SELF);
698 cdv_intel_wait_for_vblank(dev);
700 } else {
702 /* HW team suggested values... */
703 REG_WRITE(DSPFW1, 0x3f880808);
704 REG_WRITE(DSPFW2, 0x0b020202);
705 REG_WRITE(DSPFW3, 0x24000000);
706 REG_WRITE(DSPFW4, 0x08030202);
707 REG_WRITE(DSPFW5, 0x01010101);
708 REG_WRITE(DSPFW6, 0x1d0);
710 cdv_intel_wait_for_vblank(dev);
712 cdv_intel_disable_self_refresh(dev);
717 /** Loads the palette/gamma unit for the CRTC with the prepared values */
718 static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
720 struct drm_device *dev = crtc->dev;
721 struct drm_psb_private *dev_priv = dev->dev_private;
722 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
723 int palreg = PALETTE_A;
724 int i;
726 /* The clocks have to be on to load the palette. */
727 if (!crtc->enabled)
728 return;
730 switch (psb_intel_crtc->pipe) {
731 case 0:
732 break;
733 case 1:
734 palreg = PALETTE_B;
735 break;
736 case 2:
737 palreg = PALETTE_C;
738 break;
739 default:
740 dev_err(dev->dev, "Illegal Pipe Number.\n");
741 return;
744 if (gma_power_begin(dev, false)) {
745 for (i = 0; i < 256; i++) {
746 REG_WRITE(palreg + 4 * i,
747 ((psb_intel_crtc->lut_r[i] +
748 psb_intel_crtc->lut_adj[i]) << 16) |
749 ((psb_intel_crtc->lut_g[i] +
750 psb_intel_crtc->lut_adj[i]) << 8) |
751 (psb_intel_crtc->lut_b[i] +
752 psb_intel_crtc->lut_adj[i]));
754 gma_power_end(dev);
755 } else {
756 for (i = 0; i < 256; i++) {
757 dev_priv->regs.pipe[0].palette[i] =
758 ((psb_intel_crtc->lut_r[i] +
759 psb_intel_crtc->lut_adj[i]) << 16) |
760 ((psb_intel_crtc->lut_g[i] +
761 psb_intel_crtc->lut_adj[i]) << 8) |
762 (psb_intel_crtc->lut_b[i] +
763 psb_intel_crtc->lut_adj[i]);
770 * Sets the power management mode of the pipe and plane.
772 * This code should probably grow support for turning the cursor off and back
773 * on appropriately at the same time as we're turning the pipe off/on.
775 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
777 struct drm_device *dev = crtc->dev;
778 struct drm_psb_private *dev_priv = dev->dev_private;
779 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
780 int pipe = psb_intel_crtc->pipe;
781 const struct psb_offset *map = &dev_priv->regmap[pipe];
782 u32 temp;
784 /* XXX: When our outputs are all unaware of DPMS modes other than off
785 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
787 cdv_intel_disable_self_refresh(dev);
789 switch (mode) {
790 case DRM_MODE_DPMS_ON:
791 case DRM_MODE_DPMS_STANDBY:
792 case DRM_MODE_DPMS_SUSPEND:
793 if (psb_intel_crtc->active)
794 return;
796 psb_intel_crtc->active = true;
798 /* Enable the DPLL */
799 temp = REG_READ(map->dpll);
800 if ((temp & DPLL_VCO_ENABLE) == 0) {
801 REG_WRITE(map->dpll, temp);
802 REG_READ(map->dpll);
803 /* Wait for the clocks to stabilize. */
804 udelay(150);
805 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
806 REG_READ(map->dpll);
807 /* Wait for the clocks to stabilize. */
808 udelay(150);
809 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
810 REG_READ(map->dpll);
811 /* Wait for the clocks to stabilize. */
812 udelay(150);
815 /* Jim Bish - switch plan and pipe per scott */
816 /* Enable the plane */
817 temp = REG_READ(map->cntr);
818 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
819 REG_WRITE(map->cntr,
820 temp | DISPLAY_PLANE_ENABLE);
821 /* Flush the plane changes */
822 REG_WRITE(map->base, REG_READ(map->base));
825 udelay(150);
827 /* Enable the pipe */
828 temp = REG_READ(map->conf);
829 if ((temp & PIPEACONF_ENABLE) == 0)
830 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
832 temp = REG_READ(map->status);
833 temp &= ~(0xFFFF);
834 temp |= PIPE_FIFO_UNDERRUN;
835 REG_WRITE(map->status, temp);
836 REG_READ(map->status);
838 cdv_intel_update_watermark(dev, crtc);
839 cdv_intel_crtc_load_lut(crtc);
841 /* Give the overlay scaler a chance to enable
842 * if it's on this pipe */
843 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
844 psb_intel_crtc->crtc_enable = true;
845 break;
846 case DRM_MODE_DPMS_OFF:
847 if (!psb_intel_crtc->active)
848 return;
850 psb_intel_crtc->active = false;
852 /* Give the overlay scaler a chance to disable
853 * if it's on this pipe */
854 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
856 /* Disable the VGA plane that we never use */
857 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
859 /* Jim Bish - changed pipe/plane here as well. */
861 drm_vblank_off(dev, pipe);
862 /* Wait for vblank for the disable to take effect */
863 cdv_intel_wait_for_vblank(dev);
865 /* Next, disable display pipes */
866 temp = REG_READ(map->conf);
867 if ((temp & PIPEACONF_ENABLE) != 0) {
868 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
869 REG_READ(map->conf);
872 /* Wait for vblank for the disable to take effect. */
873 cdv_intel_wait_for_vblank(dev);
875 udelay(150);
877 /* Disable display plane */
878 temp = REG_READ(map->cntr);
879 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
880 REG_WRITE(map->cntr,
881 temp & ~DISPLAY_PLANE_ENABLE);
882 /* Flush the plane changes */
883 REG_WRITE(map->base, REG_READ(map->base));
884 REG_READ(map->base);
887 temp = REG_READ(map->dpll);
888 if ((temp & DPLL_VCO_ENABLE) != 0) {
889 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
890 REG_READ(map->dpll);
893 /* Wait for the clocks to turn off. */
894 udelay(150);
895 cdv_intel_update_watermark(dev, crtc);
896 psb_intel_crtc->crtc_enable = false;
897 break;
899 /*Set FIFO Watermarks*/
900 REG_WRITE(DSPARB, 0x3F3E);
903 static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
905 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
906 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
909 static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
911 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
912 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
915 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
916 const struct drm_display_mode *mode,
917 struct drm_display_mode *adjusted_mode)
919 return true;
924 * Return the pipe currently connected to the panel fitter,
925 * or -1 if the panel fitter is not present or not in use
927 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
929 u32 pfit_control;
931 pfit_control = REG_READ(PFIT_CONTROL);
933 /* See if the panel fitter is in use */
934 if ((pfit_control & PFIT_ENABLE) == 0)
935 return -1;
936 return (pfit_control >> 29) & 0x3;
939 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
940 struct drm_display_mode *mode,
941 struct drm_display_mode *adjusted_mode,
942 int x, int y,
943 struct drm_framebuffer *old_fb)
945 struct drm_device *dev = crtc->dev;
946 struct drm_psb_private *dev_priv = dev->dev_private;
947 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
948 int pipe = psb_intel_crtc->pipe;
949 const struct psb_offset *map = &dev_priv->regmap[pipe];
950 int refclk;
951 struct cdv_intel_clock_t clock;
952 u32 dpll = 0, dspcntr, pipeconf;
953 bool ok;
954 bool is_crt = false, is_lvds = false, is_tv = false;
955 bool is_hdmi = false;
956 struct drm_mode_config *mode_config = &dev->mode_config;
957 struct drm_connector *connector;
959 list_for_each_entry(connector, &mode_config->connector_list, head) {
960 struct psb_intel_encoder *psb_intel_encoder =
961 psb_intel_attached_encoder(connector);
963 if (!connector->encoder
964 || connector->encoder->crtc != crtc)
965 continue;
967 switch (psb_intel_encoder->type) {
968 case INTEL_OUTPUT_LVDS:
969 is_lvds = true;
970 break;
971 case INTEL_OUTPUT_TVOUT:
972 is_tv = true;
973 break;
974 case INTEL_OUTPUT_ANALOG:
975 is_crt = true;
976 break;
977 case INTEL_OUTPUT_HDMI:
978 is_hdmi = true;
979 break;
983 if (dev_priv->dplla_96mhz)
984 /* low-end sku, 96/100 mhz */
985 refclk = 96000;
986 else
987 /* high-end sku, 27/100 mhz */
988 refclk = 27000;
990 if (is_lvds && dev_priv->lvds_use_ssc) {
991 refclk = dev_priv->lvds_ssc_freq * 1000;
992 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
995 drm_mode_debug_printmodeline(adjusted_mode);
997 ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
998 &clock);
999 if (!ok) {
1000 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
1001 return 0;
1004 dpll = DPLL_VGA_MODE_DIS;
1005 if (is_tv) {
1006 /* XXX: just matching BIOS for now */
1007 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1008 dpll |= 3;
1010 /* dpll |= PLL_REF_INPUT_DREFCLK; */
1012 dpll |= DPLL_SYNCLOCK_ENABLE;
1013 /* if (is_lvds)
1014 dpll |= DPLLB_MODE_LVDS;
1015 else
1016 dpll |= DPLLB_MODE_DAC_SERIAL; */
1017 /* dpll |= (2 << 11); */
1019 /* setup pipeconf */
1020 pipeconf = REG_READ(map->conf);
1022 /* Set up the display plane register */
1023 dspcntr = DISPPLANE_GAMMA_ENABLE;
1025 if (pipe == 0)
1026 dspcntr |= DISPPLANE_SEL_PIPE_A;
1027 else
1028 dspcntr |= DISPPLANE_SEL_PIPE_B;
1030 dspcntr |= DISPLAY_PLANE_ENABLE;
1031 pipeconf |= PIPEACONF_ENABLE;
1033 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
1034 REG_READ(map->dpll);
1036 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds);
1038 udelay(150);
1041 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1042 * This is an exception to the general rule that mode_set doesn't turn
1043 * things on.
1045 if (is_lvds) {
1046 u32 lvds = REG_READ(LVDS);
1048 lvds |=
1049 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
1050 LVDS_PIPEB_SELECT;
1051 /* Set the B0-B3 data pairs corresponding to
1052 * whether we're going to
1053 * set the DPLLs for dual-channel mode or not.
1055 if (clock.p2 == 7)
1056 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1057 else
1058 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1060 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1061 * appropriately here, but we need to look more
1062 * thoroughly into how panels behave in the two modes.
1065 REG_WRITE(LVDS, lvds);
1066 REG_READ(LVDS);
1069 dpll |= DPLL_VCO_ENABLE;
1071 /* Disable the panel fitter if it was on our pipe */
1072 if (cdv_intel_panel_fitter_pipe(dev) == pipe)
1073 REG_WRITE(PFIT_CONTROL, 0);
1075 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1076 drm_mode_debug_printmodeline(mode);
1078 REG_WRITE(map->dpll,
1079 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
1080 REG_READ(map->dpll);
1081 /* Wait for the clocks to stabilize. */
1082 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
1084 if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
1085 dev_err(dev->dev, "Failed to get DPLL lock\n");
1086 return -EBUSY;
1090 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1091 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1094 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
1095 ((adjusted_mode->crtc_htotal - 1) << 16));
1096 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
1097 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1098 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
1099 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1100 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
1101 ((adjusted_mode->crtc_vtotal - 1) << 16));
1102 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
1103 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1104 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
1105 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1106 /* pipesrc and dspsize control the size that is scaled from,
1107 * which should always be the user's requested size.
1109 REG_WRITE(map->size,
1110 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1111 REG_WRITE(map->pos, 0);
1112 REG_WRITE(map->src,
1113 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1114 REG_WRITE(map->conf, pipeconf);
1115 REG_READ(map->conf);
1117 cdv_intel_wait_for_vblank(dev);
1119 REG_WRITE(map->cntr, dspcntr);
1121 /* Flush the plane changes */
1123 struct drm_crtc_helper_funcs *crtc_funcs =
1124 crtc->helper_private;
1125 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1128 cdv_intel_wait_for_vblank(dev);
1130 return 0;
1135 * Save HW states of giving crtc
1137 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
1139 struct drm_device *dev = crtc->dev;
1140 struct drm_psb_private *dev_priv = dev->dev_private;
1141 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1142 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1143 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1144 uint32_t paletteReg;
1145 int i;
1147 if (!crtc_state) {
1148 dev_dbg(dev->dev, "No CRTC state found\n");
1149 return;
1152 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
1153 crtc_state->savePIPECONF = REG_READ(map->conf);
1154 crtc_state->savePIPESRC = REG_READ(map->src);
1155 crtc_state->saveFP0 = REG_READ(map->fp0);
1156 crtc_state->saveFP1 = REG_READ(map->fp1);
1157 crtc_state->saveDPLL = REG_READ(map->dpll);
1158 crtc_state->saveHTOTAL = REG_READ(map->htotal);
1159 crtc_state->saveHBLANK = REG_READ(map->hblank);
1160 crtc_state->saveHSYNC = REG_READ(map->hsync);
1161 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
1162 crtc_state->saveVBLANK = REG_READ(map->vblank);
1163 crtc_state->saveVSYNC = REG_READ(map->vsync);
1164 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
1166 /*NOTE: DSPSIZE DSPPOS only for psb*/
1167 crtc_state->saveDSPSIZE = REG_READ(map->size);
1168 crtc_state->saveDSPPOS = REG_READ(map->pos);
1170 crtc_state->saveDSPBASE = REG_READ(map->base);
1172 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1173 crtc_state->saveDSPCNTR,
1174 crtc_state->savePIPECONF,
1175 crtc_state->savePIPESRC,
1176 crtc_state->saveFP0,
1177 crtc_state->saveFP1,
1178 crtc_state->saveDPLL,
1179 crtc_state->saveHTOTAL,
1180 crtc_state->saveHBLANK,
1181 crtc_state->saveHSYNC,
1182 crtc_state->saveVTOTAL,
1183 crtc_state->saveVBLANK,
1184 crtc_state->saveVSYNC,
1185 crtc_state->saveDSPSTRIDE,
1186 crtc_state->saveDSPSIZE,
1187 crtc_state->saveDSPPOS,
1188 crtc_state->saveDSPBASE
1191 paletteReg = map->palette;
1192 for (i = 0; i < 256; ++i)
1193 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1197 * Restore HW states of giving crtc
1199 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1201 struct drm_device *dev = crtc->dev;
1202 struct drm_psb_private *dev_priv = dev->dev_private;
1203 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1204 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1205 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
1206 uint32_t paletteReg;
1207 int i;
1209 if (!crtc_state) {
1210 dev_dbg(dev->dev, "No crtc state\n");
1211 return;
1214 DRM_DEBUG(
1215 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1216 REG_READ(map->cntr),
1217 REG_READ(map->conf),
1218 REG_READ(map->src),
1219 REG_READ(map->fp0),
1220 REG_READ(map->fp1),
1221 REG_READ(map->dpll),
1222 REG_READ(map->htotal),
1223 REG_READ(map->hblank),
1224 REG_READ(map->hsync),
1225 REG_READ(map->vtotal),
1226 REG_READ(map->vblank),
1227 REG_READ(map->vsync),
1228 REG_READ(map->stride),
1229 REG_READ(map->size),
1230 REG_READ(map->pos),
1231 REG_READ(map->base)
1234 DRM_DEBUG(
1235 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1236 crtc_state->saveDSPCNTR,
1237 crtc_state->savePIPECONF,
1238 crtc_state->savePIPESRC,
1239 crtc_state->saveFP0,
1240 crtc_state->saveFP1,
1241 crtc_state->saveDPLL,
1242 crtc_state->saveHTOTAL,
1243 crtc_state->saveHBLANK,
1244 crtc_state->saveHSYNC,
1245 crtc_state->saveVTOTAL,
1246 crtc_state->saveVBLANK,
1247 crtc_state->saveVSYNC,
1248 crtc_state->saveDSPSTRIDE,
1249 crtc_state->saveDSPSIZE,
1250 crtc_state->saveDSPPOS,
1251 crtc_state->saveDSPBASE
1255 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1256 REG_WRITE(map->dpll,
1257 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1258 REG_READ(map->dpll);
1259 DRM_DEBUG("write dpll: %x\n",
1260 REG_READ(map->dpll));
1261 udelay(150);
1264 REG_WRITE(map->fp0, crtc_state->saveFP0);
1265 REG_READ(map->fp0);
1267 REG_WRITE(map->fp1, crtc_state->saveFP1);
1268 REG_READ(map->fp1);
1270 REG_WRITE(map->dpll, crtc_state->saveDPLL);
1271 REG_READ(map->dpll);
1272 udelay(150);
1274 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
1275 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
1276 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
1277 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
1278 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
1279 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
1280 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
1282 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
1283 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
1285 REG_WRITE(map->src, crtc_state->savePIPESRC);
1286 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1287 REG_WRITE(map->conf, crtc_state->savePIPECONF);
1289 cdv_intel_wait_for_vblank(dev);
1291 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
1292 REG_WRITE(map->base, crtc_state->saveDSPBASE);
1294 cdv_intel_wait_for_vblank(dev);
1296 paletteReg = map->palette;
1297 for (i = 0; i < 256; ++i)
1298 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1301 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1302 struct drm_file *file_priv,
1303 uint32_t handle,
1304 uint32_t width, uint32_t height)
1306 struct drm_device *dev = crtc->dev;
1307 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1308 int pipe = psb_intel_crtc->pipe;
1309 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1310 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1311 uint32_t temp;
1312 size_t addr = 0;
1313 struct gtt_range *gt;
1314 struct drm_gem_object *obj;
1315 int ret;
1317 /* if we want to turn of the cursor ignore width and height */
1318 if (!handle) {
1319 /* turn off the cursor */
1320 temp = CURSOR_MODE_DISABLE;
1322 if (gma_power_begin(dev, false)) {
1323 REG_WRITE(control, temp);
1324 REG_WRITE(base, 0);
1325 gma_power_end(dev);
1328 /* unpin the old GEM object */
1329 if (psb_intel_crtc->cursor_obj) {
1330 gt = container_of(psb_intel_crtc->cursor_obj,
1331 struct gtt_range, gem);
1332 psb_gtt_unpin(gt);
1333 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1334 psb_intel_crtc->cursor_obj = NULL;
1337 return 0;
1340 /* Currently we only support 64x64 cursors */
1341 if (width != 64 || height != 64) {
1342 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1343 return -EINVAL;
1346 obj = drm_gem_object_lookup(dev, file_priv, handle);
1347 if (!obj)
1348 return -ENOENT;
1350 if (obj->size < width * height * 4) {
1351 dev_dbg(dev->dev, "buffer is to small\n");
1352 return -ENOMEM;
1355 gt = container_of(obj, struct gtt_range, gem);
1357 /* Pin the memory into the GTT */
1358 ret = psb_gtt_pin(gt);
1359 if (ret) {
1360 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1361 return ret;
1364 addr = gt->offset; /* Or resource.start ??? */
1366 psb_intel_crtc->cursor_addr = addr;
1368 temp = 0;
1369 /* set the pipe for the cursor */
1370 temp |= (pipe << 28);
1371 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1373 if (gma_power_begin(dev, false)) {
1374 REG_WRITE(control, temp);
1375 REG_WRITE(base, addr);
1376 gma_power_end(dev);
1379 /* unpin the old GEM object */
1380 if (psb_intel_crtc->cursor_obj) {
1381 gt = container_of(psb_intel_crtc->cursor_obj,
1382 struct gtt_range, gem);
1383 psb_gtt_unpin(gt);
1384 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1385 psb_intel_crtc->cursor_obj = obj;
1387 return 0;
1390 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1392 struct drm_device *dev = crtc->dev;
1393 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1394 int pipe = psb_intel_crtc->pipe;
1395 uint32_t temp = 0;
1396 uint32_t adder;
1399 if (x < 0) {
1400 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1401 x = -x;
1403 if (y < 0) {
1404 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1405 y = -y;
1408 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1409 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1411 adder = psb_intel_crtc->cursor_addr;
1413 if (gma_power_begin(dev, false)) {
1414 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1415 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1416 gma_power_end(dev);
1418 return 0;
1421 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1422 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1424 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1425 int i;
1426 int end = (start + size > 256) ? 256 : start + size;
1428 for (i = start; i < end; i++) {
1429 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1430 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1431 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1434 cdv_intel_crtc_load_lut(crtc);
1437 static int cdv_crtc_set_config(struct drm_mode_set *set)
1439 int ret = 0;
1440 struct drm_device *dev = set->crtc->dev;
1441 struct drm_psb_private *dev_priv = dev->dev_private;
1443 if (!dev_priv->rpm_enabled)
1444 return drm_crtc_helper_set_config(set);
1446 pm_runtime_forbid(&dev->pdev->dev);
1448 ret = drm_crtc_helper_set_config(set);
1450 pm_runtime_allow(&dev->pdev->dev);
1452 return ret;
1455 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1457 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1459 static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock)
1461 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1462 clock->p = clock->p1 * clock->p2;
1463 clock->vco = refclk * clock->m / (clock->n + 2);
1464 clock->dot = clock->vco / clock->p;
1467 /* Returns the clock of the currently programmed mode of the given pipe. */
1468 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1469 struct drm_crtc *crtc)
1471 struct drm_psb_private *dev_priv = dev->dev_private;
1472 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1473 int pipe = psb_intel_crtc->pipe;
1474 const struct psb_offset *map = &dev_priv->regmap[pipe];
1475 u32 dpll;
1476 u32 fp;
1477 struct cdv_intel_clock_t clock;
1478 bool is_lvds;
1479 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1481 if (gma_power_begin(dev, false)) {
1482 dpll = REG_READ(map->dpll);
1483 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1484 fp = REG_READ(map->fp0);
1485 else
1486 fp = REG_READ(map->fp1);
1487 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1488 gma_power_end(dev);
1489 } else {
1490 dpll = p->dpll;
1491 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1492 fp = p->fp0;
1493 else
1494 fp = p->fp1;
1496 is_lvds = (pipe == 1) &&
1497 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
1500 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1501 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1502 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1504 if (is_lvds) {
1505 clock.p1 =
1506 ffs((dpll &
1507 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1508 DPLL_FPA01_P1_POST_DIV_SHIFT);
1509 if (clock.p1 == 0) {
1510 clock.p1 = 4;
1511 dev_err(dev->dev, "PLL %d\n", dpll);
1513 clock.p2 = 14;
1515 if ((dpll & PLL_REF_INPUT_MASK) ==
1516 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1517 /* XXX: might not be 66MHz */
1518 i8xx_clock(66000, &clock);
1519 } else
1520 i8xx_clock(48000, &clock);
1521 } else {
1522 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1523 clock.p1 = 2;
1524 else {
1525 clock.p1 =
1526 ((dpll &
1527 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1528 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1530 if (dpll & PLL_P2_DIVIDE_BY_4)
1531 clock.p2 = 4;
1532 else
1533 clock.p2 = 2;
1535 i8xx_clock(48000, &clock);
1538 /* XXX: It would be nice to validate the clocks, but we can't reuse
1539 * i830PllIsValid() because it relies on the xf86_config connector
1540 * configuration being accurate, which it isn't necessarily.
1543 return clock.dot;
1546 /** Returns the currently programmed mode of the given pipe. */
1547 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1548 struct drm_crtc *crtc)
1550 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1551 int pipe = psb_intel_crtc->pipe;
1552 struct drm_psb_private *dev_priv = dev->dev_private;
1553 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1554 const struct psb_offset *map = &dev_priv->regmap[pipe];
1555 struct drm_display_mode *mode;
1556 int htot;
1557 int hsync;
1558 int vtot;
1559 int vsync;
1561 if (gma_power_begin(dev, false)) {
1562 htot = REG_READ(map->htotal);
1563 hsync = REG_READ(map->hsync);
1564 vtot = REG_READ(map->vtotal);
1565 vsync = REG_READ(map->vsync);
1566 gma_power_end(dev);
1567 } else {
1568 htot = p->htotal;
1569 hsync = p->hsync;
1570 vtot = p->vtotal;
1571 vsync = p->vsync;
1574 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1575 if (!mode)
1576 return NULL;
1578 mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1579 mode->hdisplay = (htot & 0xffff) + 1;
1580 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1581 mode->hsync_start = (hsync & 0xffff) + 1;
1582 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1583 mode->vdisplay = (vtot & 0xffff) + 1;
1584 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1585 mode->vsync_start = (vsync & 0xffff) + 1;
1586 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1588 drm_mode_set_name(mode);
1589 drm_mode_set_crtcinfo(mode, 0);
1591 return mode;
1594 static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1596 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1598 kfree(psb_intel_crtc->crtc_state);
1599 drm_crtc_cleanup(crtc);
1600 kfree(psb_intel_crtc);
1603 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1604 .dpms = cdv_intel_crtc_dpms,
1605 .mode_fixup = cdv_intel_crtc_mode_fixup,
1606 .mode_set = cdv_intel_crtc_mode_set,
1607 .mode_set_base = cdv_intel_pipe_set_base,
1608 .prepare = cdv_intel_crtc_prepare,
1609 .commit = cdv_intel_crtc_commit,
1612 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1613 .save = cdv_intel_crtc_save,
1614 .restore = cdv_intel_crtc_restore,
1615 .cursor_set = cdv_intel_crtc_cursor_set,
1616 .cursor_move = cdv_intel_crtc_cursor_move,
1617 .gamma_set = cdv_intel_crtc_gamma_set,
1618 .set_config = cdv_crtc_set_config,
1619 .destroy = cdv_intel_crtc_destroy,