2 * Copyright 2009 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
25 /* NVIDIA context programs handle a number of other conditions which are
26 * not implemented in our versions. It's not clear why NVIDIA context
27 * programs have this code, nor whether it's strictly necessary for
28 * correct operation. We'll implement additional handling if/when we
29 * discover it's necessary.
31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
32 * flag is set, this gets saved into the context.
33 * - On context save, the context program for all cards load nsource
34 * into a flag register and check for ILLEGAL_MTHD. If it's set,
35 * opcode 0x60000d is called before resuming normal operation.
36 * - Some context programs check more conditions than the above. NV44
37 * checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
38 * and calls 0x60000d before resuming normal operation.
39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
40 * and if true 0x800001 is called with count=0, pos=0, the flag is cleared
41 * and then the ctxprog is aborted. It looks like a complicated NOP,
42 * its purpose is unknown.
43 * - In the section of code that loads the per-vs state, NVIDIA check
44 * flag 10. If it's set, they only transfer the small 0x300 byte block
45 * of state + the state for a single vs as opposed to the state for
46 * all vs units. It doesn't seem likely that it'll occur in normal
47 * operation, especially seeing as it appears NVIDIA may have screwed
48 * up the ctxprogs for some cards and have an invalid instruction
49 * rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
50 * - There's a number of places where context offset 0 (where we place
51 * the PRAMIN offset of the context) is loaded into either 0x408000,
52 * 0x408004 or 0x408008. Not sure what's up there either.
53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
54 * path for auto-loadctx.
57 #define CP_FLAG_CLEAR 0
59 #define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0)
60 #define CP_FLAG_SWAP_DIRECTION_LOAD 0
61 #define CP_FLAG_SWAP_DIRECTION_SAVE 1
62 #define CP_FLAG_USER_SAVE ((0 * 32) + 5)
63 #define CP_FLAG_USER_SAVE_NOT_PENDING 0
64 #define CP_FLAG_USER_SAVE_PENDING 1
65 #define CP_FLAG_USER_LOAD ((0 * 32) + 6)
66 #define CP_FLAG_USER_LOAD_NOT_PENDING 0
67 #define CP_FLAG_USER_LOAD_PENDING 1
68 #define CP_FLAG_STATUS ((3 * 32) + 0)
69 #define CP_FLAG_STATUS_IDLE 0
70 #define CP_FLAG_STATUS_BUSY 1
71 #define CP_FLAG_AUTO_SAVE ((3 * 32) + 4)
72 #define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
73 #define CP_FLAG_AUTO_SAVE_PENDING 1
74 #define CP_FLAG_AUTO_LOAD ((3 * 32) + 5)
75 #define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
76 #define CP_FLAG_AUTO_LOAD_PENDING 1
77 #define CP_FLAG_UNK54 ((3 * 32) + 6)
78 #define CP_FLAG_UNK54_CLEAR 0
79 #define CP_FLAG_UNK54_SET 1
80 #define CP_FLAG_ALWAYS ((3 * 32) + 8)
81 #define CP_FLAG_ALWAYS_FALSE 0
82 #define CP_FLAG_ALWAYS_TRUE 1
83 #define CP_FLAG_UNK57 ((3 * 32) + 9)
84 #define CP_FLAG_UNK57_CLEAR 0
85 #define CP_FLAG_UNK57_SET 1
87 #define CP_CTX 0x00100000
88 #define CP_CTX_COUNT 0x000fc000
89 #define CP_CTX_COUNT_SHIFT 14
90 #define CP_CTX_REG 0x00003fff
91 #define CP_LOAD_SR 0x00200000
92 #define CP_LOAD_SR_VALUE 0x000fffff
93 #define CP_BRA 0x00400000
94 #define CP_BRA_IP 0x0000ff00
95 #define CP_BRA_IP_SHIFT 8
96 #define CP_BRA_IF_CLEAR 0x00000080
97 #define CP_BRA_FLAG 0x0000007f
98 #define CP_WAIT 0x00500000
99 #define CP_WAIT_SET 0x00000080
100 #define CP_WAIT_FLAG 0x0000007f
101 #define CP_SET 0x00700000
102 #define CP_SET_1 0x00000080
103 #define CP_SET_FLAG 0x0000007f
104 #define CP_NEXT_TO_SWAP 0x00600007
105 #define CP_NEXT_TO_CURRENT 0x00600009
106 #define CP_SET_CONTEXT_POINTER 0x0060000a
107 #define CP_END 0x0060000e
108 #define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */
109 #define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */
110 #define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */
113 #include "nouveau_drv.h"
114 #include "nouveau_grctx.h"
117 * - get vs count from 0x1540
121 nv40_graph_vs_count(struct drm_device
*dev
)
123 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
125 switch (dev_priv
->chipset
) {
155 cp_swap_state3d_3_is_save
,
161 nv40_graph_construct_general(struct nouveau_grctx
*ctx
)
163 struct drm_nouveau_private
*dev_priv
= ctx
->dev
->dev_private
;
166 cp_ctx(ctx
, 0x4000a4, 1);
167 gr_def(ctx
, 0x4000a4, 0x00000008);
168 cp_ctx(ctx
, 0x400144, 58);
169 gr_def(ctx
, 0x400144, 0x00000001);
170 cp_ctx(ctx
, 0x400314, 1);
171 gr_def(ctx
, 0x400314, 0x00000000);
172 cp_ctx(ctx
, 0x400400, 10);
173 cp_ctx(ctx
, 0x400480, 10);
174 cp_ctx(ctx
, 0x400500, 19);
175 gr_def(ctx
, 0x400514, 0x00040000);
176 gr_def(ctx
, 0x400524, 0x55555555);
177 gr_def(ctx
, 0x400528, 0x55555555);
178 gr_def(ctx
, 0x40052c, 0x55555555);
179 gr_def(ctx
, 0x400530, 0x55555555);
180 cp_ctx(ctx
, 0x400560, 6);
181 gr_def(ctx
, 0x400568, 0x0000ffff);
182 gr_def(ctx
, 0x40056c, 0x0000ffff);
183 cp_ctx(ctx
, 0x40057c, 5);
184 cp_ctx(ctx
, 0x400710, 3);
185 gr_def(ctx
, 0x400710, 0x20010001);
186 gr_def(ctx
, 0x400714, 0x0f73ef00);
187 cp_ctx(ctx
, 0x400724, 1);
188 gr_def(ctx
, 0x400724, 0x02008821);
189 cp_ctx(ctx
, 0x400770, 3);
190 if (dev_priv
->chipset
== 0x40) {
191 cp_ctx(ctx
, 0x400814, 4);
192 cp_ctx(ctx
, 0x400828, 5);
193 cp_ctx(ctx
, 0x400840, 5);
194 gr_def(ctx
, 0x400850, 0x00000040);
195 cp_ctx(ctx
, 0x400858, 4);
196 gr_def(ctx
, 0x400858, 0x00000040);
197 gr_def(ctx
, 0x40085c, 0x00000040);
198 gr_def(ctx
, 0x400864, 0x80000000);
199 cp_ctx(ctx
, 0x40086c, 9);
200 gr_def(ctx
, 0x40086c, 0x80000000);
201 gr_def(ctx
, 0x400870, 0x80000000);
202 gr_def(ctx
, 0x400874, 0x80000000);
203 gr_def(ctx
, 0x400878, 0x80000000);
204 gr_def(ctx
, 0x400888, 0x00000040);
205 gr_def(ctx
, 0x40088c, 0x80000000);
206 cp_ctx(ctx
, 0x4009c0, 8);
207 gr_def(ctx
, 0x4009cc, 0x80000000);
208 gr_def(ctx
, 0x4009dc, 0x80000000);
210 cp_ctx(ctx
, 0x400840, 20);
211 if (nv44_graph_class(ctx
->dev
)) {
212 for (i
= 0; i
< 8; i
++)
213 gr_def(ctx
, 0x400860 + (i
* 4), 0x00000001);
215 gr_def(ctx
, 0x400880, 0x00000040);
216 gr_def(ctx
, 0x400884, 0x00000040);
217 gr_def(ctx
, 0x400888, 0x00000040);
218 cp_ctx(ctx
, 0x400894, 11);
219 gr_def(ctx
, 0x400894, 0x00000040);
220 if (!nv44_graph_class(ctx
->dev
)) {
221 for (i
= 0; i
< 8; i
++)
222 gr_def(ctx
, 0x4008a0 + (i
* 4), 0x80000000);
224 cp_ctx(ctx
, 0x4008e0, 2);
225 cp_ctx(ctx
, 0x4008f8, 2);
226 if (dev_priv
->chipset
== 0x4c ||
227 (dev_priv
->chipset
& 0xf0) == 0x60)
228 cp_ctx(ctx
, 0x4009f8, 1);
230 cp_ctx(ctx
, 0x400a00, 73);
231 gr_def(ctx
, 0x400b0c, 0x0b0b0b0c);
232 cp_ctx(ctx
, 0x401000, 4);
233 cp_ctx(ctx
, 0x405004, 1);
234 switch (dev_priv
->chipset
) {
238 cp_ctx(ctx
, 0x403448, 1);
239 gr_def(ctx
, 0x403448, 0x00001010);
242 cp_ctx(ctx
, 0x403440, 1);
243 switch (dev_priv
->chipset
) {
245 gr_def(ctx
, 0x403440, 0x00000010);
250 gr_def(ctx
, 0x403440, 0x00003010);
259 gr_def(ctx
, 0x403440, 0x00001010);
267 nv40_graph_construct_state3d(struct nouveau_grctx
*ctx
)
269 struct drm_nouveau_private
*dev_priv
= ctx
->dev
->dev_private
;
272 if (dev_priv
->chipset
== 0x40) {
273 cp_ctx(ctx
, 0x401880, 51);
274 gr_def(ctx
, 0x401940, 0x00000100);
276 if (dev_priv
->chipset
== 0x46 || dev_priv
->chipset
== 0x47 ||
277 dev_priv
->chipset
== 0x49 || dev_priv
->chipset
== 0x4b) {
278 cp_ctx(ctx
, 0x401880, 32);
279 for (i
= 0; i
< 16; i
++)
280 gr_def(ctx
, 0x401880 + (i
* 4), 0x00000111);
281 if (dev_priv
->chipset
== 0x46)
282 cp_ctx(ctx
, 0x401900, 16);
283 cp_ctx(ctx
, 0x401940, 3);
285 cp_ctx(ctx
, 0x40194c, 18);
286 gr_def(ctx
, 0x401954, 0x00000111);
287 gr_def(ctx
, 0x401958, 0x00080060);
288 gr_def(ctx
, 0x401974, 0x00000080);
289 gr_def(ctx
, 0x401978, 0xffff0000);
290 gr_def(ctx
, 0x40197c, 0x00000001);
291 gr_def(ctx
, 0x401990, 0x46400000);
292 if (dev_priv
->chipset
== 0x40) {
293 cp_ctx(ctx
, 0x4019a0, 2);
294 cp_ctx(ctx
, 0x4019ac, 5);
296 cp_ctx(ctx
, 0x4019a0, 1);
297 cp_ctx(ctx
, 0x4019b4, 3);
299 gr_def(ctx
, 0x4019bc, 0xffff0000);
300 switch (dev_priv
->chipset
) {
305 cp_ctx(ctx
, 0x4019c0, 18);
306 for (i
= 0; i
< 16; i
++)
307 gr_def(ctx
, 0x4019c0 + (i
* 4), 0x88888888);
310 cp_ctx(ctx
, 0x401a08, 8);
311 gr_def(ctx
, 0x401a10, 0x0fff0000);
312 gr_def(ctx
, 0x401a14, 0x0fff0000);
313 gr_def(ctx
, 0x401a1c, 0x00011100);
314 cp_ctx(ctx
, 0x401a2c, 4);
315 cp_ctx(ctx
, 0x401a44, 26);
316 for (i
= 0; i
< 16; i
++)
317 gr_def(ctx
, 0x401a44 + (i
* 4), 0x07ff0000);
318 gr_def(ctx
, 0x401a8c, 0x4b7fffff);
319 if (dev_priv
->chipset
== 0x40) {
320 cp_ctx(ctx
, 0x401ab8, 3);
322 cp_ctx(ctx
, 0x401ab8, 1);
323 cp_ctx(ctx
, 0x401ac0, 1);
325 cp_ctx(ctx
, 0x401ad0, 8);
326 gr_def(ctx
, 0x401ad0, 0x30201000);
327 gr_def(ctx
, 0x401ad4, 0x70605040);
328 gr_def(ctx
, 0x401ad8, 0xb8a89888);
329 gr_def(ctx
, 0x401adc, 0xf8e8d8c8);
330 cp_ctx(ctx
, 0x401b10, dev_priv
->chipset
== 0x40 ? 2 : 1);
331 gr_def(ctx
, 0x401b10, 0x40100000);
332 cp_ctx(ctx
, 0x401b18, dev_priv
->chipset
== 0x40 ? 6 : 5);
333 gr_def(ctx
, 0x401b28, dev_priv
->chipset
== 0x40 ?
334 0x00000004 : 0x00000000);
335 cp_ctx(ctx
, 0x401b30, 25);
336 gr_def(ctx
, 0x401b34, 0x0000ffff);
337 gr_def(ctx
, 0x401b68, 0x435185d6);
338 gr_def(ctx
, 0x401b6c, 0x2155b699);
339 gr_def(ctx
, 0x401b70, 0xfedcba98);
340 gr_def(ctx
, 0x401b74, 0x00000098);
341 gr_def(ctx
, 0x401b84, 0xffffffff);
342 gr_def(ctx
, 0x401b88, 0x00ff7000);
343 gr_def(ctx
, 0x401b8c, 0x0000ffff);
344 if (dev_priv
->chipset
!= 0x44 && dev_priv
->chipset
!= 0x4a &&
345 dev_priv
->chipset
!= 0x4e)
346 cp_ctx(ctx
, 0x401b94, 1);
347 cp_ctx(ctx
, 0x401b98, 8);
348 gr_def(ctx
, 0x401b9c, 0x00ff0000);
349 cp_ctx(ctx
, 0x401bc0, 9);
350 gr_def(ctx
, 0x401be0, 0x00ffff00);
351 cp_ctx(ctx
, 0x401c00, 192);
352 for (i
= 0; i
< 16; i
++) { /* fragment texture units */
353 gr_def(ctx
, 0x401c40 + (i
* 4), 0x00018488);
354 gr_def(ctx
, 0x401c80 + (i
* 4), 0x00028202);
355 gr_def(ctx
, 0x401d00 + (i
* 4), 0x0000aae4);
356 gr_def(ctx
, 0x401d40 + (i
* 4), 0x01012000);
357 gr_def(ctx
, 0x401d80 + (i
* 4), 0x00080008);
358 gr_def(ctx
, 0x401e00 + (i
* 4), 0x00100008);
360 for (i
= 0; i
< 4; i
++) { /* vertex texture units */
361 gr_def(ctx
, 0x401e90 + (i
* 4), 0x0001bc80);
362 gr_def(ctx
, 0x401ea0 + (i
* 4), 0x00000202);
363 gr_def(ctx
, 0x401ec0 + (i
* 4), 0x00000008);
364 gr_def(ctx
, 0x401ee0 + (i
* 4), 0x00080008);
366 cp_ctx(ctx
, 0x400f5c, 3);
367 gr_def(ctx
, 0x400f5c, 0x00000002);
368 cp_ctx(ctx
, 0x400f84, 1);
372 nv40_graph_construct_state3d_2(struct nouveau_grctx
*ctx
)
374 struct drm_nouveau_private
*dev_priv
= ctx
->dev
->dev_private
;
377 cp_ctx(ctx
, 0x402000, 1);
378 cp_ctx(ctx
, 0x402404, dev_priv
->chipset
== 0x40 ? 1 : 2);
379 switch (dev_priv
->chipset
) {
381 gr_def(ctx
, 0x402404, 0x00000001);
386 gr_def(ctx
, 0x402404, 0x00000020);
391 gr_def(ctx
, 0x402404, 0x00000421);
394 gr_def(ctx
, 0x402404, 0x00000021);
396 if (dev_priv
->chipset
!= 0x40)
397 gr_def(ctx
, 0x402408, 0x030c30c3);
398 switch (dev_priv
->chipset
) {
405 cp_ctx(ctx
, 0x402440, 1);
406 gr_def(ctx
, 0x402440, 0x00011001);
411 cp_ctx(ctx
, 0x402480, dev_priv
->chipset
== 0x40 ? 8 : 9);
412 gr_def(ctx
, 0x402488, 0x3e020200);
413 gr_def(ctx
, 0x40248c, 0x00ffffff);
414 switch (dev_priv
->chipset
) {
416 gr_def(ctx
, 0x402490, 0x60103f00);
419 gr_def(ctx
, 0x402490, 0x40103f00);
425 gr_def(ctx
, 0x402490, 0x20103f00);
428 gr_def(ctx
, 0x402490, 0x0c103f00);
431 gr_def(ctx
, 0x40249c, dev_priv
->chipset
<= 0x43 ?
432 0x00020000 : 0x00040000);
433 cp_ctx(ctx
, 0x402500, 31);
434 gr_def(ctx
, 0x402530, 0x00008100);
435 if (dev_priv
->chipset
== 0x40)
436 cp_ctx(ctx
, 0x40257c, 6);
437 cp_ctx(ctx
, 0x402594, 16);
438 cp_ctx(ctx
, 0x402800, 17);
439 gr_def(ctx
, 0x402800, 0x00000001);
440 switch (dev_priv
->chipset
) {
444 cp_ctx(ctx
, 0x402864, 1);
445 gr_def(ctx
, 0x402864, 0x00001001);
446 cp_ctx(ctx
, 0x402870, 3);
447 gr_def(ctx
, 0x402878, 0x00000003);
448 if (dev_priv
->chipset
!= 0x47) { /* belong at end!! */
449 cp_ctx(ctx
, 0x402900, 1);
450 cp_ctx(ctx
, 0x402940, 1);
451 cp_ctx(ctx
, 0x402980, 1);
452 cp_ctx(ctx
, 0x4029c0, 1);
453 cp_ctx(ctx
, 0x402a00, 1);
454 cp_ctx(ctx
, 0x402a40, 1);
455 cp_ctx(ctx
, 0x402a80, 1);
456 cp_ctx(ctx
, 0x402ac0, 1);
460 cp_ctx(ctx
, 0x402844, 1);
461 gr_def(ctx
, 0x402844, 0x00000001);
462 cp_ctx(ctx
, 0x402850, 1);
465 cp_ctx(ctx
, 0x402844, 1);
466 gr_def(ctx
, 0x402844, 0x00001001);
467 cp_ctx(ctx
, 0x402850, 2);
468 gr_def(ctx
, 0x402854, 0x00000003);
472 cp_ctx(ctx
, 0x402c00, 4);
473 gr_def(ctx
, 0x402c00, dev_priv
->chipset
== 0x40 ?
474 0x80800001 : 0x00888001);
475 switch (dev_priv
->chipset
) {
479 cp_ctx(ctx
, 0x402c20, 40);
480 for (i
= 0; i
< 32; i
++)
481 gr_def(ctx
, 0x402c40 + (i
* 4), 0xffffffff);
482 cp_ctx(ctx
, 0x4030b8, 13);
483 gr_def(ctx
, 0x4030dc, 0x00000005);
484 gr_def(ctx
, 0x4030e8, 0x0000ffff);
487 cp_ctx(ctx
, 0x402c10, 4);
488 if (dev_priv
->chipset
== 0x40)
489 cp_ctx(ctx
, 0x402c20, 36);
491 if (dev_priv
->chipset
<= 0x42)
492 cp_ctx(ctx
, 0x402c20, 24);
494 if (dev_priv
->chipset
<= 0x4a)
495 cp_ctx(ctx
, 0x402c20, 16);
497 cp_ctx(ctx
, 0x402c20, 8);
498 cp_ctx(ctx
, 0x402cb0, dev_priv
->chipset
== 0x40 ? 12 : 13);
499 gr_def(ctx
, 0x402cd4, 0x00000005);
500 if (dev_priv
->chipset
!= 0x40)
501 gr_def(ctx
, 0x402ce0, 0x0000ffff);
505 cp_ctx(ctx
, 0x403400, dev_priv
->chipset
== 0x40 ? 4 : 3);
506 cp_ctx(ctx
, 0x403410, dev_priv
->chipset
== 0x40 ? 4 : 3);
507 cp_ctx(ctx
, 0x403420, nv40_graph_vs_count(ctx
->dev
));
508 for (i
= 0; i
< nv40_graph_vs_count(ctx
->dev
); i
++)
509 gr_def(ctx
, 0x403420 + (i
* 4), 0x00005555);
511 if (dev_priv
->chipset
!= 0x40) {
512 cp_ctx(ctx
, 0x403600, 1);
513 gr_def(ctx
, 0x403600, 0x00000001);
515 cp_ctx(ctx
, 0x403800, 1);
517 cp_ctx(ctx
, 0x403c18, 1);
518 gr_def(ctx
, 0x403c18, 0x00000001);
519 switch (dev_priv
->chipset
) {
524 cp_ctx(ctx
, 0x405018, 1);
525 gr_def(ctx
, 0x405018, 0x08e00001);
526 cp_ctx(ctx
, 0x405c24, 1);
527 gr_def(ctx
, 0x405c24, 0x000e3000);
530 if (dev_priv
->chipset
!= 0x4e)
531 cp_ctx(ctx
, 0x405800, 11);
532 cp_ctx(ctx
, 0x407000, 1);
536 nv40_graph_construct_state3d_3(struct nouveau_grctx
*ctx
)
538 int len
= nv44_graph_class(ctx
->dev
) ? 0x0084 : 0x0684;
540 cp_out (ctx
, 0x300000);
541 cp_lsr (ctx
, len
- 4);
542 cp_bra (ctx
, SWAP_DIRECTION
, SAVE
, cp_swap_state3d_3_is_save
);
544 cp_name(ctx
, cp_swap_state3d_3_is_save
);
545 cp_out (ctx
, 0x800001);
547 ctx
->ctxvals_pos
+= len
;
551 nv40_graph_construct_shader(struct nouveau_grctx
*ctx
)
553 struct drm_device
*dev
= ctx
->dev
;
554 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
555 struct nouveau_gpuobj
*obj
= ctx
->data
;
556 int vs
, vs_nr
, vs_len
, vs_nr_b0
, vs_nr_b1
, b0_offset
, b1_offset
;
559 vs_nr
= nv40_graph_vs_count(ctx
->dev
);
561 vs_nr_b1
= dev_priv
->chipset
== 0x40 ? 128 : 64;
562 if (dev_priv
->chipset
== 0x40) {
563 b0_offset
= 0x2200/4; /* 33a0 */
564 b1_offset
= 0x55a0/4; /* 1500 */
567 if (dev_priv
->chipset
== 0x41 || dev_priv
->chipset
== 0x42) {
568 b0_offset
= 0x2200/4; /* 2200 */
569 b1_offset
= 0x4400/4; /* 0b00 */
572 b0_offset
= 0x1d40/4; /* 2200 */
573 b1_offset
= 0x3f40/4; /* 0b00 : 0a40 */
574 vs_len
= nv44_graph_class(dev
) ? 0x4980/4 : 0x4a40/4;
577 cp_lsr(ctx
, vs_len
* vs_nr
+ 0x300/4);
578 cp_out(ctx
, nv44_graph_class(dev
) ? 0x800029 : 0x800041);
580 offset
= ctx
->ctxvals_pos
;
581 ctx
->ctxvals_pos
+= (0x0300/4 + (vs_nr
* vs_len
));
583 if (ctx
->mode
!= NOUVEAU_GRCTX_VALS
)
587 for (i
= 0; i
< 16; i
++, offset
+= 2)
588 nv_wo32(obj
, offset
* 4, 0x3f800000);
590 for (vs
= 0; vs
< vs_nr
; vs
++, offset
+= vs_len
) {
591 for (i
= 0; i
< vs_nr_b0
* 6; i
+= 6)
592 nv_wo32(obj
, (offset
+ b0_offset
+ i
) * 4, 0x00000001);
593 for (i
= 0; i
< vs_nr_b1
* 4; i
+= 4)
594 nv_wo32(obj
, (offset
+ b1_offset
+ i
) * 4, 0x3f800000);
599 nv40_grctx_generate(struct nouveau_grctx
*ctx
)
601 /* decide whether we're loading/unloading the context */
602 cp_bra (ctx
, AUTO_SAVE
, PENDING
, cp_setup_save
);
603 cp_bra (ctx
, USER_SAVE
, PENDING
, cp_setup_save
);
605 cp_name(ctx
, cp_check_load
);
606 cp_bra (ctx
, AUTO_LOAD
, PENDING
, cp_setup_auto_load
);
607 cp_bra (ctx
, USER_LOAD
, PENDING
, cp_setup_load
);
608 cp_bra (ctx
, ALWAYS
, TRUE
, cp_exit
);
610 /* setup for context load */
611 cp_name(ctx
, cp_setup_auto_load
);
612 cp_wait(ctx
, STATUS
, IDLE
);
613 cp_out (ctx
, CP_NEXT_TO_SWAP
);
614 cp_name(ctx
, cp_setup_load
);
615 cp_wait(ctx
, STATUS
, IDLE
);
616 cp_set (ctx
, SWAP_DIRECTION
, LOAD
);
617 cp_out (ctx
, 0x00910880); /* ?? */
618 cp_out (ctx
, 0x00901ffe); /* ?? */
619 cp_out (ctx
, 0x01940000); /* ?? */
621 cp_out (ctx
, 0x0060000b); /* ?? */
622 cp_wait(ctx
, UNK57
, CLEAR
);
623 cp_out (ctx
, 0x0060000c); /* ?? */
624 cp_bra (ctx
, ALWAYS
, TRUE
, cp_swap_state
);
626 /* setup for context save */
627 cp_name(ctx
, cp_setup_save
);
628 cp_set (ctx
, SWAP_DIRECTION
, SAVE
);
630 /* general PGRAPH state */
631 cp_name(ctx
, cp_swap_state
);
632 cp_pos (ctx
, 0x00020/4);
633 nv40_graph_construct_general(ctx
);
634 cp_wait(ctx
, STATUS
, IDLE
);
636 /* 3D state, block 1 */
637 cp_bra (ctx
, UNK54
, CLEAR
, cp_prepare_exit
);
638 nv40_graph_construct_state3d(ctx
);
639 cp_wait(ctx
, STATUS
, IDLE
);
641 /* 3D state, block 2 */
642 nv40_graph_construct_state3d_2(ctx
);
644 /* Some other block of "random" state */
645 nv40_graph_construct_state3d_3(ctx
);
647 /* Per-vertex shader state */
648 cp_pos (ctx
, ctx
->ctxvals_pos
);
649 nv40_graph_construct_shader(ctx
);
651 /* pre-exit state updates */
652 cp_name(ctx
, cp_prepare_exit
);
653 cp_bra (ctx
, SWAP_DIRECTION
, SAVE
, cp_check_load
);
654 cp_bra (ctx
, USER_SAVE
, PENDING
, cp_exit
);
655 cp_out (ctx
, CP_NEXT_TO_CURRENT
);
657 cp_name(ctx
, cp_exit
);
658 cp_set (ctx
, USER_SAVE
, NOT_PENDING
);
659 cp_set (ctx
, USER_LOAD
, NOT_PENDING
);
660 cp_out (ctx
, CP_END
);
664 nv40_grctx_fill(struct drm_device
*dev
, struct nouveau_gpuobj
*mem
)
666 nv40_grctx_generate(&(struct nouveau_grctx
) {
668 .mode
= NOUVEAU_GRCTX_VALS
,
674 nv40_grctx_init(struct drm_device
*dev
, u32
*size
)
677 struct nouveau_grctx ctx
= {
679 .mode
= NOUVEAU_GRCTX_PROG
,
681 .ctxprog_max
= ARRAY_SIZE(ctxprog
)
684 nv40_grctx_generate(&ctx
);
686 nv_wr32(dev
, NV40_PGRAPH_CTXCTL_UCODE_INDEX
, 0);
687 for (i
= 0; i
< ctx
.ctxprog_len
; i
++)
688 nv_wr32(dev
, NV40_PGRAPH_CTXCTL_UCODE_DATA
, ctxprog
[i
]);
689 *size
= ctx
.ctxvals_pos
* 4;