2 * Copyright 2006 Dave Airlie
3 * Copyright 2007 Maarten Maathuis
4 * Copyright 2007-2009 Stuart Bennett
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 #include "nouveau_drv.h"
27 #include "nouveau_hw.h"
29 #define CHIPSET_NFORCE 0x01a0
30 #define CHIPSET_NFORCE2 0x01f0
33 * misc hw access wrappers/control functions
37 NVWriteVgaSeq(struct drm_device
*dev
, int head
, uint8_t index
, uint8_t value
)
39 NVWritePRMVIO(dev
, head
, NV_PRMVIO_SRX
, index
);
40 NVWritePRMVIO(dev
, head
, NV_PRMVIO_SR
, value
);
44 NVReadVgaSeq(struct drm_device
*dev
, int head
, uint8_t index
)
46 NVWritePRMVIO(dev
, head
, NV_PRMVIO_SRX
, index
);
47 return NVReadPRMVIO(dev
, head
, NV_PRMVIO_SR
);
51 NVWriteVgaGr(struct drm_device
*dev
, int head
, uint8_t index
, uint8_t value
)
53 NVWritePRMVIO(dev
, head
, NV_PRMVIO_GRX
, index
);
54 NVWritePRMVIO(dev
, head
, NV_PRMVIO_GX
, value
);
58 NVReadVgaGr(struct drm_device
*dev
, int head
, uint8_t index
)
60 NVWritePRMVIO(dev
, head
, NV_PRMVIO_GRX
, index
);
61 return NVReadPRMVIO(dev
, head
, NV_PRMVIO_GX
);
64 /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
65 * it affects only the 8 bit vga io regs, which we access using mmio at
66 * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
67 * in general, the set value of cr44 does not matter: reg access works as
68 * expected and values can be set for the appropriate head by using a 0x2000
71 * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
72 * cr44 must be set to 0 or 3 for accessing values on the correct head
73 * through the common 0xc03c* addresses
74 * b) in tied mode (4) head B is programmed to the values set on head A, and
75 * access using the head B addresses can have strange results, ergo we leave
76 * tied mode in init once we know to what cr44 should be restored on exit
78 * the owner parameter is slightly abused:
79 * 0 and 1 are treated as head values and so the set value is (owner * 3)
80 * other values are treated as literal values to set
83 NVSetOwner(struct drm_device
*dev
, int owner
)
85 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
90 if (dev_priv
->chipset
== 0x11) {
91 /* This might seem stupid, but the blob does it and
92 * omitting it often locks the system up.
94 NVReadVgaCrtc(dev
, 0, NV_CIO_SR_LOCK_INDEX
);
95 NVReadVgaCrtc(dev
, 1, NV_CIO_SR_LOCK_INDEX
);
98 /* CR44 is always changed on CRTC0 */
99 NVWriteVgaCrtc(dev
, 0, NV_CIO_CRE_44
, owner
);
101 if (dev_priv
->chipset
== 0x11) { /* set me harder */
102 NVWriteVgaCrtc(dev
, 0, NV_CIO_CRE_2E
, owner
);
103 NVWriteVgaCrtc(dev
, 0, NV_CIO_CRE_2E
, owner
);
108 NVBlankScreen(struct drm_device
*dev
, int head
, bool blank
)
112 if (nv_two_heads(dev
))
113 NVSetOwner(dev
, head
);
115 seq1
= NVReadVgaSeq(dev
, head
, NV_VIO_SR_CLOCK_INDEX
);
117 NVVgaSeqReset(dev
, head
, true);
119 NVWriteVgaSeq(dev
, head
, NV_VIO_SR_CLOCK_INDEX
, seq1
| 0x20);
121 NVWriteVgaSeq(dev
, head
, NV_VIO_SR_CLOCK_INDEX
, seq1
& ~0x20);
122 NVVgaSeqReset(dev
, head
, false);
130 powerctrl_1_shift(int chip_version
, int reg
)
134 if (chip_version
< 0x17 || chip_version
== 0x1a || chip_version
== 0x20)
138 case NV_RAMDAC_VPLL2
:
140 case NV_PRAMDAC_VPLL_COEFF
:
142 case NV_PRAMDAC_MPLL_COEFF
:
144 case NV_PRAMDAC_NVPLL_COEFF
:
149 * the shift for vpll regs is only used for nv3x chips with a single
152 if (shift
> 4 && (chip_version
< 0x32 || chip_version
== 0x35 ||
153 chip_version
== 0x36 || chip_version
>= 0x40))
160 setPLL_single(struct drm_device
*dev
, uint32_t reg
, struct nouveau_pll_vals
*pv
)
162 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
163 int chip_version
= dev_priv
->vbios
.chip_version
;
164 uint32_t oldpll
= NVReadRAMDAC(dev
, 0, reg
);
165 int oldN
= (oldpll
>> 8) & 0xff, oldM
= oldpll
& 0xff;
166 uint32_t pll
= (oldpll
& 0xfff80000) | pv
->log2P
<< 16 | pv
->NM1
;
167 uint32_t saved_powerctrl_1
= 0;
168 int shift_powerctrl_1
= powerctrl_1_shift(chip_version
, reg
);
171 return; /* already set */
173 if (shift_powerctrl_1
>= 0) {
174 saved_powerctrl_1
= nvReadMC(dev
, NV_PBUS_POWERCTRL_1
);
175 nvWriteMC(dev
, NV_PBUS_POWERCTRL_1
,
176 (saved_powerctrl_1
& ~(0xf << shift_powerctrl_1
)) |
177 1 << shift_powerctrl_1
);
180 if (oldM
&& pv
->M1
&& (oldN
/ oldM
< pv
->N1
/ pv
->M1
))
181 /* upclock -- write new post divider first */
182 NVWriteRAMDAC(dev
, 0, reg
, pv
->log2P
<< 16 | (oldpll
& 0xffff));
184 /* downclock -- write new NM first */
185 NVWriteRAMDAC(dev
, 0, reg
, (oldpll
& 0xffff0000) | pv
->NM1
);
187 if (chip_version
< 0x17 && chip_version
!= 0x11)
188 /* wait a bit on older chips */
190 NVReadRAMDAC(dev
, 0, reg
);
192 /* then write the other half as well */
193 NVWriteRAMDAC(dev
, 0, reg
, pll
);
195 if (shift_powerctrl_1
>= 0)
196 nvWriteMC(dev
, NV_PBUS_POWERCTRL_1
, saved_powerctrl_1
);
200 new_ramdac580(uint32_t reg1
, bool ss
, uint32_t ramdac580
)
202 bool head_a
= (reg1
== NV_PRAMDAC_VPLL_COEFF
);
204 if (ss
) /* single stage pll mode */
205 ramdac580
|= head_a
? NV_RAMDAC_580_VPLL1_ACTIVE
:
206 NV_RAMDAC_580_VPLL2_ACTIVE
;
208 ramdac580
&= head_a
? ~NV_RAMDAC_580_VPLL1_ACTIVE
:
209 ~NV_RAMDAC_580_VPLL2_ACTIVE
;
215 setPLL_double_highregs(struct drm_device
*dev
, uint32_t reg1
,
216 struct nouveau_pll_vals
*pv
)
218 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
219 int chip_version
= dev_priv
->vbios
.chip_version
;
220 bool nv3035
= chip_version
== 0x30 || chip_version
== 0x35;
221 uint32_t reg2
= reg1
+ ((reg1
== NV_RAMDAC_VPLL2
) ? 0x5c : 0x70);
222 uint32_t oldpll1
= NVReadRAMDAC(dev
, 0, reg1
);
223 uint32_t oldpll2
= !nv3035
? NVReadRAMDAC(dev
, 0, reg2
) : 0;
224 uint32_t pll1
= (oldpll1
& 0xfff80000) | pv
->log2P
<< 16 | pv
->NM1
;
225 uint32_t pll2
= (oldpll2
& 0x7fff0000) | 1 << 31 | pv
->NM2
;
226 uint32_t oldramdac580
= 0, ramdac580
= 0;
227 bool single_stage
= !pv
->NM2
|| pv
->N2
== pv
->M2
; /* nv41+ only */
228 uint32_t saved_powerctrl_1
= 0, savedc040
= 0;
229 int shift_powerctrl_1
= powerctrl_1_shift(chip_version
, reg1
);
231 /* model specific additions to generic pll1 and pll2 set up above */
233 pll1
= (pll1
& 0xfcc7ffff) | (pv
->N2
& 0x18) << 21 |
234 (pv
->N2
& 0x7) << 19 | 8 << 4 | (pv
->M2
& 7) << 4;
237 if (chip_version
> 0x40 && reg1
>= NV_PRAMDAC_VPLL_COEFF
) { /* !nv40 */
238 oldramdac580
= NVReadRAMDAC(dev
, 0, NV_PRAMDAC_580
);
239 ramdac580
= new_ramdac580(reg1
, single_stage
, oldramdac580
);
240 if (oldramdac580
!= ramdac580
)
241 oldpll1
= ~0; /* force mismatch */
243 /* magic value used by nvidia in single stage mode */
246 if (chip_version
> 0x70)
247 /* magic bits set by the blob (but not the bios) on g71-73 */
248 pll1
= (pll1
& 0x7fffffff) | (single_stage
? 0x4 : 0xc) << 28;
250 if (oldpll1
== pll1
&& oldpll2
== pll2
)
251 return; /* already set */
253 if (shift_powerctrl_1
>= 0) {
254 saved_powerctrl_1
= nvReadMC(dev
, NV_PBUS_POWERCTRL_1
);
255 nvWriteMC(dev
, NV_PBUS_POWERCTRL_1
,
256 (saved_powerctrl_1
& ~(0xf << shift_powerctrl_1
)) |
257 1 << shift_powerctrl_1
);
260 if (chip_version
>= 0x40) {
264 case NV_PRAMDAC_MPLL_COEFF
:
266 case NV_PRAMDAC_NVPLL_COEFF
:
268 case NV_RAMDAC_VPLL2
:
270 case NV_PRAMDAC_VPLL_COEFF
:
274 savedc040
= nvReadMC(dev
, 0xc040);
275 if (shift_c040
!= 14)
276 nvWriteMC(dev
, 0xc040, savedc040
& ~(3 << shift_c040
));
279 if (oldramdac580
!= ramdac580
)
280 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_580
, ramdac580
);
283 NVWriteRAMDAC(dev
, 0, reg2
, pll2
);
284 NVWriteRAMDAC(dev
, 0, reg1
, pll1
);
286 if (shift_powerctrl_1
>= 0)
287 nvWriteMC(dev
, NV_PBUS_POWERCTRL_1
, saved_powerctrl_1
);
288 if (chip_version
>= 0x40)
289 nvWriteMC(dev
, 0xc040, savedc040
);
293 setPLL_double_lowregs(struct drm_device
*dev
, uint32_t NMNMreg
,
294 struct nouveau_pll_vals
*pv
)
296 /* When setting PLLs, there is a merry game of disabling and enabling
297 * various bits of hardware during the process. This function is a
298 * synthesis of six nv4x traces, nearly each card doing a subtly
299 * different thing. With luck all the necessary bits for each card are
300 * combined herein. Without luck it deviates from each card's formula
301 * so as to not work on any :)
304 uint32_t Preg
= NMNMreg
- 4;
305 bool mpll
= Preg
== 0x4020;
306 uint32_t oldPval
= nvReadMC(dev
, Preg
);
307 uint32_t NMNM
= pv
->NM2
<< 16 | pv
->NM1
;
308 uint32_t Pval
= (oldPval
& (mpll
? ~(0x77 << 16) : ~(7 << 16))) |
309 0xc << 28 | pv
->log2P
<< 16;
310 uint32_t saved4600
= 0;
311 /* some cards have different maskc040s */
312 uint32_t maskc040
= ~(3 << 14), savedc040
;
313 bool single_stage
= !pv
->NM2
|| pv
->N2
== pv
->M2
;
315 if (nvReadMC(dev
, NMNMreg
) == NMNM
&& (oldPval
& 0xc0070000) == Pval
)
321 maskc040
= ~(0xc << 24);
324 struct pll_lims pll_lim
;
327 if (get_pll_limits(dev
, Preg
, &pll_lim
))
330 Pval2
= pv
->log2P
+ pll_lim
.log2p_bias
;
331 if (Pval2
> pll_lim
.max_log2p
)
332 Pval2
= pll_lim
.max_log2p
;
333 Pval
|= 1 << 28 | Pval2
<< 20;
335 saved4600
= nvReadMC(dev
, 0x4600);
336 nvWriteMC(dev
, 0x4600, saved4600
| 8 << 28);
339 Pval
|= mpll
? 1 << 12 : 1 << 8;
341 nvWriteMC(dev
, Preg
, oldPval
| 1 << 28);
342 nvWriteMC(dev
, Preg
, Pval
& ~(4 << 28));
345 nvWriteMC(dev
, 0x4020, Pval
& ~(0xc << 28));
346 nvWriteMC(dev
, 0x4038, Pval
& ~(0xc << 28));
349 savedc040
= nvReadMC(dev
, 0xc040);
350 nvWriteMC(dev
, 0xc040, savedc040
& maskc040
);
352 nvWriteMC(dev
, NMNMreg
, NMNM
);
353 if (NMNMreg
== 0x4024)
354 nvWriteMC(dev
, 0x403c, NMNM
);
356 nvWriteMC(dev
, Preg
, Pval
);
359 nvWriteMC(dev
, 0x4020, Pval
);
360 nvWriteMC(dev
, 0x4038, Pval
);
361 nvWriteMC(dev
, 0x4600, saved4600
);
364 nvWriteMC(dev
, 0xc040, savedc040
);
367 nvWriteMC(dev
, 0x4020, Pval
& ~(1 << 28));
368 nvWriteMC(dev
, 0x4038, Pval
& ~(1 << 28));
373 nouveau_hw_setpll(struct drm_device
*dev
, uint32_t reg1
,
374 struct nouveau_pll_vals
*pv
)
376 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
377 int cv
= dev_priv
->vbios
.chip_version
;
379 if (cv
== 0x30 || cv
== 0x31 || cv
== 0x35 || cv
== 0x36 ||
382 setPLL_double_highregs(dev
, reg1
, pv
);
384 setPLL_double_lowregs(dev
, reg1
, pv
);
386 setPLL_single(dev
, reg1
, pv
);
394 nouveau_hw_decode_pll(struct drm_device
*dev
, uint32_t reg1
, uint32_t pll1
,
395 uint32_t pll2
, struct nouveau_pll_vals
*pllvals
)
397 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
399 /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
401 /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
402 pllvals
->log2P
= (pll1
>> 16) & 0x7;
403 pllvals
->N2
= pllvals
->M2
= 1;
405 if (reg1
<= 0x405c) {
406 pllvals
->NM1
= pll2
& 0xffff;
407 /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
408 if (!(pll1
& 0x1100))
409 pllvals
->NM2
= pll2
>> 16;
411 pllvals
->NM1
= pll1
& 0xffff;
412 if (nv_two_reg_pll(dev
) && pll2
& NV31_RAMDAC_ENABLE_VCO2
)
413 pllvals
->NM2
= pll2
& 0xffff;
414 else if (dev_priv
->chipset
== 0x30 || dev_priv
->chipset
== 0x35) {
415 pllvals
->M1
&= 0xf; /* only 4 bits */
416 if (pll1
& NV30_RAMDAC_ENABLE_VCO2
) {
417 pllvals
->M2
= (pll1
>> 4) & 0x7;
418 pllvals
->N2
= ((pll1
>> 21) & 0x18) |
419 ((pll1
>> 19) & 0x7);
426 nouveau_hw_get_pllvals(struct drm_device
*dev
, enum pll_types plltype
,
427 struct nouveau_pll_vals
*pllvals
)
429 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
430 uint32_t reg1
= get_pll_register(dev
, plltype
), pll1
, pll2
= 0;
431 struct pll_lims pll_lim
;
437 pll1
= nvReadMC(dev
, reg1
);
440 pll2
= nvReadMC(dev
, reg1
+ 4);
441 else if (nv_two_reg_pll(dev
)) {
442 uint32_t reg2
= reg1
+ (reg1
== NV_RAMDAC_VPLL2
? 0x5c : 0x70);
444 pll2
= nvReadMC(dev
, reg2
);
447 if (dev_priv
->card_type
== 0x40 && reg1
>= NV_PRAMDAC_VPLL_COEFF
) {
448 uint32_t ramdac580
= NVReadRAMDAC(dev
, 0, NV_PRAMDAC_580
);
450 /* check whether vpll has been forced into single stage mode */
451 if (reg1
== NV_PRAMDAC_VPLL_COEFF
) {
452 if (ramdac580
& NV_RAMDAC_580_VPLL1_ACTIVE
)
455 if (ramdac580
& NV_RAMDAC_580_VPLL2_ACTIVE
)
459 nouveau_hw_decode_pll(dev
, reg1
, pll1
, pll2
, pllvals
);
461 ret
= get_pll_limits(dev
, plltype
, &pll_lim
);
465 pllvals
->refclk
= pll_lim
.refclk
;
471 nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals
*pv
)
473 /* Avoid divide by zero if called at an inappropriate time */
474 if (!pv
->M1
|| !pv
->M2
)
477 return pv
->N1
* pv
->N2
* pv
->refclk
/ (pv
->M1
* pv
->M2
) >> pv
->log2P
;
481 nouveau_hw_get_clock(struct drm_device
*dev
, enum pll_types plltype
)
483 struct nouveau_pll_vals pllvals
;
486 if (plltype
== PLL_MEMORY
&&
487 (dev
->pci_device
& 0x0ff0) == CHIPSET_NFORCE
) {
490 pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP
);
494 return 400000 / mpllP
;
496 if (plltype
== PLL_MEMORY
&&
497 (dev
->pci_device
& 0xff0) == CHIPSET_NFORCE2
) {
500 pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock
);
504 ret
= nouveau_hw_get_pllvals(dev
, plltype
, &pllvals
);
508 return nouveau_hw_pllvals_to_clk(&pllvals
);
512 nouveau_hw_fix_bad_vpll(struct drm_device
*dev
, int head
)
514 /* the vpll on an unused head can come up with a random value, way
515 * beyond the pll limits. for some reason this causes the chip to
516 * lock up when reading the dac palette regs, so set a valid pll here
517 * when such a condition detected. only seen on nv11 to date
520 struct pll_lims pll_lim
;
521 struct nouveau_pll_vals pv
;
522 enum pll_types pll
= head
? PLL_VPLL1
: PLL_VPLL0
;
524 if (get_pll_limits(dev
, pll
, &pll_lim
))
526 nouveau_hw_get_pllvals(dev
, pll
, &pv
);
528 if (pv
.M1
>= pll_lim
.vco1
.min_m
&& pv
.M1
<= pll_lim
.vco1
.max_m
&&
529 pv
.N1
>= pll_lim
.vco1
.min_n
&& pv
.N1
<= pll_lim
.vco1
.max_n
&&
530 pv
.log2P
<= pll_lim
.max_log2p
)
533 NV_WARN(dev
, "VPLL %d outwith limits, attempting to fix\n", head
+ 1);
535 /* set lowest clock within static limits */
536 pv
.M1
= pll_lim
.vco1
.max_m
;
537 pv
.N1
= pll_lim
.vco1
.min_n
;
538 pv
.log2P
= pll_lim
.max_usable_log2p
;
539 nouveau_hw_setpll(dev
, pll_lim
.reg
, &pv
);
543 * vga font save/restore
546 static void nouveau_vga_font_io(struct drm_device
*dev
,
547 void __iomem
*iovram
,
548 bool save
, unsigned plane
)
550 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
553 NVWriteVgaSeq(dev
, 0, NV_VIO_SR_PLANE_MASK_INDEX
, 1 << plane
);
554 NVWriteVgaGr(dev
, 0, NV_VIO_GX_READ_MAP_INDEX
, plane
);
555 for (i
= 0; i
< 16384; i
++) {
557 dev_priv
->saved_vga_font
[plane
][i
] =
558 ioread32_native(iovram
+ i
* 4);
560 iowrite32_native(dev_priv
->saved_vga_font
[plane
][i
],
567 nouveau_hw_save_vga_fonts(struct drm_device
*dev
, bool save
)
569 uint8_t misc
, gr4
, gr5
, gr6
, seq2
, seq4
;
572 void __iomem
*iovram
;
574 if (nv_two_heads(dev
))
577 NVSetEnablePalette(dev
, 0, true);
578 graphicsmode
= NVReadVgaAttr(dev
, 0, NV_CIO_AR_MODE_INDEX
) & 1;
579 NVSetEnablePalette(dev
, 0, false);
581 if (graphicsmode
) /* graphics mode => framebuffer => no need to save */
584 NV_INFO(dev
, "%sing VGA fonts\n", save
? "Sav" : "Restor");
586 /* map first 64KiB of VRAM, holds VGA fonts etc */
587 iovram
= ioremap(pci_resource_start(dev
->pdev
, 1), 65536);
589 NV_ERROR(dev
, "Failed to map VRAM, "
590 "cannot save/restore VGA fonts.\n");
594 if (nv_two_heads(dev
))
595 NVBlankScreen(dev
, 1, true);
596 NVBlankScreen(dev
, 0, true);
598 /* save control regs */
599 misc
= NVReadPRMVIO(dev
, 0, NV_PRMVIO_MISC__READ
);
600 seq2
= NVReadVgaSeq(dev
, 0, NV_VIO_SR_PLANE_MASK_INDEX
);
601 seq4
= NVReadVgaSeq(dev
, 0, NV_VIO_SR_MEM_MODE_INDEX
);
602 gr4
= NVReadVgaGr(dev
, 0, NV_VIO_GX_READ_MAP_INDEX
);
603 gr5
= NVReadVgaGr(dev
, 0, NV_VIO_GX_MODE_INDEX
);
604 gr6
= NVReadVgaGr(dev
, 0, NV_VIO_GX_MISC_INDEX
);
606 NVWritePRMVIO(dev
, 0, NV_PRMVIO_MISC__WRITE
, 0x67);
607 NVWriteVgaSeq(dev
, 0, NV_VIO_SR_MEM_MODE_INDEX
, 0x6);
608 NVWriteVgaGr(dev
, 0, NV_VIO_GX_MODE_INDEX
, 0x0);
609 NVWriteVgaGr(dev
, 0, NV_VIO_GX_MISC_INDEX
, 0x5);
611 /* store font in planes 0..3 */
612 for (plane
= 0; plane
< 4; plane
++)
613 nouveau_vga_font_io(dev
, iovram
, save
, plane
);
615 /* restore control regs */
616 NVWritePRMVIO(dev
, 0, NV_PRMVIO_MISC__WRITE
, misc
);
617 NVWriteVgaGr(dev
, 0, NV_VIO_GX_READ_MAP_INDEX
, gr4
);
618 NVWriteVgaGr(dev
, 0, NV_VIO_GX_MODE_INDEX
, gr5
);
619 NVWriteVgaGr(dev
, 0, NV_VIO_GX_MISC_INDEX
, gr6
);
620 NVWriteVgaSeq(dev
, 0, NV_VIO_SR_PLANE_MASK_INDEX
, seq2
);
621 NVWriteVgaSeq(dev
, 0, NV_VIO_SR_MEM_MODE_INDEX
, seq4
);
623 if (nv_two_heads(dev
))
624 NVBlankScreen(dev
, 1, false);
625 NVBlankScreen(dev
, 0, false);
631 * mode state save/load
635 rd_cio_state(struct drm_device
*dev
, int head
,
636 struct nv04_crtc_reg
*crtcstate
, int index
)
638 crtcstate
->CRTC
[index
] = NVReadVgaCrtc(dev
, head
, index
);
642 wr_cio_state(struct drm_device
*dev
, int head
,
643 struct nv04_crtc_reg
*crtcstate
, int index
)
645 NVWriteVgaCrtc(dev
, head
, index
, crtcstate
->CRTC
[index
]);
649 nv_save_state_ramdac(struct drm_device
*dev
, int head
,
650 struct nv04_mode_state
*state
)
652 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
653 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
656 if (dev_priv
->card_type
>= NV_10
)
657 regp
->nv10_cursync
= NVReadRAMDAC(dev
, head
, NV_RAMDAC_NV10_CURSYNC
);
659 nouveau_hw_get_pllvals(dev
, head
? PLL_VPLL1
: PLL_VPLL0
, ®p
->pllvals
);
660 state
->pllsel
= NVReadRAMDAC(dev
, 0, NV_PRAMDAC_PLL_COEFF_SELECT
);
661 if (nv_two_heads(dev
))
662 state
->sel_clk
= NVReadRAMDAC(dev
, 0, NV_PRAMDAC_SEL_CLK
);
663 if (dev_priv
->chipset
== 0x11)
664 regp
->dither
= NVReadRAMDAC(dev
, head
, NV_RAMDAC_DITHER_NV11
);
666 regp
->ramdac_gen_ctrl
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_GENERAL_CONTROL
);
668 if (nv_gf4_disp_arch(dev
))
669 regp
->ramdac_630
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_630
);
670 if (dev_priv
->chipset
>= 0x30)
671 regp
->ramdac_634
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_634
);
673 regp
->tv_setup
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_SETUP
);
674 regp
->tv_vtotal
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_VTOTAL
);
675 regp
->tv_vskew
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_VSKEW
);
676 regp
->tv_vsync_delay
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_VSYNC_DELAY
);
677 regp
->tv_htotal
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_HTOTAL
);
678 regp
->tv_hskew
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSKEW
);
679 regp
->tv_hsync_delay
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSYNC_DELAY
);
680 regp
->tv_hsync_delay2
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSYNC_DELAY2
);
682 for (i
= 0; i
< 7; i
++) {
683 uint32_t ramdac_reg
= NV_PRAMDAC_FP_VDISPLAY_END
+ (i
* 4);
684 regp
->fp_vert_regs
[i
] = NVReadRAMDAC(dev
, head
, ramdac_reg
);
685 regp
->fp_horiz_regs
[i
] = NVReadRAMDAC(dev
, head
, ramdac_reg
+ 0x20);
688 if (nv_gf4_disp_arch(dev
)) {
689 regp
->dither
= NVReadRAMDAC(dev
, head
, NV_RAMDAC_FP_DITHER
);
690 for (i
= 0; i
< 3; i
++) {
691 regp
->dither_regs
[i
] = NVReadRAMDAC(dev
, head
, NV_PRAMDAC_850
+ i
* 4);
692 regp
->dither_regs
[i
+ 3] = NVReadRAMDAC(dev
, head
, NV_PRAMDAC_85C
+ i
* 4);
696 regp
->fp_control
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_FP_TG_CONTROL
);
697 regp
->fp_debug_0
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_0
);
698 if (!nv_gf4_disp_arch(dev
) && head
== 0) {
699 /* early chips don't allow access to PRAMDAC_TMDS_* without
700 * the head A FPCLK on (nv11 even locks up) */
701 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_FP_DEBUG_0
, regp
->fp_debug_0
&
702 ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK
);
704 regp
->fp_debug_1
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_1
);
705 regp
->fp_debug_2
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_2
);
707 regp
->fp_margin_color
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_FP_MARGIN_COLOR
);
709 if (nv_gf4_disp_arch(dev
))
710 regp
->ramdac_8c0
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_8C0
);
712 if (dev_priv
->card_type
== NV_40
) {
713 regp
->ramdac_a20
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_A20
);
714 regp
->ramdac_a24
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_A24
);
715 regp
->ramdac_a34
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_A34
);
717 for (i
= 0; i
< 38; i
++)
718 regp
->ctv_regs
[i
] = NVReadRAMDAC(dev
, head
,
719 NV_PRAMDAC_CTV
+ 4*i
);
724 nv_load_state_ramdac(struct drm_device
*dev
, int head
,
725 struct nv04_mode_state
*state
)
727 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
728 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
729 uint32_t pllreg
= head
? NV_RAMDAC_VPLL2
: NV_PRAMDAC_VPLL_COEFF
;
732 if (dev_priv
->card_type
>= NV_10
)
733 NVWriteRAMDAC(dev
, head
, NV_RAMDAC_NV10_CURSYNC
, regp
->nv10_cursync
);
735 nouveau_hw_setpll(dev
, pllreg
, ®p
->pllvals
);
736 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_PLL_COEFF_SELECT
, state
->pllsel
);
737 if (nv_two_heads(dev
))
738 NVWriteRAMDAC(dev
, 0, NV_PRAMDAC_SEL_CLK
, state
->sel_clk
);
739 if (dev_priv
->chipset
== 0x11)
740 NVWriteRAMDAC(dev
, head
, NV_RAMDAC_DITHER_NV11
, regp
->dither
);
742 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_GENERAL_CONTROL
, regp
->ramdac_gen_ctrl
);
744 if (nv_gf4_disp_arch(dev
))
745 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_630
, regp
->ramdac_630
);
746 if (dev_priv
->chipset
>= 0x30)
747 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_634
, regp
->ramdac_634
);
749 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_SETUP
, regp
->tv_setup
);
750 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_VTOTAL
, regp
->tv_vtotal
);
751 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_VSKEW
, regp
->tv_vskew
);
752 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_VSYNC_DELAY
, regp
->tv_vsync_delay
);
753 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_HTOTAL
, regp
->tv_htotal
);
754 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSKEW
, regp
->tv_hskew
);
755 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSYNC_DELAY
, regp
->tv_hsync_delay
);
756 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_TV_HSYNC_DELAY2
, regp
->tv_hsync_delay2
);
758 for (i
= 0; i
< 7; i
++) {
759 uint32_t ramdac_reg
= NV_PRAMDAC_FP_VDISPLAY_END
+ (i
* 4);
761 NVWriteRAMDAC(dev
, head
, ramdac_reg
, regp
->fp_vert_regs
[i
]);
762 NVWriteRAMDAC(dev
, head
, ramdac_reg
+ 0x20, regp
->fp_horiz_regs
[i
]);
765 if (nv_gf4_disp_arch(dev
)) {
766 NVWriteRAMDAC(dev
, head
, NV_RAMDAC_FP_DITHER
, regp
->dither
);
767 for (i
= 0; i
< 3; i
++) {
768 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_850
+ i
* 4, regp
->dither_regs
[i
]);
769 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_85C
+ i
* 4, regp
->dither_regs
[i
+ 3]);
773 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_FP_TG_CONTROL
, regp
->fp_control
);
774 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_0
, regp
->fp_debug_0
);
775 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_1
, regp
->fp_debug_1
);
776 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_FP_DEBUG_2
, regp
->fp_debug_2
);
778 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_FP_MARGIN_COLOR
, regp
->fp_margin_color
);
780 if (nv_gf4_disp_arch(dev
))
781 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_8C0
, regp
->ramdac_8c0
);
783 if (dev_priv
->card_type
== NV_40
) {
784 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_A20
, regp
->ramdac_a20
);
785 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_A24
, regp
->ramdac_a24
);
786 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_A34
, regp
->ramdac_a34
);
788 for (i
= 0; i
< 38; i
++)
789 NVWriteRAMDAC(dev
, head
,
790 NV_PRAMDAC_CTV
+ 4*i
, regp
->ctv_regs
[i
]);
795 nv_save_state_vga(struct drm_device
*dev
, int head
,
796 struct nv04_mode_state
*state
)
798 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
801 regp
->MiscOutReg
= NVReadPRMVIO(dev
, head
, NV_PRMVIO_MISC__READ
);
803 for (i
= 0; i
< 25; i
++)
804 rd_cio_state(dev
, head
, regp
, i
);
806 NVSetEnablePalette(dev
, head
, true);
807 for (i
= 0; i
< 21; i
++)
808 regp
->Attribute
[i
] = NVReadVgaAttr(dev
, head
, i
);
809 NVSetEnablePalette(dev
, head
, false);
811 for (i
= 0; i
< 9; i
++)
812 regp
->Graphics
[i
] = NVReadVgaGr(dev
, head
, i
);
814 for (i
= 0; i
< 5; i
++)
815 regp
->Sequencer
[i
] = NVReadVgaSeq(dev
, head
, i
);
819 nv_load_state_vga(struct drm_device
*dev
, int head
,
820 struct nv04_mode_state
*state
)
822 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
825 NVWritePRMVIO(dev
, head
, NV_PRMVIO_MISC__WRITE
, regp
->MiscOutReg
);
827 for (i
= 0; i
< 5; i
++)
828 NVWriteVgaSeq(dev
, head
, i
, regp
->Sequencer
[i
]);
830 nv_lock_vga_crtc_base(dev
, head
, false);
831 for (i
= 0; i
< 25; i
++)
832 wr_cio_state(dev
, head
, regp
, i
);
833 nv_lock_vga_crtc_base(dev
, head
, true);
835 for (i
= 0; i
< 9; i
++)
836 NVWriteVgaGr(dev
, head
, i
, regp
->Graphics
[i
]);
838 NVSetEnablePalette(dev
, head
, true);
839 for (i
= 0; i
< 21; i
++)
840 NVWriteVgaAttr(dev
, head
, i
, regp
->Attribute
[i
]);
841 NVSetEnablePalette(dev
, head
, false);
845 nv_save_state_ext(struct drm_device
*dev
, int head
,
846 struct nv04_mode_state
*state
)
848 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
849 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
852 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_LCD__INDEX
);
853 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_RPC0_INDEX
);
854 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_RPC1_INDEX
);
855 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_LSR_INDEX
);
856 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_PIXEL_INDEX
);
857 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_HEB__INDEX
);
858 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_ENH_INDEX
);
860 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_FF_INDEX
);
861 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_FFLWM__INDEX
);
862 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_21
);
864 if (dev_priv
->card_type
>= NV_20
)
865 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_47
);
867 if (dev_priv
->card_type
>= NV_30
)
868 rd_cio_state(dev
, head
, regp
, 0x9f);
870 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_49
);
871 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR0_INDEX
);
872 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR1_INDEX
);
873 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR2_INDEX
);
874 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_ILACE__INDEX
);
876 if (dev_priv
->card_type
>= NV_10
) {
877 regp
->crtc_830
= NVReadCRTC(dev
, head
, NV_PCRTC_830
);
878 regp
->crtc_834
= NVReadCRTC(dev
, head
, NV_PCRTC_834
);
880 if (dev_priv
->card_type
>= NV_30
)
881 regp
->gpio_ext
= NVReadCRTC(dev
, head
, NV_PCRTC_GPIO_EXT
);
883 if (dev_priv
->card_type
== NV_40
)
884 regp
->crtc_850
= NVReadCRTC(dev
, head
, NV_PCRTC_850
);
886 if (nv_two_heads(dev
))
887 regp
->crtc_eng_ctrl
= NVReadCRTC(dev
, head
, NV_PCRTC_ENGINE_CTRL
);
888 regp
->cursor_cfg
= NVReadCRTC(dev
, head
, NV_PCRTC_CURSOR_CONFIG
);
891 regp
->crtc_cfg
= NVReadCRTC(dev
, head
, NV_PCRTC_CONFIG
);
893 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_SCRATCH3__INDEX
);
894 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_SCRATCH4__INDEX
);
895 if (dev_priv
->card_type
>= NV_10
) {
896 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_EBR_INDEX
);
897 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_CSB
);
898 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_4B
);
899 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_TVOUT_LATENCY
);
901 /* NV11 and NV20 don't have this, they stop at 0x52. */
902 if (nv_gf4_disp_arch(dev
)) {
903 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_42
);
904 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_53
);
905 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_54
);
907 for (i
= 0; i
< 0x10; i
++)
908 regp
->CR58
[i
] = NVReadVgaCrtc5758(dev
, head
, i
);
909 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_59
);
910 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_5B
);
912 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_85
);
913 rd_cio_state(dev
, head
, regp
, NV_CIO_CRE_86
);
916 regp
->fb_start
= NVReadCRTC(dev
, head
, NV_PCRTC_START
);
920 nv_load_state_ext(struct drm_device
*dev
, int head
,
921 struct nv04_mode_state
*state
)
923 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
924 struct nv04_crtc_reg
*regp
= &state
->crtc_reg
[head
];
928 if (dev_priv
->card_type
>= NV_10
) {
929 if (nv_two_heads(dev
))
930 /* setting ENGINE_CTRL (EC) *must* come before
931 * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
932 * EC that should not be overwritten by writing stale EC
934 NVWriteCRTC(dev
, head
, NV_PCRTC_ENGINE_CTRL
, regp
->crtc_eng_ctrl
);
936 nvWriteVIDEO(dev
, NV_PVIDEO_STOP
, 1);
937 nvWriteVIDEO(dev
, NV_PVIDEO_INTR_EN
, 0);
938 nvWriteVIDEO(dev
, NV_PVIDEO_OFFSET_BUFF(0), 0);
939 nvWriteVIDEO(dev
, NV_PVIDEO_OFFSET_BUFF(1), 0);
940 nvWriteVIDEO(dev
, NV_PVIDEO_LIMIT(0), dev_priv
->fb_available_size
- 1);
941 nvWriteVIDEO(dev
, NV_PVIDEO_LIMIT(1), dev_priv
->fb_available_size
- 1);
942 nvWriteVIDEO(dev
, NV_PVIDEO_UVPLANE_LIMIT(0), dev_priv
->fb_available_size
- 1);
943 nvWriteVIDEO(dev
, NV_PVIDEO_UVPLANE_LIMIT(1), dev_priv
->fb_available_size
- 1);
944 nvWriteMC(dev
, NV_PBUS_POWERCTRL_2
, 0);
946 NVWriteCRTC(dev
, head
, NV_PCRTC_CURSOR_CONFIG
, regp
->cursor_cfg
);
947 NVWriteCRTC(dev
, head
, NV_PCRTC_830
, regp
->crtc_830
);
948 NVWriteCRTC(dev
, head
, NV_PCRTC_834
, regp
->crtc_834
);
950 if (dev_priv
->card_type
>= NV_30
)
951 NVWriteCRTC(dev
, head
, NV_PCRTC_GPIO_EXT
, regp
->gpio_ext
);
953 if (dev_priv
->card_type
== NV_40
) {
954 NVWriteCRTC(dev
, head
, NV_PCRTC_850
, regp
->crtc_850
);
956 reg900
= NVReadRAMDAC(dev
, head
, NV_PRAMDAC_900
);
957 if (regp
->crtc_cfg
== NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC
)
958 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_900
, reg900
| 0x10000);
960 NVWriteRAMDAC(dev
, head
, NV_PRAMDAC_900
, reg900
& ~0x10000);
964 NVWriteCRTC(dev
, head
, NV_PCRTC_CONFIG
, regp
->crtc_cfg
);
966 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_RPC0_INDEX
);
967 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_RPC1_INDEX
);
968 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_LSR_INDEX
);
969 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_PIXEL_INDEX
);
970 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_LCD__INDEX
);
971 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_HEB__INDEX
);
972 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_ENH_INDEX
);
973 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_FF_INDEX
);
974 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_FFLWM__INDEX
);
976 if (dev_priv
->card_type
>= NV_20
)
977 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_47
);
979 if (dev_priv
->card_type
>= NV_30
)
980 wr_cio_state(dev
, head
, regp
, 0x9f);
982 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_49
);
983 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR0_INDEX
);
984 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR1_INDEX
);
985 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_HCUR_ADDR2_INDEX
);
986 if (dev_priv
->card_type
== NV_40
)
987 nv_fix_nv40_hw_cursor(dev
, head
);
988 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_ILACE__INDEX
);
990 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_SCRATCH3__INDEX
);
991 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_SCRATCH4__INDEX
);
992 if (dev_priv
->card_type
>= NV_10
) {
993 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_EBR_INDEX
);
994 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_CSB
);
995 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_4B
);
996 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_TVOUT_LATENCY
);
998 /* NV11 and NV20 stop at 0x52. */
999 if (nv_gf4_disp_arch(dev
)) {
1000 if (dev_priv
->card_type
== NV_10
) {
1001 /* Not waiting for vertical retrace before modifying
1002 CRE_53/CRE_54 causes lockups. */
1003 nouveau_wait_eq(dev
, 650000000, NV_PRMCIO_INP0__COLOR
, 0x8, 0x8);
1004 nouveau_wait_eq(dev
, 650000000, NV_PRMCIO_INP0__COLOR
, 0x8, 0x0);
1007 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_42
);
1008 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_53
);
1009 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_54
);
1011 for (i
= 0; i
< 0x10; i
++)
1012 NVWriteVgaCrtc5758(dev
, head
, i
, regp
->CR58
[i
]);
1013 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_59
);
1014 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_5B
);
1016 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_85
);
1017 wr_cio_state(dev
, head
, regp
, NV_CIO_CRE_86
);
1020 NVWriteCRTC(dev
, head
, NV_PCRTC_START
, regp
->fb_start
);
1024 nv_save_state_palette(struct drm_device
*dev
, int head
,
1025 struct nv04_mode_state
*state
)
1027 int head_offset
= head
* NV_PRMDIO_SIZE
, i
;
1029 nv_wr08(dev
, NV_PRMDIO_PIXEL_MASK
+ head_offset
,
1030 NV_PRMDIO_PIXEL_MASK_MASK
);
1031 nv_wr08(dev
, NV_PRMDIO_READ_MODE_ADDRESS
+ head_offset
, 0x0);
1033 for (i
= 0; i
< 768; i
++) {
1034 state
->crtc_reg
[head
].DAC
[i
] = nv_rd08(dev
,
1035 NV_PRMDIO_PALETTE_DATA
+ head_offset
);
1038 NVSetEnablePalette(dev
, head
, false);
1042 nouveau_hw_load_state_palette(struct drm_device
*dev
, int head
,
1043 struct nv04_mode_state
*state
)
1045 int head_offset
= head
* NV_PRMDIO_SIZE
, i
;
1047 nv_wr08(dev
, NV_PRMDIO_PIXEL_MASK
+ head_offset
,
1048 NV_PRMDIO_PIXEL_MASK_MASK
);
1049 nv_wr08(dev
, NV_PRMDIO_WRITE_MODE_ADDRESS
+ head_offset
, 0x0);
1051 for (i
= 0; i
< 768; i
++) {
1052 nv_wr08(dev
, NV_PRMDIO_PALETTE_DATA
+ head_offset
,
1053 state
->crtc_reg
[head
].DAC
[i
]);
1056 NVSetEnablePalette(dev
, head
, false);
1059 void nouveau_hw_save_state(struct drm_device
*dev
, int head
,
1060 struct nv04_mode_state
*state
)
1062 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1064 if (dev_priv
->chipset
== 0x11)
1065 /* NB: no attempt is made to restore the bad pll later on */
1066 nouveau_hw_fix_bad_vpll(dev
, head
);
1067 nv_save_state_ramdac(dev
, head
, state
);
1068 nv_save_state_vga(dev
, head
, state
);
1069 nv_save_state_palette(dev
, head
, state
);
1070 nv_save_state_ext(dev
, head
, state
);
1073 void nouveau_hw_load_state(struct drm_device
*dev
, int head
,
1074 struct nv04_mode_state
*state
)
1076 NVVgaProtect(dev
, head
, true);
1077 nv_load_state_ramdac(dev
, head
, state
);
1078 nv_load_state_ext(dev
, head
, state
);
1079 nouveau_hw_load_state_palette(dev
, head
, state
);
1080 nv_load_state_vga(dev
, head
, state
);
1081 NVVgaProtect(dev
, head
, false);