2 * Copyright (C) 2008 Maarten Maathuis.
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial
15 * portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
21 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #include "drm_crtc_helper.h"
31 #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
32 #include "nouveau_reg.h"
33 #include "nouveau_drv.h"
34 #include "nouveau_hw.h"
35 #include "nouveau_encoder.h"
36 #include "nouveau_crtc.h"
37 #include "nouveau_fb.h"
38 #include "nouveau_connector.h"
39 #include "nv50_display.h"
42 nv50_crtc_lut_load(struct drm_crtc
*crtc
)
44 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
45 void __iomem
*lut
= nvbo_kmap_obj_iovirtual(nv_crtc
->lut
.nvbo
);
48 NV_DEBUG_KMS(crtc
->dev
, "\n");
50 for (i
= 0; i
< 256; i
++) {
51 writew(nv_crtc
->lut
.r
[i
] >> 2, lut
+ 8*i
+ 0);
52 writew(nv_crtc
->lut
.g
[i
] >> 2, lut
+ 8*i
+ 2);
53 writew(nv_crtc
->lut
.b
[i
] >> 2, lut
+ 8*i
+ 4);
56 if (nv_crtc
->lut
.depth
== 30) {
57 writew(nv_crtc
->lut
.r
[i
- 1] >> 2, lut
+ 8*i
+ 0);
58 writew(nv_crtc
->lut
.g
[i
- 1] >> 2, lut
+ 8*i
+ 2);
59 writew(nv_crtc
->lut
.b
[i
- 1] >> 2, lut
+ 8*i
+ 4);
64 nv50_crtc_blank(struct nouveau_crtc
*nv_crtc
, bool blanked
)
66 struct drm_device
*dev
= nv_crtc
->base
.dev
;
67 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
68 struct nouveau_channel
*evo
= nv50_display(dev
)->master
;
69 int index
= nv_crtc
->index
, ret
;
71 NV_DEBUG_KMS(dev
, "index %d\n", nv_crtc
->index
);
72 NV_DEBUG_KMS(dev
, "%s\n", blanked
? "blanked" : "unblanked");
75 nv_crtc
->cursor
.hide(nv_crtc
, false);
77 ret
= RING_SPACE(evo
, dev_priv
->chipset
!= 0x50 ? 7 : 5);
79 NV_ERROR(dev
, "no space while blanking crtc\n");
82 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(index
, CLUT_MODE
), 2);
83 OUT_RING(evo
, NV50_EVO_CRTC_CLUT_MODE_BLANK
);
85 if (dev_priv
->chipset
!= 0x50) {
86 BEGIN_NV04(evo
, 0, NV84_EVO_CRTC(index
, CLUT_DMA
), 1);
87 OUT_RING(evo
, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE
);
90 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(index
, FB_DMA
), 1);
91 OUT_RING(evo
, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE
);
93 if (nv_crtc
->cursor
.visible
)
94 nv_crtc
->cursor
.show(nv_crtc
, false);
96 nv_crtc
->cursor
.hide(nv_crtc
, false);
98 ret
= RING_SPACE(evo
, dev_priv
->chipset
!= 0x50 ? 10 : 8);
100 NV_ERROR(dev
, "no space while unblanking crtc\n");
103 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(index
, CLUT_MODE
), 2);
104 OUT_RING(evo
, nv_crtc
->lut
.depth
== 8 ?
105 NV50_EVO_CRTC_CLUT_MODE_OFF
:
106 NV50_EVO_CRTC_CLUT_MODE_ON
);
107 OUT_RING(evo
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
108 if (dev_priv
->chipset
!= 0x50) {
109 BEGIN_NV04(evo
, 0, NV84_EVO_CRTC(index
, CLUT_DMA
), 1);
110 OUT_RING(evo
, NvEvoVRAM
);
113 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(index
, FB_OFFSET
), 2);
114 OUT_RING(evo
, nv_crtc
->fb
.offset
>> 8);
116 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(index
, FB_DMA
), 1);
117 if (dev_priv
->chipset
!= 0x50)
118 if (nv_crtc
->fb
.tile_flags
== 0x7a00 ||
119 nv_crtc
->fb
.tile_flags
== 0xfe00)
120 OUT_RING(evo
, NvEvoFB32
);
122 if (nv_crtc
->fb
.tile_flags
== 0x7000)
123 OUT_RING(evo
, NvEvoFB16
);
125 OUT_RING(evo
, NvEvoVRAM_LP
);
127 OUT_RING(evo
, NvEvoVRAM_LP
);
130 nv_crtc
->fb
.blanked
= blanked
;
135 nv50_crtc_set_dither(struct nouveau_crtc
*nv_crtc
, bool update
)
137 struct nouveau_channel
*evo
= nv50_display(nv_crtc
->base
.dev
)->master
;
138 struct nouveau_connector
*nv_connector
;
139 struct drm_connector
*connector
;
140 int head
= nv_crtc
->index
, ret
;
143 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
144 connector
= &nv_connector
->base
;
145 if (nv_connector
->dithering_mode
== DITHERING_MODE_AUTO
) {
146 if (nv_crtc
->base
.fb
->depth
> connector
->display_info
.bpc
* 3)
147 mode
= DITHERING_MODE_DYNAMIC2X2
;
149 mode
= nv_connector
->dithering_mode
;
152 if (nv_connector
->dithering_depth
== DITHERING_DEPTH_AUTO
) {
153 if (connector
->display_info
.bpc
>= 8)
154 mode
|= DITHERING_DEPTH_8BPC
;
156 mode
|= nv_connector
->dithering_depth
;
159 ret
= RING_SPACE(evo
, 2 + (update
? 2 : 0));
161 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(head
, DITHER_CTRL
), 1);
162 OUT_RING (evo
, mode
);
164 BEGIN_NV04(evo
, 0, NV50_EVO_UPDATE
, 1);
174 nv50_crtc_set_color_vibrance(struct nouveau_crtc
*nv_crtc
, bool update
)
176 struct drm_device
*dev
= nv_crtc
->base
.dev
;
177 struct nouveau_channel
*evo
= nv50_display(dev
)->master
;
182 NV_DEBUG_KMS(dev
, "vibrance = %i, hue = %i\n",
183 nv_crtc
->color_vibrance
, nv_crtc
->vibrant_hue
);
185 ret
= RING_SPACE(evo
, 2 + (update
? 2 : 0));
187 NV_ERROR(dev
, "no space while setting color vibrance\n");
191 adj
= (nv_crtc
->color_vibrance
> 0) ? 50 : 0;
192 vib
= ((nv_crtc
->color_vibrance
* 2047 + adj
) / 100) & 0xfff;
194 hue
= ((nv_crtc
->vibrant_hue
* 2047) / 100) & 0xfff;
196 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, COLOR_CTRL
), 1);
197 OUT_RING (evo
, (hue
<< 20) | (vib
<< 8));
200 BEGIN_NV04(evo
, 0, NV50_EVO_UPDATE
, 1);
208 struct nouveau_connector
*
209 nouveau_crtc_connector_get(struct nouveau_crtc
*nv_crtc
)
211 struct drm_device
*dev
= nv_crtc
->base
.dev
;
212 struct drm_connector
*connector
;
213 struct drm_crtc
*crtc
= to_drm_crtc(nv_crtc
);
215 /* The safest approach is to find an encoder with the right crtc, that
216 * is also linked to a connector. */
217 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
218 if (connector
->encoder
)
219 if (connector
->encoder
->crtc
== crtc
)
220 return nouveau_connector(connector
);
227 nv50_crtc_set_scale(struct nouveau_crtc
*nv_crtc
, bool update
)
229 struct nouveau_connector
*nv_connector
;
230 struct drm_crtc
*crtc
= &nv_crtc
->base
;
231 struct drm_device
*dev
= crtc
->dev
;
232 struct nouveau_channel
*evo
= nv50_display(dev
)->master
;
233 struct drm_display_mode
*umode
= &crtc
->mode
;
234 struct drm_display_mode
*omode
;
235 int scaling_mode
, ret
;
236 u32 ctrl
= 0, oX
, oY
;
238 NV_DEBUG_KMS(dev
, "\n");
240 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
241 if (!nv_connector
|| !nv_connector
->native_mode
) {
242 NV_ERROR(dev
, "no native mode, forcing panel scaling\n");
243 scaling_mode
= DRM_MODE_SCALE_NONE
;
245 scaling_mode
= nv_connector
->scaling_mode
;
248 /* start off at the resolution we programmed the crtc for, this
249 * effectively handles NONE/FULL scaling
251 if (scaling_mode
!= DRM_MODE_SCALE_NONE
)
252 omode
= nv_connector
->native_mode
;
256 oX
= omode
->hdisplay
;
257 oY
= omode
->vdisplay
;
258 if (omode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
261 /* add overscan compensation if necessary, will keep the aspect
262 * ratio the same as the backend mode unless overridden by the
263 * user setting both hborder and vborder properties.
265 if (nv_connector
&& ( nv_connector
->underscan
== UNDERSCAN_ON
||
266 (nv_connector
->underscan
== UNDERSCAN_AUTO
&&
267 nv_connector
->edid
&&
268 drm_detect_hdmi_monitor(nv_connector
->edid
)))) {
269 u32 bX
= nv_connector
->underscan_hborder
;
270 u32 bY
= nv_connector
->underscan_vborder
;
271 u32 aspect
= (oY
<< 19) / oX
;
275 if (bY
) oY
-= (bY
* 2);
276 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
278 oX
-= (oX
>> 4) + 32;
279 if (bY
) oY
-= (bY
* 2);
280 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
284 /* handle CENTER/ASPECT scaling, taking into account the areas
285 * removed already for overscan compensation
287 switch (scaling_mode
) {
288 case DRM_MODE_SCALE_CENTER
:
289 oX
= min((u32
)umode
->hdisplay
, oX
);
290 oY
= min((u32
)umode
->vdisplay
, oY
);
292 case DRM_MODE_SCALE_ASPECT
:
294 u32 aspect
= (umode
->hdisplay
<< 19) / umode
->vdisplay
;
295 oX
= ((oY
* aspect
) + (aspect
/ 2)) >> 19;
297 u32 aspect
= (umode
->vdisplay
<< 19) / umode
->hdisplay
;
298 oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
305 if (umode
->hdisplay
!= oX
|| umode
->vdisplay
!= oY
||
306 umode
->flags
& DRM_MODE_FLAG_INTERLACE
||
307 umode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
308 ctrl
|= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE
;
310 ret
= RING_SPACE(evo
, 5);
314 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, SCALE_CTRL
), 1);
315 OUT_RING (evo
, ctrl
);
316 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, SCALE_RES1
), 2);
317 OUT_RING (evo
, oY
<< 16 | oX
);
318 OUT_RING (evo
, oY
<< 16 | oX
);
321 nv50_display_flip_stop(crtc
);
322 nv50_display_sync(dev
);
323 nv50_display_flip_next(crtc
, crtc
->fb
, NULL
);
330 nv50_crtc_set_clock(struct drm_device
*dev
, int head
, int pclk
)
332 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
335 int ret
, N1
, M1
, N2
, M2
, P
;
337 ret
= get_pll_limits(dev
, PLL_VPLL0
+ head
, &pll
);
341 if (pll
.vco2
.maxfreq
) {
342 ret
= nv50_calc_pll(dev
, &pll
, pclk
, &N1
, &M1
, &N2
, &M2
, &P
);
346 NV_DEBUG(dev
, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
347 pclk
, ret
, N1
, M1
, N2
, M2
, P
);
349 reg1
= nv_rd32(dev
, pll
.reg
+ 4) & 0xff00ff00;
350 reg2
= nv_rd32(dev
, pll
.reg
+ 8) & 0x8000ff00;
351 nv_wr32(dev
, pll
.reg
+ 0, 0x10000611);
352 nv_wr32(dev
, pll
.reg
+ 4, reg1
| (M1
<< 16) | N1
);
353 nv_wr32(dev
, pll
.reg
+ 8, reg2
| (P
<< 28) | (M2
<< 16) | N2
);
355 if (dev_priv
->chipset
< NV_C0
) {
356 ret
= nva3_calc_pll(dev
, &pll
, pclk
, &N1
, &N2
, &M1
, &P
);
360 NV_DEBUG(dev
, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
361 pclk
, ret
, N1
, N2
, M1
, P
);
363 reg1
= nv_rd32(dev
, pll
.reg
+ 4) & 0xffc00000;
364 nv_wr32(dev
, pll
.reg
+ 0, 0x50000610);
365 nv_wr32(dev
, pll
.reg
+ 4, reg1
| (P
<< 16) | (M1
<< 8) | N1
);
366 nv_wr32(dev
, pll
.reg
+ 8, N2
);
368 ret
= nva3_calc_pll(dev
, &pll
, pclk
, &N1
, &N2
, &M1
, &P
);
372 NV_DEBUG(dev
, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
373 pclk
, ret
, N1
, N2
, M1
, P
);
375 nv_mask(dev
, pll
.reg
+ 0x0c, 0x00000000, 0x00000100);
376 nv_wr32(dev
, pll
.reg
+ 0x04, (P
<< 16) | (N1
<< 8) | M1
);
377 nv_wr32(dev
, pll
.reg
+ 0x10, N2
<< 16);
384 nv50_crtc_destroy(struct drm_crtc
*crtc
)
386 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
388 NV_DEBUG_KMS(crtc
->dev
, "\n");
390 nouveau_bo_unmap(nv_crtc
->lut
.nvbo
);
391 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
392 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
393 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
394 drm_crtc_cleanup(&nv_crtc
->base
);
399 nv50_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
400 uint32_t buffer_handle
, uint32_t width
, uint32_t height
)
402 struct drm_device
*dev
= crtc
->dev
;
403 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
404 struct nouveau_bo
*cursor
= NULL
;
405 struct drm_gem_object
*gem
;
408 if (!buffer_handle
) {
409 nv_crtc
->cursor
.hide(nv_crtc
, true);
413 if (width
!= 64 || height
!= 64)
416 gem
= drm_gem_object_lookup(dev
, file_priv
, buffer_handle
);
419 cursor
= nouveau_gem_object(gem
);
421 ret
= nouveau_bo_map(cursor
);
425 /* The simple will do for now. */
426 for (i
= 0; i
< 64 * 64; i
++)
427 nouveau_bo_wr32(nv_crtc
->cursor
.nvbo
, i
, nouveau_bo_rd32(cursor
, i
));
429 nouveau_bo_unmap(cursor
);
431 nv_crtc
->cursor
.set_offset(nv_crtc
, nv_crtc
->cursor
.nvbo
->bo
.offset
);
432 nv_crtc
->cursor
.show(nv_crtc
, true);
435 drm_gem_object_unreference_unlocked(gem
);
440 nv50_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
442 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
444 nv_crtc
->cursor
.set_pos(nv_crtc
, x
, y
);
449 nv50_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
450 uint32_t start
, uint32_t size
)
452 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
453 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
455 for (i
= start
; i
< end
; i
++) {
456 nv_crtc
->lut
.r
[i
] = r
[i
];
457 nv_crtc
->lut
.g
[i
] = g
[i
];
458 nv_crtc
->lut
.b
[i
] = b
[i
];
461 /* We need to know the depth before we upload, but it's possible to
462 * get called before a framebuffer is bound. If this is the case,
463 * mark the lut values as dirty by setting depth==0, and it'll be
464 * uploaded on the first mode_set_base()
466 if (!nv_crtc
->base
.fb
) {
467 nv_crtc
->lut
.depth
= 0;
471 nv50_crtc_lut_load(crtc
);
475 nv50_crtc_save(struct drm_crtc
*crtc
)
477 NV_ERROR(crtc
->dev
, "!!\n");
481 nv50_crtc_restore(struct drm_crtc
*crtc
)
483 NV_ERROR(crtc
->dev
, "!!\n");
486 static const struct drm_crtc_funcs nv50_crtc_funcs
= {
487 .save
= nv50_crtc_save
,
488 .restore
= nv50_crtc_restore
,
489 .cursor_set
= nv50_crtc_cursor_set
,
490 .cursor_move
= nv50_crtc_cursor_move
,
491 .gamma_set
= nv50_crtc_gamma_set
,
492 .set_config
= drm_crtc_helper_set_config
,
493 .page_flip
= nouveau_crtc_page_flip
,
494 .destroy
= nv50_crtc_destroy
,
498 nv50_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
503 nv50_crtc_prepare(struct drm_crtc
*crtc
)
505 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
506 struct drm_device
*dev
= crtc
->dev
;
508 NV_DEBUG_KMS(dev
, "index %d\n", nv_crtc
->index
);
510 nv50_display_flip_stop(crtc
);
511 drm_vblank_pre_modeset(dev
, nv_crtc
->index
);
512 nv50_crtc_blank(nv_crtc
, true);
516 nv50_crtc_commit(struct drm_crtc
*crtc
)
518 struct drm_device
*dev
= crtc
->dev
;
519 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
521 NV_DEBUG_KMS(dev
, "index %d\n", nv_crtc
->index
);
523 nv50_crtc_blank(nv_crtc
, false);
524 drm_vblank_post_modeset(dev
, nv_crtc
->index
);
525 nv50_display_sync(dev
);
526 nv50_display_flip_next(crtc
, crtc
->fb
, NULL
);
530 nv50_crtc_mode_fixup(struct drm_crtc
*crtc
, const struct drm_display_mode
*mode
,
531 struct drm_display_mode
*adjusted_mode
)
537 nv50_crtc_do_mode_set_base(struct drm_crtc
*crtc
,
538 struct drm_framebuffer
*passed_fb
,
539 int x
, int y
, bool atomic
)
541 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
542 struct drm_device
*dev
= nv_crtc
->base
.dev
;
543 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
544 struct nouveau_channel
*evo
= nv50_display(dev
)->master
;
545 struct drm_framebuffer
*drm_fb
;
546 struct nouveau_framebuffer
*fb
;
549 NV_DEBUG_KMS(dev
, "index %d\n", nv_crtc
->index
);
552 if (!atomic
&& !crtc
->fb
) {
553 NV_DEBUG_KMS(dev
, "No FB bound\n");
557 /* If atomic, we want to switch to the fb we were passed, so
558 * now we update pointers to do that. (We don't pin; just
559 * assume we're already pinned and update the base address.)
563 fb
= nouveau_framebuffer(passed_fb
);
566 fb
= nouveau_framebuffer(crtc
->fb
);
567 /* If not atomic, we can go ahead and pin, and unpin the
568 * old fb we were passed.
570 ret
= nouveau_bo_pin(fb
->nvbo
, TTM_PL_FLAG_VRAM
);
575 struct nouveau_framebuffer
*ofb
= nouveau_framebuffer(passed_fb
);
576 nouveau_bo_unpin(ofb
->nvbo
);
580 nv_crtc
->fb
.offset
= fb
->nvbo
->bo
.offset
;
581 nv_crtc
->fb
.tile_flags
= nouveau_bo_tile_layout(fb
->nvbo
);
582 nv_crtc
->fb
.cpp
= drm_fb
->bits_per_pixel
/ 8;
583 if (!nv_crtc
->fb
.blanked
&& dev_priv
->chipset
!= 0x50) {
584 ret
= RING_SPACE(evo
, 2);
588 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, FB_DMA
), 1);
589 OUT_RING (evo
, fb
->r_dma
);
592 ret
= RING_SPACE(evo
, 12);
596 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, FB_OFFSET
), 5);
597 OUT_RING (evo
, nv_crtc
->fb
.offset
>> 8);
599 OUT_RING (evo
, (drm_fb
->height
<< 16) | drm_fb
->width
);
600 OUT_RING (evo
, fb
->r_pitch
);
601 OUT_RING (evo
, fb
->r_format
);
603 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, CLUT_MODE
), 1);
604 OUT_RING (evo
, fb
->base
.depth
== 8 ?
605 NV50_EVO_CRTC_CLUT_MODE_OFF
: NV50_EVO_CRTC_CLUT_MODE_ON
);
607 BEGIN_NV04(evo
, 0, NV50_EVO_CRTC(nv_crtc
->index
, FB_POS
), 1);
608 OUT_RING (evo
, (y
<< 16) | x
);
610 if (nv_crtc
->lut
.depth
!= fb
->base
.depth
) {
611 nv_crtc
->lut
.depth
= fb
->base
.depth
;
612 nv50_crtc_lut_load(crtc
);
619 nv50_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*umode
,
620 struct drm_display_mode
*mode
, int x
, int y
,
621 struct drm_framebuffer
*old_fb
)
623 struct drm_device
*dev
= crtc
->dev
;
624 struct nouveau_channel
*evo
= nv50_display(dev
)->master
;
625 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
626 u32 head
= nv_crtc
->index
* 0x400;
627 u32 ilace
= (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ? 2 : 1;
628 u32 vscan
= (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) ? 2 : 1;
629 u32 hactive
, hsynce
, hbackp
, hfrontp
, hblanke
, hblanks
;
630 u32 vactive
, vsynce
, vbackp
, vfrontp
, vblanke
, vblanks
;
631 u32 vblan2e
= 0, vblan2s
= 1;
634 /* hw timing description looks like this:
636 * <sync> <back porch> <---------display---------> <front porch>
638 * |____________|---------------------------|____________|
640 * ^ synce ^ blanke ^ blanks ^ active
642 * interlaced modes also have 2 additional values pointing at the end
643 * and start of the next field's blanking period.
646 hactive
= mode
->htotal
;
647 hsynce
= mode
->hsync_end
- mode
->hsync_start
- 1;
648 hbackp
= mode
->htotal
- mode
->hsync_end
;
649 hblanke
= hsynce
+ hbackp
;
650 hfrontp
= mode
->hsync_start
- mode
->hdisplay
;
651 hblanks
= mode
->htotal
- hfrontp
- 1;
653 vactive
= mode
->vtotal
* vscan
/ ilace
;
654 vsynce
= ((mode
->vsync_end
- mode
->vsync_start
) * vscan
/ ilace
) - 1;
655 vbackp
= (mode
->vtotal
- mode
->vsync_end
) * vscan
/ ilace
;
656 vblanke
= vsynce
+ vbackp
;
657 vfrontp
= (mode
->vsync_start
- mode
->vdisplay
) * vscan
/ ilace
;
658 vblanks
= vactive
- vfrontp
- 1;
659 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
660 vblan2e
= vactive
+ vsynce
+ vbackp
;
661 vblan2s
= vblan2e
+ (mode
->vdisplay
* vscan
/ ilace
);
662 vactive
= (vactive
* 2) + 1;
665 ret
= RING_SPACE(evo
, 18);
667 BEGIN_NV04(evo
, 0, 0x0804 + head
, 2);
668 OUT_RING (evo
, 0x00800000 | mode
->clock
);
669 OUT_RING (evo
, (ilace
== 2) ? 2 : 0);
670 BEGIN_NV04(evo
, 0, 0x0810 + head
, 6);
671 OUT_RING (evo
, 0x00000000); /* border colour */
672 OUT_RING (evo
, (vactive
<< 16) | hactive
);
673 OUT_RING (evo
, ( vsynce
<< 16) | hsynce
);
674 OUT_RING (evo
, (vblanke
<< 16) | hblanke
);
675 OUT_RING (evo
, (vblanks
<< 16) | hblanks
);
676 OUT_RING (evo
, (vblan2e
<< 16) | vblan2s
);
677 BEGIN_NV04(evo
, 0, 0x082c + head
, 1);
678 OUT_RING (evo
, 0x00000000);
679 BEGIN_NV04(evo
, 0, 0x0900 + head
, 1);
680 OUT_RING (evo
, 0x00000311); /* makes sync channel work */
681 BEGIN_NV04(evo
, 0, 0x08c8 + head
, 1);
682 OUT_RING (evo
, (umode
->vdisplay
<< 16) | umode
->hdisplay
);
683 BEGIN_NV04(evo
, 0, 0x08d4 + head
, 1);
684 OUT_RING (evo
, 0x00000000); /* screen position */
687 nv_crtc
->set_dither(nv_crtc
, false);
688 nv_crtc
->set_scale(nv_crtc
, false);
689 nv_crtc
->set_color_vibrance(nv_crtc
, false);
691 return nv50_crtc_do_mode_set_base(crtc
, old_fb
, x
, y
, false);
695 nv50_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
696 struct drm_framebuffer
*old_fb
)
700 nv50_display_flip_stop(crtc
);
701 ret
= nv50_crtc_do_mode_set_base(crtc
, old_fb
, x
, y
, false);
705 ret
= nv50_display_sync(crtc
->dev
);
709 return nv50_display_flip_next(crtc
, crtc
->fb
, NULL
);
713 nv50_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
714 struct drm_framebuffer
*fb
,
715 int x
, int y
, enum mode_set_atomic state
)
719 nv50_display_flip_stop(crtc
);
720 ret
= nv50_crtc_do_mode_set_base(crtc
, fb
, x
, y
, true);
724 return nv50_display_sync(crtc
->dev
);
727 static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs
= {
728 .dpms
= nv50_crtc_dpms
,
729 .prepare
= nv50_crtc_prepare
,
730 .commit
= nv50_crtc_commit
,
731 .mode_fixup
= nv50_crtc_mode_fixup
,
732 .mode_set
= nv50_crtc_mode_set
,
733 .mode_set_base
= nv50_crtc_mode_set_base
,
734 .mode_set_base_atomic
= nv50_crtc_mode_set_base_atomic
,
735 .load_lut
= nv50_crtc_lut_load
,
739 nv50_crtc_create(struct drm_device
*dev
, int index
)
741 struct nouveau_crtc
*nv_crtc
= NULL
;
744 NV_DEBUG_KMS(dev
, "\n");
746 nv_crtc
= kzalloc(sizeof(*nv_crtc
), GFP_KERNEL
);
750 nv_crtc
->index
= index
;
751 nv_crtc
->set_dither
= nv50_crtc_set_dither
;
752 nv_crtc
->set_scale
= nv50_crtc_set_scale
;
753 nv_crtc
->set_color_vibrance
= nv50_crtc_set_color_vibrance
;
754 nv_crtc
->color_vibrance
= 50;
755 nv_crtc
->vibrant_hue
= 0;
756 nv_crtc
->lut
.depth
= 0;
757 for (i
= 0; i
< 256; i
++) {
758 nv_crtc
->lut
.r
[i
] = i
<< 8;
759 nv_crtc
->lut
.g
[i
] = i
<< 8;
760 nv_crtc
->lut
.b
[i
] = i
<< 8;
763 drm_crtc_init(dev
, &nv_crtc
->base
, &nv50_crtc_funcs
);
764 drm_crtc_helper_add(&nv_crtc
->base
, &nv50_crtc_helper_funcs
);
765 drm_mode_crtc_set_gamma_size(&nv_crtc
->base
, 256);
767 ret
= nouveau_bo_new(dev
, 4096, 0x100, TTM_PL_FLAG_VRAM
,
768 0, 0x0000, NULL
, &nv_crtc
->lut
.nvbo
);
770 ret
= nouveau_bo_pin(nv_crtc
->lut
.nvbo
, TTM_PL_FLAG_VRAM
);
772 ret
= nouveau_bo_map(nv_crtc
->lut
.nvbo
);
774 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
781 ret
= nouveau_bo_new(dev
, 64*64*4, 0x100, TTM_PL_FLAG_VRAM
,
782 0, 0x0000, NULL
, &nv_crtc
->cursor
.nvbo
);
784 ret
= nouveau_bo_pin(nv_crtc
->cursor
.nvbo
, TTM_PL_FLAG_VRAM
);
786 ret
= nouveau_bo_map(nv_crtc
->cursor
.nvbo
);
788 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
794 nv50_cursor_init(nv_crtc
);
797 nv50_crtc_destroy(&nv_crtc
->base
);