Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / gpu / drm / nouveau / nouveau_calc.c
blobdad96cce5e390a77ff3de98d63658632c9603cc0
1 /*
2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2007-2009 Stuart Bennett
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
19 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
20 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
24 #include "drmP.h"
25 #include "nouveau_drv.h"
26 #include "nouveau_hw.h"
28 /****************************************************************************\
29 * *
30 * The video arbitration routines calculate some "magic" numbers. Fixes *
31 * the snow seen when accessing the framebuffer without it. *
32 * It just works (I hope). *
33 * *
34 \****************************************************************************/
36 struct nv_fifo_info {
37 int lwm;
38 int burst;
41 struct nv_sim_state {
42 int pclk_khz;
43 int mclk_khz;
44 int nvclk_khz;
45 int bpp;
46 int mem_page_miss;
47 int mem_latency;
48 int memory_type;
49 int memory_width;
50 int two_heads;
53 static void
54 nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
56 int pagemiss, cas, width, bpp;
57 int nvclks, mclks, pclks, crtpagemiss;
58 int found, mclk_extra, mclk_loop, cbs, m1, p1;
59 int mclk_freq, pclk_freq, nvclk_freq;
60 int us_m, us_n, us_p, crtc_drain_rate;
61 int cpm_us, us_crt, clwm;
63 pclk_freq = arb->pclk_khz;
64 mclk_freq = arb->mclk_khz;
65 nvclk_freq = arb->nvclk_khz;
66 pagemiss = arb->mem_page_miss;
67 cas = arb->mem_latency;
68 width = arb->memory_width >> 6;
69 bpp = arb->bpp;
70 cbs = 128;
72 pclks = 2;
73 nvclks = 10;
74 mclks = 13 + cas;
75 mclk_extra = 3;
76 found = 0;
78 while (!found) {
79 found = 1;
81 mclk_loop = mclks + mclk_extra;
82 us_m = mclk_loop * 1000 * 1000 / mclk_freq;
83 us_n = nvclks * 1000 * 1000 / nvclk_freq;
84 us_p = nvclks * 1000 * 1000 / pclk_freq;
86 crtc_drain_rate = pclk_freq * bpp / 8;
87 crtpagemiss = 2;
88 crtpagemiss += 1;
89 cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
90 us_crt = cpm_us + us_m + us_n + us_p;
91 clwm = us_crt * crtc_drain_rate / (1000 * 1000);
92 clwm++;
94 m1 = clwm + cbs - 512;
95 p1 = m1 * pclk_freq / mclk_freq;
96 p1 = p1 * bpp / 8;
97 if ((p1 < m1 && m1 > 0) || clwm > 519) {
98 found = !mclk_extra;
99 mclk_extra--;
101 if (clwm < 384)
102 clwm = 384;
104 fifo->lwm = clwm;
105 fifo->burst = cbs;
109 static void
110 nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
112 int fill_rate, drain_rate;
113 int pclks, nvclks, mclks, xclks;
114 int pclk_freq, nvclk_freq, mclk_freq;
115 int fill_lat, extra_lat;
116 int max_burst_o, max_burst_l;
117 int fifo_len, min_lwm, max_lwm;
118 const int burst_lat = 80; /* Maximum allowable latency due
119 * to the CRTC FIFO burst. (ns) */
121 pclk_freq = arb->pclk_khz;
122 nvclk_freq = arb->nvclk_khz;
123 mclk_freq = arb->mclk_khz;
125 fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
126 drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
128 fifo_len = arb->two_heads ? 1536 : 1024; /* B */
130 /* Fixed FIFO refill latency. */
132 pclks = 4; /* lwm detect. */
134 nvclks = 3 /* lwm -> sync. */
135 + 2 /* fbi bus cycles (1 req + 1 busy) */
136 + 1 /* 2 edge sync. may be very close to edge so
137 * just put one. */
138 + 1 /* fbi_d_rdv_n */
139 + 1 /* Fbi_d_rdata */
140 + 1; /* crtfifo load */
142 mclks = 1 /* 2 edge sync. may be very close to edge so
143 * just put one. */
144 + 1 /* arb_hp_req */
145 + 5 /* tiling pipeline */
146 + 2 /* latency fifo */
147 + 2 /* memory request to fbio block */
148 + 7; /* data returned from fbio block */
150 /* Need to accumulate 256 bits for read */
151 mclks += (arb->memory_type == 0 ? 2 : 1)
152 * arb->memory_width / 32;
154 fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */
155 + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */
156 + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */
158 /* Conditional FIFO refill latency. */
160 xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
161 * the overlay. */
162 + 2 * arb->mem_page_miss /* Extra pagemiss latency. */
163 + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */
165 extra_lat = xclks * 1000 * 1000 / mclk_freq;
167 if (arb->two_heads)
168 /* Account for another CRTC. */
169 extra_lat += fill_lat + extra_lat + burst_lat;
171 /* FIFO burst */
173 /* Max burst not leading to overflows. */
174 max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
175 * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
176 fifo->burst = min(max_burst_o, 1024);
178 /* Max burst value with an acceptable latency. */
179 max_burst_l = burst_lat * fill_rate / (1000 * 1000);
180 fifo->burst = min(max_burst_l, fifo->burst);
182 fifo->burst = rounddown_pow_of_two(fifo->burst);
184 /* FIFO low watermark */
186 min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
187 max_lwm = fifo_len - fifo->burst
188 + fill_lat * drain_rate / (1000 * 1000)
189 + fifo->burst * drain_rate / fill_rate;
191 fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
194 static void
195 nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
196 int *burst, int *lwm)
198 struct drm_nouveau_private *dev_priv = dev->dev_private;
199 struct nv_fifo_info fifo_data;
200 struct nv_sim_state sim_data;
201 int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY);
202 int NVClk = nouveau_hw_get_clock(dev, PLL_CORE);
203 uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1);
205 sim_data.pclk_khz = VClk;
206 sim_data.mclk_khz = MClk;
207 sim_data.nvclk_khz = NVClk;
208 sim_data.bpp = bpp;
209 sim_data.two_heads = nv_two_heads(dev);
210 if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
211 (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
212 uint32_t type;
214 pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
216 sim_data.memory_type = (type >> 12) & 1;
217 sim_data.memory_width = 64;
218 sim_data.mem_latency = 3;
219 sim_data.mem_page_miss = 10;
220 } else {
221 sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1;
222 sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
223 sim_data.mem_latency = cfg1 & 0xf;
224 sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
227 if (dev_priv->card_type == NV_04)
228 nv04_calc_arb(&fifo_data, &sim_data);
229 else
230 nv10_calc_arb(&fifo_data, &sim_data);
232 *burst = ilog2(fifo_data.burst >> 4);
233 *lwm = fifo_data.lwm >> 3;
236 static void
237 nv20_update_arb(int *burst, int *lwm)
239 unsigned int fifo_size, burst_size, graphics_lwm;
241 fifo_size = 2048;
242 burst_size = 512;
243 graphics_lwm = fifo_size - burst_size;
245 *burst = ilog2(burst_size >> 5);
246 *lwm = graphics_lwm >> 3;
249 void
250 nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
252 struct drm_nouveau_private *dev_priv = dev->dev_private;
254 if (dev_priv->card_type < NV_20)
255 nv04_update_arb(dev, vclk, bpp, burst, lwm);
256 else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
257 (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
258 *burst = 128;
259 *lwm = 0x0480;
260 } else
261 nv20_update_arb(burst, lwm);
264 static int
265 getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
266 struct nouveau_pll_vals *bestpv)
268 /* Find M, N and P for a single stage PLL
270 * Note that some bioses (NV3x) have lookup tables of precomputed MNP
271 * values, but we're too lazy to use those atm
273 * "clk" parameter in kHz
274 * returns calculated clock
276 struct drm_nouveau_private *dev_priv = dev->dev_private;
277 int cv = dev_priv->vbios.chip_version;
278 int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
279 int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
280 int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
281 int minU = pll_lim->vco1.min_inputfreq;
282 int maxU = pll_lim->vco1.max_inputfreq;
283 int minP = pll_lim->max_p ? pll_lim->min_p : 0;
284 int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
285 int crystal = pll_lim->refclk;
286 int M, N, thisP, P;
287 int clkP, calcclk;
288 int delta, bestdelta = INT_MAX;
289 int bestclk = 0;
291 /* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
292 /* possibly correlated with introduction of 27MHz crystal */
293 if (dev_priv->card_type < NV_50) {
294 if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
295 if (clk > 250000)
296 maxM = 6;
297 if (clk > 340000)
298 maxM = 2;
299 } else if (cv < 0x40) {
300 if (clk > 150000)
301 maxM = 6;
302 if (clk > 200000)
303 maxM = 4;
304 if (clk > 340000)
305 maxM = 2;
309 P = pll_lim->max_p ? maxP : (1 << maxP);
310 if ((clk * P) < minvco) {
311 minvco = clk * maxP;
312 maxvco = minvco * 2;
315 if (clk + clk/200 > maxvco) /* +0.5% */
316 maxvco = clk + clk/200;
318 /* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
319 for (thisP = minP; thisP <= maxP; thisP++) {
320 P = pll_lim->max_p ? thisP : (1 << thisP);
321 clkP = clk * P;
323 if (clkP < minvco)
324 continue;
325 if (clkP > maxvco)
326 return bestclk;
328 for (M = minM; M <= maxM; M++) {
329 if (crystal/M < minU)
330 return bestclk;
331 if (crystal/M > maxU)
332 continue;
334 /* add crystal/2 to round better */
335 N = (clkP * M + crystal/2) / crystal;
337 if (N < minN)
338 continue;
339 if (N > maxN)
340 break;
342 /* more rounding additions */
343 calcclk = ((N * crystal + P/2) / P + M/2) / M;
344 delta = abs(calcclk - clk);
345 /* we do an exhaustive search rather than terminating
346 * on an optimality condition...
348 if (delta < bestdelta) {
349 bestdelta = delta;
350 bestclk = calcclk;
351 bestpv->N1 = N;
352 bestpv->M1 = M;
353 bestpv->log2P = thisP;
354 if (delta == 0) /* except this one */
355 return bestclk;
360 return bestclk;
363 static int
364 getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
365 struct nouveau_pll_vals *bestpv)
367 /* Find M, N and P for a two stage PLL
369 * Note that some bioses (NV30+) have lookup tables of precomputed MNP
370 * values, but we're too lazy to use those atm
372 * "clk" parameter in kHz
373 * returns calculated clock
375 struct drm_nouveau_private *dev_priv = dev->dev_private;
376 int chip_version = dev_priv->vbios.chip_version;
377 int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
378 int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
379 int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
380 int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
381 int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
382 int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
383 int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
384 int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
385 int maxlog2P = pll_lim->max_usable_log2p;
386 int crystal = pll_lim->refclk;
387 bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
388 int M1, N1, M2, N2, log2P;
389 int clkP, calcclk1, calcclk2, calcclkout;
390 int delta, bestdelta = INT_MAX;
391 int bestclk = 0;
393 int vco2 = (maxvco2 - maxvco2/200) / 2;
394 for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
396 clkP = clk << log2P;
398 if (maxvco2 < clk + clk/200) /* +0.5% */
399 maxvco2 = clk + clk/200;
401 for (M1 = minM1; M1 <= maxM1; M1++) {
402 if (crystal/M1 < minU1)
403 return bestclk;
404 if (crystal/M1 > maxU1)
405 continue;
407 for (N1 = minN1; N1 <= maxN1; N1++) {
408 calcclk1 = crystal * N1 / M1;
409 if (calcclk1 < minvco1)
410 continue;
411 if (calcclk1 > maxvco1)
412 break;
414 for (M2 = minM2; M2 <= maxM2; M2++) {
415 if (calcclk1/M2 < minU2)
416 break;
417 if (calcclk1/M2 > maxU2)
418 continue;
420 /* add calcclk1/2 to round better */
421 N2 = (clkP * M2 + calcclk1/2) / calcclk1;
422 if (N2 < minN2)
423 continue;
424 if (N2 > maxN2)
425 break;
427 if (!fixedgain2) {
428 if (chip_version < 0x60)
429 if (N2/M2 < 4 || N2/M2 > 10)
430 continue;
432 calcclk2 = calcclk1 * N2 / M2;
433 if (calcclk2 < minvco2)
434 break;
435 if (calcclk2 > maxvco2)
436 continue;
437 } else
438 calcclk2 = calcclk1;
440 calcclkout = calcclk2 >> log2P;
441 delta = abs(calcclkout - clk);
442 /* we do an exhaustive search rather than terminating
443 * on an optimality condition...
445 if (delta < bestdelta) {
446 bestdelta = delta;
447 bestclk = calcclkout;
448 bestpv->N1 = N1;
449 bestpv->M1 = M1;
450 bestpv->N2 = N2;
451 bestpv->M2 = M2;
452 bestpv->log2P = log2P;
453 if (delta == 0) /* except this one */
454 return bestclk;
460 return bestclk;
464 nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
465 struct nouveau_pll_vals *pv)
467 int outclk;
469 if (!pll_lim->vco2.maxfreq)
470 outclk = getMNP_single(dev, pll_lim, clk, pv);
471 else
472 outclk = getMNP_double(dev, pll_lim, clk, pv);
474 if (!outclk)
475 NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
477 return outclk;