2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
37 struct change_domains
{
38 uint32_t invalidate_domains
;
39 uint32_t flush_domains
;
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
56 * Case 1: the batch buffer
62 * 5. Unmapped from GTT
65 * Let's take these a step at a time
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
92 * Case 2: The shared render buffer
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
102 * Same as last example, (CPU, CPU)
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
124 * Case 3: The constant buffer
129 * 4. Updated (written) by CPU again
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
153 * drm_agp_chipset_flush
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object
*obj
,
157 struct intel_ring_buffer
*ring
,
158 struct change_domains
*cd
)
160 uint32_t invalidate_domains
= 0, flush_domains
= 0;
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
166 if (obj
->base
.pending_write_domain
== 0)
167 obj
->base
.pending_read_domains
|= obj
->base
.read_domains
;
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
175 if (obj
->base
.write_domain
&&
176 (((obj
->base
.write_domain
!= obj
->base
.pending_read_domains
||
177 obj
->ring
!= ring
)) ||
178 (obj
->fenced_gpu_access
&& !obj
->pending_fenced_gpu_access
))) {
179 flush_domains
|= obj
->base
.write_domain
;
180 invalidate_domains
|=
181 obj
->base
.pending_read_domains
& ~obj
->base
.write_domain
;
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
187 invalidate_domains
|= obj
->base
.pending_read_domains
& ~obj
->base
.read_domains
;
188 if ((flush_domains
| invalidate_domains
) & I915_GEM_DOMAIN_CPU
)
189 i915_gem_clflush_object(obj
);
191 if (obj
->base
.pending_write_domain
)
192 cd
->flips
|= atomic_read(&obj
->pending_flip
);
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
200 if (flush_domains
== 0 && obj
->base
.pending_write_domain
== 0)
201 obj
->base
.pending_write_domain
= obj
->base
.write_domain
;
203 cd
->invalidate_domains
|= invalidate_domains
;
204 cd
->flush_domains
|= flush_domains
;
205 if (flush_domains
& I915_GEM_GPU_DOMAINS
)
206 cd
->flush_rings
|= intel_ring_flag(obj
->ring
);
207 if (invalidate_domains
& I915_GEM_GPU_DOMAINS
)
208 cd
->flush_rings
|= intel_ring_flag(ring
);
213 struct hlist_head buckets
[0];
216 static struct eb_objects
*
219 struct eb_objects
*eb
;
220 int count
= PAGE_SIZE
/ sizeof(struct hlist_head
) / 2;
223 eb
= kzalloc(count
*sizeof(struct hlist_head
) +
224 sizeof(struct eb_objects
),
234 eb_reset(struct eb_objects
*eb
)
236 memset(eb
->buckets
, 0, (eb
->and+1)*sizeof(struct hlist_head
));
240 eb_add_object(struct eb_objects
*eb
, struct drm_i915_gem_object
*obj
)
242 hlist_add_head(&obj
->exec_node
,
243 &eb
->buckets
[obj
->exec_handle
& eb
->and]);
246 static struct drm_i915_gem_object
*
247 eb_get_object(struct eb_objects
*eb
, unsigned long handle
)
249 struct hlist_head
*head
;
250 struct hlist_node
*node
;
251 struct drm_i915_gem_object
*obj
;
253 head
= &eb
->buckets
[handle
& eb
->and];
254 hlist_for_each(node
, head
) {
255 obj
= hlist_entry(node
, struct drm_i915_gem_object
, exec_node
);
256 if (obj
->exec_handle
== handle
)
264 eb_destroy(struct eb_objects
*eb
)
269 static inline int use_cpu_reloc(struct drm_i915_gem_object
*obj
)
271 return (obj
->base
.write_domain
== I915_GEM_DOMAIN_CPU
||
272 !obj
->map_and_fenceable
||
273 obj
->cache_level
!= I915_CACHE_NONE
);
277 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object
*obj
,
278 struct eb_objects
*eb
,
279 struct drm_i915_gem_relocation_entry
*reloc
)
281 struct drm_device
*dev
= obj
->base
.dev
;
282 struct drm_gem_object
*target_obj
;
283 struct drm_i915_gem_object
*target_i915_obj
;
284 uint32_t target_offset
;
287 /* we've already hold a reference to all valid objects */
288 target_obj
= &eb_get_object(eb
, reloc
->target_handle
)->base
;
289 if (unlikely(target_obj
== NULL
))
292 target_i915_obj
= to_intel_bo(target_obj
);
293 target_offset
= target_i915_obj
->gtt_offset
;
295 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
296 * pipe_control writes because the gpu doesn't properly redirect them
297 * through the ppgtt for non_secure batchbuffers. */
298 if (unlikely(IS_GEN6(dev
) &&
299 reloc
->write_domain
== I915_GEM_DOMAIN_INSTRUCTION
&&
300 !target_i915_obj
->has_global_gtt_mapping
)) {
301 i915_gem_gtt_bind_object(target_i915_obj
,
302 target_i915_obj
->cache_level
);
305 /* The target buffer should have appeared before us in the
306 * exec_object list, so it should have a GTT space bound by now.
308 if (unlikely(target_offset
== 0)) {
309 DRM_DEBUG("No GTT space found for object %d\n",
310 reloc
->target_handle
);
314 /* Validate that the target is in a valid r/w GPU domain */
315 if (unlikely(reloc
->write_domain
& (reloc
->write_domain
- 1))) {
316 DRM_DEBUG("reloc with multiple write domains: "
317 "obj %p target %d offset %d "
318 "read %08x write %08x",
319 obj
, reloc
->target_handle
,
322 reloc
->write_domain
);
325 if (unlikely((reloc
->write_domain
| reloc
->read_domains
)
326 & ~I915_GEM_GPU_DOMAINS
)) {
327 DRM_DEBUG("reloc with read/write non-GPU domains: "
328 "obj %p target %d offset %d "
329 "read %08x write %08x",
330 obj
, reloc
->target_handle
,
333 reloc
->write_domain
);
336 if (unlikely(reloc
->write_domain
&& target_obj
->pending_write_domain
&&
337 reloc
->write_domain
!= target_obj
->pending_write_domain
)) {
338 DRM_DEBUG("Write domain conflict: "
339 "obj %p target %d offset %d "
340 "new %08x old %08x\n",
341 obj
, reloc
->target_handle
,
344 target_obj
->pending_write_domain
);
348 target_obj
->pending_read_domains
|= reloc
->read_domains
;
349 target_obj
->pending_write_domain
|= reloc
->write_domain
;
351 /* If the relocation already has the right value in it, no
352 * more work needs to be done.
354 if (target_offset
== reloc
->presumed_offset
)
357 /* Check that the relocation address is valid... */
358 if (unlikely(reloc
->offset
> obj
->base
.size
- 4)) {
359 DRM_DEBUG("Relocation beyond object bounds: "
360 "obj %p target %d offset %d size %d.\n",
361 obj
, reloc
->target_handle
,
363 (int) obj
->base
.size
);
366 if (unlikely(reloc
->offset
& 3)) {
367 DRM_DEBUG("Relocation not 4-byte aligned: "
368 "obj %p target %d offset %d.\n",
369 obj
, reloc
->target_handle
,
370 (int) reloc
->offset
);
374 /* We can't wait for rendering with pagefaults disabled */
375 if (obj
->active
&& in_atomic())
378 reloc
->delta
+= target_offset
;
379 if (use_cpu_reloc(obj
)) {
380 uint32_t page_offset
= reloc
->offset
& ~PAGE_MASK
;
383 ret
= i915_gem_object_set_to_cpu_domain(obj
, 1);
387 vaddr
= kmap_atomic(obj
->pages
[reloc
->offset
>> PAGE_SHIFT
]);
388 *(uint32_t *)(vaddr
+ page_offset
) = reloc
->delta
;
389 kunmap_atomic(vaddr
);
391 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
392 uint32_t __iomem
*reloc_entry
;
393 void __iomem
*reloc_page
;
395 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
399 ret
= i915_gem_object_put_fence(obj
);
403 /* Map the page containing the relocation we're going to perform. */
404 reloc
->offset
+= obj
->gtt_offset
;
405 reloc_page
= io_mapping_map_atomic_wc(dev_priv
->mm
.gtt_mapping
,
406 reloc
->offset
& PAGE_MASK
);
407 reloc_entry
= (uint32_t __iomem
*)
408 (reloc_page
+ (reloc
->offset
& ~PAGE_MASK
));
409 iowrite32(reloc
->delta
, reloc_entry
);
410 io_mapping_unmap_atomic(reloc_page
);
413 /* and update the user's relocation entry */
414 reloc
->presumed_offset
= target_offset
;
420 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object
*obj
,
421 struct eb_objects
*eb
)
423 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
424 struct drm_i915_gem_relocation_entry stack_reloc
[N_RELOC(512)];
425 struct drm_i915_gem_relocation_entry __user
*user_relocs
;
426 struct drm_i915_gem_exec_object2
*entry
= obj
->exec_entry
;
429 user_relocs
= (void __user
*)(uintptr_t)entry
->relocs_ptr
;
431 remain
= entry
->relocation_count
;
433 struct drm_i915_gem_relocation_entry
*r
= stack_reloc
;
435 if (count
> ARRAY_SIZE(stack_reloc
))
436 count
= ARRAY_SIZE(stack_reloc
);
439 if (__copy_from_user_inatomic(r
, user_relocs
, count
*sizeof(r
[0])))
443 u64 offset
= r
->presumed_offset
;
445 ret
= i915_gem_execbuffer_relocate_entry(obj
, eb
, r
);
449 if (r
->presumed_offset
!= offset
&&
450 __copy_to_user_inatomic(&user_relocs
->presumed_offset
,
452 sizeof(r
->presumed_offset
))) {
466 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object
*obj
,
467 struct eb_objects
*eb
,
468 struct drm_i915_gem_relocation_entry
*relocs
)
470 const struct drm_i915_gem_exec_object2
*entry
= obj
->exec_entry
;
473 for (i
= 0; i
< entry
->relocation_count
; i
++) {
474 ret
= i915_gem_execbuffer_relocate_entry(obj
, eb
, &relocs
[i
]);
483 i915_gem_execbuffer_relocate(struct drm_device
*dev
,
484 struct eb_objects
*eb
,
485 struct list_head
*objects
)
487 struct drm_i915_gem_object
*obj
;
490 /* This is the fast path and we cannot handle a pagefault whilst
491 * holding the struct mutex lest the user pass in the relocations
492 * contained within a mmaped bo. For in such a case we, the page
493 * fault handler would call i915_gem_fault() and we would try to
494 * acquire the struct mutex again. Obviously this is bad and so
495 * lockdep complains vehemently.
498 list_for_each_entry(obj
, objects
, exec_list
) {
499 ret
= i915_gem_execbuffer_relocate_object(obj
, eb
);
508 #define __EXEC_OBJECT_HAS_FENCE (1<<31)
511 need_reloc_mappable(struct drm_i915_gem_object
*obj
)
513 struct drm_i915_gem_exec_object2
*entry
= obj
->exec_entry
;
514 return entry
->relocation_count
&& !use_cpu_reloc(obj
);
518 pin_and_fence_object(struct drm_i915_gem_object
*obj
,
519 struct intel_ring_buffer
*ring
)
521 struct drm_i915_gem_exec_object2
*entry
= obj
->exec_entry
;
522 bool has_fenced_gpu_access
= INTEL_INFO(ring
->dev
)->gen
< 4;
523 bool need_fence
, need_mappable
;
527 has_fenced_gpu_access
&&
528 entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
&&
529 obj
->tiling_mode
!= I915_TILING_NONE
;
530 need_mappable
= need_fence
|| need_reloc_mappable(obj
);
532 ret
= i915_gem_object_pin(obj
, entry
->alignment
, need_mappable
);
536 if (has_fenced_gpu_access
) {
537 if (entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
) {
538 ret
= i915_gem_object_get_fence(obj
);
542 if (i915_gem_object_pin_fence(obj
))
543 entry
->flags
|= __EXEC_OBJECT_HAS_FENCE
;
545 obj
->pending_fenced_gpu_access
= true;
549 entry
->offset
= obj
->gtt_offset
;
553 i915_gem_object_unpin(obj
);
558 i915_gem_execbuffer_reserve(struct intel_ring_buffer
*ring
,
559 struct drm_file
*file
,
560 struct list_head
*objects
)
562 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
563 struct drm_i915_gem_object
*obj
;
565 bool has_fenced_gpu_access
= INTEL_INFO(ring
->dev
)->gen
< 4;
566 struct list_head ordered_objects
;
568 INIT_LIST_HEAD(&ordered_objects
);
569 while (!list_empty(objects
)) {
570 struct drm_i915_gem_exec_object2
*entry
;
571 bool need_fence
, need_mappable
;
573 obj
= list_first_entry(objects
,
574 struct drm_i915_gem_object
,
576 entry
= obj
->exec_entry
;
579 has_fenced_gpu_access
&&
580 entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
&&
581 obj
->tiling_mode
!= I915_TILING_NONE
;
582 need_mappable
= need_fence
|| need_reloc_mappable(obj
);
585 list_move(&obj
->exec_list
, &ordered_objects
);
587 list_move_tail(&obj
->exec_list
, &ordered_objects
);
589 obj
->base
.pending_read_domains
= 0;
590 obj
->base
.pending_write_domain
= 0;
592 list_splice(&ordered_objects
, objects
);
594 /* Attempt to pin all of the buffers into the GTT.
595 * This is done in 3 phases:
597 * 1a. Unbind all objects that do not match the GTT constraints for
598 * the execbuffer (fenceable, mappable, alignment etc).
599 * 1b. Increment pin count for already bound objects.
600 * 2. Bind new objects.
601 * 3. Decrement pin count.
603 * This avoid unnecessary unbinding of later objects in order to makr
604 * room for the earlier objects *unless* we need to defragment.
610 /* Unbind any ill-fitting objects or pin. */
611 list_for_each_entry(obj
, objects
, exec_list
) {
612 struct drm_i915_gem_exec_object2
*entry
= obj
->exec_entry
;
613 bool need_fence
, need_mappable
;
619 has_fenced_gpu_access
&&
620 entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
&&
621 obj
->tiling_mode
!= I915_TILING_NONE
;
622 need_mappable
= need_fence
|| need_reloc_mappable(obj
);
624 if ((entry
->alignment
&& obj
->gtt_offset
& (entry
->alignment
- 1)) ||
625 (need_mappable
&& !obj
->map_and_fenceable
))
626 ret
= i915_gem_object_unbind(obj
);
628 ret
= pin_and_fence_object(obj
, ring
);
633 /* Bind fresh objects */
634 list_for_each_entry(obj
, objects
, exec_list
) {
638 ret
= pin_and_fence_object(obj
, ring
);
642 /* This can potentially raise a harmless
643 * -EINVAL if we failed to bind in the above
644 * call. It cannot raise -EINTR since we know
645 * that the bo is freshly bound and so will
646 * not need to be flushed or waited upon.
648 ret_ignore
= i915_gem_object_unbind(obj
);
650 WARN_ON(obj
->gtt_space
);
655 /* Decrement pin count for bound objects */
656 list_for_each_entry(obj
, objects
, exec_list
) {
657 struct drm_i915_gem_exec_object2
*entry
;
662 entry
= obj
->exec_entry
;
663 if (entry
->flags
& __EXEC_OBJECT_HAS_FENCE
) {
664 i915_gem_object_unpin_fence(obj
);
665 entry
->flags
&= ~__EXEC_OBJECT_HAS_FENCE
;
668 i915_gem_object_unpin(obj
);
670 /* ... and ensure ppgtt mapping exist if needed. */
671 if (dev_priv
->mm
.aliasing_ppgtt
&& !obj
->has_aliasing_ppgtt_mapping
) {
672 i915_ppgtt_bind_object(dev_priv
->mm
.aliasing_ppgtt
,
673 obj
, obj
->cache_level
);
675 obj
->has_aliasing_ppgtt_mapping
= 1;
679 if (ret
!= -ENOSPC
|| retry
> 1)
682 /* First attempt, just clear anything that is purgeable.
683 * Second attempt, clear the entire GTT.
685 ret
= i915_gem_evict_everything(ring
->dev
, retry
== 0);
693 list_for_each_entry_continue_reverse(obj
, objects
, exec_list
) {
694 struct drm_i915_gem_exec_object2
*entry
;
699 entry
= obj
->exec_entry
;
700 if (entry
->flags
& __EXEC_OBJECT_HAS_FENCE
) {
701 i915_gem_object_unpin_fence(obj
);
702 entry
->flags
&= ~__EXEC_OBJECT_HAS_FENCE
;
705 i915_gem_object_unpin(obj
);
712 i915_gem_execbuffer_relocate_slow(struct drm_device
*dev
,
713 struct drm_file
*file
,
714 struct intel_ring_buffer
*ring
,
715 struct list_head
*objects
,
716 struct eb_objects
*eb
,
717 struct drm_i915_gem_exec_object2
*exec
,
720 struct drm_i915_gem_relocation_entry
*reloc
;
721 struct drm_i915_gem_object
*obj
;
725 /* We may process another execbuffer during the unlock... */
726 while (!list_empty(objects
)) {
727 obj
= list_first_entry(objects
,
728 struct drm_i915_gem_object
,
730 list_del_init(&obj
->exec_list
);
731 drm_gem_object_unreference(&obj
->base
);
734 mutex_unlock(&dev
->struct_mutex
);
737 for (i
= 0; i
< count
; i
++)
738 total
+= exec
[i
].relocation_count
;
740 reloc_offset
= drm_malloc_ab(count
, sizeof(*reloc_offset
));
741 reloc
= drm_malloc_ab(total
, sizeof(*reloc
));
742 if (reloc
== NULL
|| reloc_offset
== NULL
) {
743 drm_free_large(reloc
);
744 drm_free_large(reloc_offset
);
745 mutex_lock(&dev
->struct_mutex
);
750 for (i
= 0; i
< count
; i
++) {
751 struct drm_i915_gem_relocation_entry __user
*user_relocs
;
753 user_relocs
= (void __user
*)(uintptr_t)exec
[i
].relocs_ptr
;
755 if (copy_from_user(reloc
+total
, user_relocs
,
756 exec
[i
].relocation_count
* sizeof(*reloc
))) {
758 mutex_lock(&dev
->struct_mutex
);
762 reloc_offset
[i
] = total
;
763 total
+= exec
[i
].relocation_count
;
766 ret
= i915_mutex_lock_interruptible(dev
);
768 mutex_lock(&dev
->struct_mutex
);
772 /* reacquire the objects */
774 for (i
= 0; i
< count
; i
++) {
775 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
,
777 if (&obj
->base
== NULL
) {
778 DRM_DEBUG("Invalid object handle %d at index %d\n",
784 list_add_tail(&obj
->exec_list
, objects
);
785 obj
->exec_handle
= exec
[i
].handle
;
786 obj
->exec_entry
= &exec
[i
];
787 eb_add_object(eb
, obj
);
790 ret
= i915_gem_execbuffer_reserve(ring
, file
, objects
);
794 list_for_each_entry(obj
, objects
, exec_list
) {
795 int offset
= obj
->exec_entry
- exec
;
796 ret
= i915_gem_execbuffer_relocate_object_slow(obj
, eb
,
797 reloc
+ reloc_offset
[offset
]);
802 /* Leave the user relocations as are, this is the painfully slow path,
803 * and we want to avoid the complication of dropping the lock whilst
804 * having buffers reserved in the aperture and so causing spurious
805 * ENOSPC for random operations.
809 drm_free_large(reloc
);
810 drm_free_large(reloc_offset
);
815 i915_gem_execbuffer_flush(struct drm_device
*dev
,
816 uint32_t invalidate_domains
,
817 uint32_t flush_domains
)
819 if (flush_domains
& I915_GEM_DOMAIN_CPU
)
820 intel_gtt_chipset_flush();
822 if (flush_domains
& I915_GEM_DOMAIN_GTT
)
827 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer
*ring
, u32 flips
)
829 u32 plane
, flip_mask
;
832 /* Check for any pending flips. As we only maintain a flip queue depth
833 * of 1, we can simply insert a WAIT for the next display flip prior
834 * to executing the batch and avoid stalling the CPU.
837 for (plane
= 0; flips
>> plane
; plane
++) {
838 if (((flips
>> plane
) & 1) == 0)
842 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
844 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
846 ret
= intel_ring_begin(ring
, 2);
850 intel_ring_emit(ring
, MI_WAIT_FOR_EVENT
| flip_mask
);
851 intel_ring_emit(ring
, MI_NOOP
);
852 intel_ring_advance(ring
);
860 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer
*ring
,
861 struct list_head
*objects
)
863 struct drm_i915_gem_object
*obj
;
864 struct change_domains cd
;
867 memset(&cd
, 0, sizeof(cd
));
868 list_for_each_entry(obj
, objects
, exec_list
)
869 i915_gem_object_set_to_gpu_domain(obj
, ring
, &cd
);
871 if (cd
.invalidate_domains
| cd
.flush_domains
) {
872 i915_gem_execbuffer_flush(ring
->dev
,
873 cd
.invalidate_domains
,
878 ret
= i915_gem_execbuffer_wait_for_flips(ring
, cd
.flips
);
883 list_for_each_entry(obj
, objects
, exec_list
) {
884 ret
= i915_gem_object_sync(obj
, ring
);
889 /* Unconditionally invalidate gpu caches and ensure that we do flush
890 * any residual writes from the previous batch.
892 ret
= i915_gem_flush_ring(ring
,
893 I915_GEM_GPU_DOMAINS
,
894 ring
->gpu_caches_dirty
? I915_GEM_GPU_DOMAINS
: 0);
898 ring
->gpu_caches_dirty
= false;
903 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2
*exec
)
905 return ((exec
->batch_start_offset
| exec
->batch_len
) & 0x7) == 0;
909 validate_exec_list(struct drm_i915_gem_exec_object2
*exec
,
914 for (i
= 0; i
< count
; i
++) {
915 char __user
*ptr
= (char __user
*)(uintptr_t)exec
[i
].relocs_ptr
;
916 int length
; /* limited by fault_in_pages_readable() */
918 /* First check for malicious input causing overflow */
919 if (exec
[i
].relocation_count
>
920 INT_MAX
/ sizeof(struct drm_i915_gem_relocation_entry
))
923 length
= exec
[i
].relocation_count
*
924 sizeof(struct drm_i915_gem_relocation_entry
);
925 if (!access_ok(VERIFY_READ
, ptr
, length
))
928 /* we may also need to update the presumed offsets */
929 if (!access_ok(VERIFY_WRITE
, ptr
, length
))
932 if (fault_in_multipages_readable(ptr
, length
))
940 i915_gem_execbuffer_move_to_active(struct list_head
*objects
,
941 struct intel_ring_buffer
*ring
,
944 struct drm_i915_gem_object
*obj
;
946 list_for_each_entry(obj
, objects
, exec_list
) {
947 u32 old_read
= obj
->base
.read_domains
;
948 u32 old_write
= obj
->base
.write_domain
;
951 obj
->base
.read_domains
= obj
->base
.pending_read_domains
;
952 obj
->base
.write_domain
= obj
->base
.pending_write_domain
;
953 obj
->fenced_gpu_access
= obj
->pending_fenced_gpu_access
;
955 i915_gem_object_move_to_active(obj
, ring
, seqno
);
956 if (obj
->base
.write_domain
) {
958 obj
->pending_gpu_write
= true;
959 list_move_tail(&obj
->gpu_write_list
,
960 &ring
->gpu_write_list
);
961 if (obj
->pin_count
) /* check for potential scanout */
962 intel_mark_busy(ring
->dev
, obj
);
965 trace_i915_gem_object_change_domain(obj
, old_read
, old_write
);
968 intel_mark_busy(ring
->dev
, NULL
);
972 i915_gem_execbuffer_retire_commands(struct drm_device
*dev
,
973 struct drm_file
*file
,
974 struct intel_ring_buffer
*ring
)
976 struct drm_i915_gem_request
*request
;
978 /* Unconditionally force add_request to emit a full flush. */
979 ring
->gpu_caches_dirty
= true;
981 /* Add a breadcrumb for the completion of the batch buffer */
982 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
983 if (request
== NULL
|| i915_add_request(ring
, file
, request
)) {
989 i915_reset_gen7_sol_offsets(struct drm_device
*dev
,
990 struct intel_ring_buffer
*ring
)
992 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
995 if (!IS_GEN7(dev
) || ring
!= &dev_priv
->ring
[RCS
])
998 ret
= intel_ring_begin(ring
, 4 * 3);
1002 for (i
= 0; i
< 4; i
++) {
1003 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
1004 intel_ring_emit(ring
, GEN7_SO_WRITE_OFFSET(i
));
1005 intel_ring_emit(ring
, 0);
1008 intel_ring_advance(ring
);
1014 i915_gem_do_execbuffer(struct drm_device
*dev
, void *data
,
1015 struct drm_file
*file
,
1016 struct drm_i915_gem_execbuffer2
*args
,
1017 struct drm_i915_gem_exec_object2
*exec
)
1019 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1020 struct list_head objects
;
1021 struct eb_objects
*eb
;
1022 struct drm_i915_gem_object
*batch_obj
;
1023 struct drm_clip_rect
*cliprects
= NULL
;
1024 struct intel_ring_buffer
*ring
;
1025 u32 ctx_id
= i915_execbuffer2_get_context_id(*args
);
1026 u32 exec_start
, exec_len
;
1031 if (!i915_gem_check_execbuffer(args
)) {
1032 DRM_DEBUG("execbuf with invalid offset/length\n");
1036 ret
= validate_exec_list(exec
, args
->buffer_count
);
1040 switch (args
->flags
& I915_EXEC_RING_MASK
) {
1041 case I915_EXEC_DEFAULT
:
1042 case I915_EXEC_RENDER
:
1043 ring
= &dev_priv
->ring
[RCS
];
1046 ring
= &dev_priv
->ring
[VCS
];
1048 DRM_DEBUG("Ring %s doesn't support contexts\n",
1054 ring
= &dev_priv
->ring
[BCS
];
1056 DRM_DEBUG("Ring %s doesn't support contexts\n",
1062 DRM_DEBUG("execbuf with unknown ring: %d\n",
1063 (int)(args
->flags
& I915_EXEC_RING_MASK
));
1066 if (!intel_ring_initialized(ring
)) {
1067 DRM_DEBUG("execbuf with invalid ring: %d\n",
1068 (int)(args
->flags
& I915_EXEC_RING_MASK
));
1072 mode
= args
->flags
& I915_EXEC_CONSTANTS_MASK
;
1073 mask
= I915_EXEC_CONSTANTS_MASK
;
1075 case I915_EXEC_CONSTANTS_REL_GENERAL
:
1076 case I915_EXEC_CONSTANTS_ABSOLUTE
:
1077 case I915_EXEC_CONSTANTS_REL_SURFACE
:
1078 if (ring
== &dev_priv
->ring
[RCS
] &&
1079 mode
!= dev_priv
->relative_constants_mode
) {
1080 if (INTEL_INFO(dev
)->gen
< 4)
1083 if (INTEL_INFO(dev
)->gen
> 5 &&
1084 mode
== I915_EXEC_CONSTANTS_REL_SURFACE
)
1087 /* The HW changed the meaning on this bit on gen6 */
1088 if (INTEL_INFO(dev
)->gen
>= 6)
1089 mask
&= ~I915_EXEC_CONSTANTS_REL_SURFACE
;
1093 DRM_DEBUG("execbuf with unknown constants: %d\n", mode
);
1097 if (args
->buffer_count
< 1) {
1098 DRM_DEBUG("execbuf with %d buffers\n", args
->buffer_count
);
1102 if (args
->num_cliprects
!= 0) {
1103 if (ring
!= &dev_priv
->ring
[RCS
]) {
1104 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1108 if (INTEL_INFO(dev
)->gen
>= 5) {
1109 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
1113 if (args
->num_cliprects
> UINT_MAX
/ sizeof(*cliprects
)) {
1114 DRM_DEBUG("execbuf with %u cliprects\n",
1115 args
->num_cliprects
);
1119 cliprects
= kmalloc(args
->num_cliprects
* sizeof(*cliprects
),
1121 if (cliprects
== NULL
) {
1126 if (copy_from_user(cliprects
,
1127 (struct drm_clip_rect __user
*)(uintptr_t)
1128 args
->cliprects_ptr
,
1129 sizeof(*cliprects
)*args
->num_cliprects
)) {
1135 ret
= i915_mutex_lock_interruptible(dev
);
1139 if (dev_priv
->mm
.suspended
) {
1140 mutex_unlock(&dev
->struct_mutex
);
1145 eb
= eb_create(args
->buffer_count
);
1147 mutex_unlock(&dev
->struct_mutex
);
1152 /* Look up object handles */
1153 INIT_LIST_HEAD(&objects
);
1154 for (i
= 0; i
< args
->buffer_count
; i
++) {
1155 struct drm_i915_gem_object
*obj
;
1157 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
,
1159 if (&obj
->base
== NULL
) {
1160 DRM_DEBUG("Invalid object handle %d at index %d\n",
1162 /* prevent error path from reading uninitialized data */
1167 if (!list_empty(&obj
->exec_list
)) {
1168 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1169 obj
, exec
[i
].handle
, i
);
1174 list_add_tail(&obj
->exec_list
, &objects
);
1175 obj
->exec_handle
= exec
[i
].handle
;
1176 obj
->exec_entry
= &exec
[i
];
1177 eb_add_object(eb
, obj
);
1180 /* take note of the batch buffer before we might reorder the lists */
1181 batch_obj
= list_entry(objects
.prev
,
1182 struct drm_i915_gem_object
,
1185 /* Move the objects en-masse into the GTT, evicting if necessary. */
1186 ret
= i915_gem_execbuffer_reserve(ring
, file
, &objects
);
1190 /* The objects are in their final locations, apply the relocations. */
1191 ret
= i915_gem_execbuffer_relocate(dev
, eb
, &objects
);
1193 if (ret
== -EFAULT
) {
1194 ret
= i915_gem_execbuffer_relocate_slow(dev
, file
, ring
,
1197 args
->buffer_count
);
1198 BUG_ON(!mutex_is_locked(&dev
->struct_mutex
));
1204 /* Set the pending read domains for the batch buffer to COMMAND */
1205 if (batch_obj
->base
.pending_write_domain
) {
1206 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1210 batch_obj
->base
.pending_read_domains
|= I915_GEM_DOMAIN_COMMAND
;
1212 ret
= i915_gem_execbuffer_move_to_gpu(ring
, &objects
);
1216 seqno
= i915_gem_next_request_seqno(ring
);
1217 for (i
= 0; i
< ARRAY_SIZE(ring
->sync_seqno
); i
++) {
1218 if (seqno
< ring
->sync_seqno
[i
]) {
1219 /* The GPU can not handle its semaphore value wrapping,
1220 * so every billion or so execbuffers, we need to stall
1221 * the GPU in order to reset the counters.
1223 ret
= i915_gpu_idle(dev
);
1226 i915_gem_retire_requests(dev
);
1228 BUG_ON(ring
->sync_seqno
[i
]);
1232 ret
= i915_switch_context(ring
, file
, ctx_id
);
1236 if (ring
== &dev_priv
->ring
[RCS
] &&
1237 mode
!= dev_priv
->relative_constants_mode
) {
1238 ret
= intel_ring_begin(ring
, 4);
1242 intel_ring_emit(ring
, MI_NOOP
);
1243 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
1244 intel_ring_emit(ring
, INSTPM
);
1245 intel_ring_emit(ring
, mask
<< 16 | mode
);
1246 intel_ring_advance(ring
);
1248 dev_priv
->relative_constants_mode
= mode
;
1251 if (args
->flags
& I915_EXEC_GEN7_SOL_RESET
) {
1252 ret
= i915_reset_gen7_sol_offsets(dev
, ring
);
1257 trace_i915_gem_ring_dispatch(ring
, seqno
);
1259 exec_start
= batch_obj
->gtt_offset
+ args
->batch_start_offset
;
1260 exec_len
= args
->batch_len
;
1262 for (i
= 0; i
< args
->num_cliprects
; i
++) {
1263 ret
= i915_emit_box(dev
, &cliprects
[i
],
1264 args
->DR1
, args
->DR4
);
1268 ret
= ring
->dispatch_execbuffer(ring
,
1269 exec_start
, exec_len
);
1274 ret
= ring
->dispatch_execbuffer(ring
, exec_start
, exec_len
);
1279 i915_gem_execbuffer_move_to_active(&objects
, ring
, seqno
);
1280 i915_gem_execbuffer_retire_commands(dev
, file
, ring
);
1284 while (!list_empty(&objects
)) {
1285 struct drm_i915_gem_object
*obj
;
1287 obj
= list_first_entry(&objects
,
1288 struct drm_i915_gem_object
,
1290 list_del_init(&obj
->exec_list
);
1291 drm_gem_object_unreference(&obj
->base
);
1294 mutex_unlock(&dev
->struct_mutex
);
1302 * Legacy execbuffer just creates an exec2 list from the original exec object
1303 * list array and passes it to the real function.
1306 i915_gem_execbuffer(struct drm_device
*dev
, void *data
,
1307 struct drm_file
*file
)
1309 struct drm_i915_gem_execbuffer
*args
= data
;
1310 struct drm_i915_gem_execbuffer2 exec2
;
1311 struct drm_i915_gem_exec_object
*exec_list
= NULL
;
1312 struct drm_i915_gem_exec_object2
*exec2_list
= NULL
;
1315 if (args
->buffer_count
< 1) {
1316 DRM_DEBUG("execbuf with %d buffers\n", args
->buffer_count
);
1320 /* Copy in the exec list from userland */
1321 exec_list
= drm_malloc_ab(sizeof(*exec_list
), args
->buffer_count
);
1322 exec2_list
= drm_malloc_ab(sizeof(*exec2_list
), args
->buffer_count
);
1323 if (exec_list
== NULL
|| exec2_list
== NULL
) {
1324 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1325 args
->buffer_count
);
1326 drm_free_large(exec_list
);
1327 drm_free_large(exec2_list
);
1330 ret
= copy_from_user(exec_list
,
1331 (struct drm_i915_relocation_entry __user
*)
1332 (uintptr_t) args
->buffers_ptr
,
1333 sizeof(*exec_list
) * args
->buffer_count
);
1335 DRM_DEBUG("copy %d exec entries failed %d\n",
1336 args
->buffer_count
, ret
);
1337 drm_free_large(exec_list
);
1338 drm_free_large(exec2_list
);
1342 for (i
= 0; i
< args
->buffer_count
; i
++) {
1343 exec2_list
[i
].handle
= exec_list
[i
].handle
;
1344 exec2_list
[i
].relocation_count
= exec_list
[i
].relocation_count
;
1345 exec2_list
[i
].relocs_ptr
= exec_list
[i
].relocs_ptr
;
1346 exec2_list
[i
].alignment
= exec_list
[i
].alignment
;
1347 exec2_list
[i
].offset
= exec_list
[i
].offset
;
1348 if (INTEL_INFO(dev
)->gen
< 4)
1349 exec2_list
[i
].flags
= EXEC_OBJECT_NEEDS_FENCE
;
1351 exec2_list
[i
].flags
= 0;
1354 exec2
.buffers_ptr
= args
->buffers_ptr
;
1355 exec2
.buffer_count
= args
->buffer_count
;
1356 exec2
.batch_start_offset
= args
->batch_start_offset
;
1357 exec2
.batch_len
= args
->batch_len
;
1358 exec2
.DR1
= args
->DR1
;
1359 exec2
.DR4
= args
->DR4
;
1360 exec2
.num_cliprects
= args
->num_cliprects
;
1361 exec2
.cliprects_ptr
= args
->cliprects_ptr
;
1362 exec2
.flags
= I915_EXEC_RENDER
;
1363 i915_execbuffer2_set_context_id(exec2
, 0);
1365 ret
= i915_gem_do_execbuffer(dev
, data
, file
, &exec2
, exec2_list
);
1367 /* Copy the new buffer offsets back to the user's exec list. */
1368 for (i
= 0; i
< args
->buffer_count
; i
++)
1369 exec_list
[i
].offset
= exec2_list
[i
].offset
;
1370 /* ... and back out to userspace */
1371 ret
= copy_to_user((struct drm_i915_relocation_entry __user
*)
1372 (uintptr_t) args
->buffers_ptr
,
1374 sizeof(*exec_list
) * args
->buffer_count
);
1377 DRM_DEBUG("failed to copy %d exec entries "
1378 "back to user (%d)\n",
1379 args
->buffer_count
, ret
);
1383 drm_free_large(exec_list
);
1384 drm_free_large(exec2_list
);
1389 i915_gem_execbuffer2(struct drm_device
*dev
, void *data
,
1390 struct drm_file
*file
)
1392 struct drm_i915_gem_execbuffer2
*args
= data
;
1393 struct drm_i915_gem_exec_object2
*exec2_list
= NULL
;
1396 if (args
->buffer_count
< 1 ||
1397 args
->buffer_count
> UINT_MAX
/ sizeof(*exec2_list
)) {
1398 DRM_DEBUG("execbuf2 with %d buffers\n", args
->buffer_count
);
1402 exec2_list
= kmalloc(sizeof(*exec2_list
)*args
->buffer_count
,
1403 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
);
1404 if (exec2_list
== NULL
)
1405 exec2_list
= drm_malloc_ab(sizeof(*exec2_list
),
1406 args
->buffer_count
);
1407 if (exec2_list
== NULL
) {
1408 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1409 args
->buffer_count
);
1412 ret
= copy_from_user(exec2_list
,
1413 (struct drm_i915_relocation_entry __user
*)
1414 (uintptr_t) args
->buffers_ptr
,
1415 sizeof(*exec2_list
) * args
->buffer_count
);
1417 DRM_DEBUG("copy %d exec entries failed %d\n",
1418 args
->buffer_count
, ret
);
1419 drm_free_large(exec2_list
);
1423 ret
= i915_gem_do_execbuffer(dev
, data
, file
, args
, exec2_list
);
1425 /* Copy the new buffer offsets back to the user's exec list. */
1426 ret
= copy_to_user((struct drm_i915_relocation_entry __user
*)
1427 (uintptr_t) args
->buffers_ptr
,
1429 sizeof(*exec2_list
) * args
->buffer_count
);
1432 DRM_DEBUG("failed to copy %d exec entries "
1433 "back to user (%d)\n",
1434 args
->buffer_count
, ret
);
1438 drm_free_large(exec2_list
);