2 * Copyright 2011 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
25 #include <linux/dma-mapping.h>
28 #include "drm_crtc_helper.h"
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nouveau_software.h"
37 #include "nv50_display.h"
41 #define EVO_MASTER (0x00)
42 #define EVO_FLIP(c) (0x01 + (c))
43 #define EVO_OVLY(c) (0x05 + (c))
44 #define EVO_OIMM(c) (0x09 + (c))
45 #define EVO_CURS(c) (0x0d + (c))
47 /* offsets in shared sync bo of various structures */
48 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
49 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
50 #define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00)
51 #define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10)
64 struct nouveau_gpuobj
*mem
;
65 struct nouveau_bo
*sync
;
68 struct tasklet_struct tasklet
;
72 static struct nvd0_display
*
73 nvd0_display(struct drm_device
*dev
)
75 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
76 return dev_priv
->engine
.display
.priv
;
79 static struct drm_crtc
*
80 nvd0_display_crtc_get(struct drm_encoder
*encoder
)
82 return nouveau_encoder(encoder
)->crtc
;
85 /******************************************************************************
87 *****************************************************************************/
89 evo_icmd(struct drm_device
*dev
, int id
, u32 mthd
, u32 data
)
92 nv_mask(dev
, 0x610700 + (id
* 0x10), 0x00000001, 0x00000001);
93 nv_wr32(dev
, 0x610704 + (id
* 0x10), data
);
94 nv_mask(dev
, 0x610704 + (id
* 0x10), 0x80000ffc, 0x80000000 | mthd
);
95 if (!nv_wait(dev
, 0x610704 + (id
* 0x10), 0x80000000, 0x00000000))
97 nv_mask(dev
, 0x610700 + (id
* 0x10), 0x00000001, 0x00000000);
102 evo_wait(struct drm_device
*dev
, int id
, int nr
)
104 struct nvd0_display
*disp
= nvd0_display(dev
);
105 u32 put
= nv_rd32(dev
, 0x640000 + (id
* 0x1000)) / 4;
107 if (put
+ nr
>= (PAGE_SIZE
/ 4)) {
108 disp
->evo
[id
].ptr
[put
] = 0x20000000;
110 nv_wr32(dev
, 0x640000 + (id
* 0x1000), 0x00000000);
111 if (!nv_wait(dev
, 0x640004 + (id
* 0x1000), ~0, 0x00000000)) {
112 NV_ERROR(dev
, "evo %d dma stalled\n", id
);
119 if (nouveau_reg_debug
& NOUVEAU_REG_DEBUG_EVO
)
120 NV_INFO(dev
, "Evo%d: %p START\n", id
, disp
->evo
[id
].ptr
+ put
);
122 return disp
->evo
[id
].ptr
+ put
;
126 evo_kick(u32
*push
, struct drm_device
*dev
, int id
)
128 struct nvd0_display
*disp
= nvd0_display(dev
);
130 if (nouveau_reg_debug
& NOUVEAU_REG_DEBUG_EVO
) {
131 u32 curp
= nv_rd32(dev
, 0x640000 + (id
* 0x1000)) >> 2;
132 u32
*cur
= disp
->evo
[id
].ptr
+ curp
;
135 NV_INFO(dev
, "Evo%d: 0x%08x\n", id
, *cur
++);
136 NV_INFO(dev
, "Evo%d: %p KICK!\n", id
, push
);
139 nv_wr32(dev
, 0x640000 + (id
* 0x1000), (push
- disp
->evo
[id
].ptr
) << 2);
142 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
143 #define evo_data(p,d) *((p)++) = (d)
146 evo_init_dma(struct drm_device
*dev
, int ch
)
148 struct nvd0_display
*disp
= nvd0_display(dev
);
152 if (ch
== EVO_MASTER
)
155 nv_wr32(dev
, 0x610494 + (ch
* 0x0010), (disp
->evo
[ch
].handle
>> 8) | 3);
156 nv_wr32(dev
, 0x610498 + (ch
* 0x0010), 0x00010000);
157 nv_wr32(dev
, 0x61049c + (ch
* 0x0010), 0x00000001);
158 nv_mask(dev
, 0x610490 + (ch
* 0x0010), 0x00000010, 0x00000010);
159 nv_wr32(dev
, 0x640000 + (ch
* 0x1000), 0x00000000);
160 nv_wr32(dev
, 0x610490 + (ch
* 0x0010), 0x00000013 | flags
);
161 if (!nv_wait(dev
, 0x610490 + (ch
* 0x0010), 0x80000000, 0x00000000)) {
162 NV_ERROR(dev
, "PDISP: ch%d 0x%08x\n", ch
,
163 nv_rd32(dev
, 0x610490 + (ch
* 0x0010)));
167 nv_mask(dev
, 0x610090, (1 << ch
), (1 << ch
));
168 nv_mask(dev
, 0x6100a0, (1 << ch
), (1 << ch
));
173 evo_fini_dma(struct drm_device
*dev
, int ch
)
175 if (!(nv_rd32(dev
, 0x610490 + (ch
* 0x0010)) & 0x00000010))
178 nv_mask(dev
, 0x610490 + (ch
* 0x0010), 0x00000010, 0x00000000);
179 nv_mask(dev
, 0x610490 + (ch
* 0x0010), 0x00000003, 0x00000000);
180 nv_wait(dev
, 0x610490 + (ch
* 0x0010), 0x80000000, 0x00000000);
181 nv_mask(dev
, 0x610090, (1 << ch
), 0x00000000);
182 nv_mask(dev
, 0x6100a0, (1 << ch
), 0x00000000);
186 evo_piow(struct drm_device
*dev
, int ch
, u16 mthd
, u32 data
)
188 nv_wr32(dev
, 0x640000 + (ch
* 0x1000) + mthd
, data
);
192 evo_init_pio(struct drm_device
*dev
, int ch
)
194 nv_wr32(dev
, 0x610490 + (ch
* 0x0010), 0x00000001);
195 if (!nv_wait(dev
, 0x610490 + (ch
* 0x0010), 0x00010000, 0x00010000)) {
196 NV_ERROR(dev
, "PDISP: ch%d 0x%08x\n", ch
,
197 nv_rd32(dev
, 0x610490 + (ch
* 0x0010)));
201 nv_mask(dev
, 0x610090, (1 << ch
), (1 << ch
));
202 nv_mask(dev
, 0x6100a0, (1 << ch
), (1 << ch
));
207 evo_fini_pio(struct drm_device
*dev
, int ch
)
209 if (!(nv_rd32(dev
, 0x610490 + (ch
* 0x0010)) & 0x00000001))
212 nv_mask(dev
, 0x610490 + (ch
* 0x0010), 0x00000010, 0x00000010);
213 nv_mask(dev
, 0x610490 + (ch
* 0x0010), 0x00000001, 0x00000000);
214 nv_wait(dev
, 0x610490 + (ch
* 0x0010), 0x00010000, 0x00000000);
215 nv_mask(dev
, 0x610090, (1 << ch
), 0x00000000);
216 nv_mask(dev
, 0x6100a0, (1 << ch
), 0x00000000);
220 evo_sync_wait(void *data
)
222 return nouveau_bo_rd32(data
, EVO_MAST_NTFY
) != 0x00000000;
226 evo_sync(struct drm_device
*dev
, int ch
)
228 struct nvd0_display
*disp
= nvd0_display(dev
);
229 u32
*push
= evo_wait(dev
, ch
, 8);
231 nouveau_bo_wr32(disp
->sync
, EVO_MAST_NTFY
, 0x00000000);
232 evo_mthd(push
, 0x0084, 1);
233 evo_data(push
, 0x80000000 | EVO_MAST_NTFY
);
234 evo_mthd(push
, 0x0080, 2);
235 evo_data(push
, 0x00000000);
236 evo_data(push
, 0x00000000);
237 evo_kick(push
, dev
, ch
);
238 if (nv_wait_cb(dev
, evo_sync_wait
, disp
->sync
))
245 /******************************************************************************
246 * Page flipping channel
247 *****************************************************************************/
249 nvd0_display_crtc_sema(struct drm_device
*dev
, int crtc
)
251 return nvd0_display(dev
)->sync
;
255 nvd0_display_flip_stop(struct drm_crtc
*crtc
)
257 struct nvd0_display
*disp
= nvd0_display(crtc
->dev
);
258 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
259 struct evo
*evo
= &disp
->evo
[EVO_FLIP(nv_crtc
->index
)];
262 push
= evo_wait(crtc
->dev
, evo
->idx
, 8);
264 evo_mthd(push
, 0x0084, 1);
265 evo_data(push
, 0x00000000);
266 evo_mthd(push
, 0x0094, 1);
267 evo_data(push
, 0x00000000);
268 evo_mthd(push
, 0x00c0, 1);
269 evo_data(push
, 0x00000000);
270 evo_mthd(push
, 0x0080, 1);
271 evo_data(push
, 0x00000000);
272 evo_kick(push
, crtc
->dev
, evo
->idx
);
277 nvd0_display_flip_next(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
278 struct nouveau_channel
*chan
, u32 swap_interval
)
280 struct nouveau_framebuffer
*nv_fb
= nouveau_framebuffer(fb
);
281 struct nvd0_display
*disp
= nvd0_display(crtc
->dev
);
282 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
283 struct evo
*evo
= &disp
->evo
[EVO_FLIP(nv_crtc
->index
)];
289 if (swap_interval
== 0)
290 swap_interval
|= 0x100;
292 push
= evo_wait(crtc
->dev
, evo
->idx
, 128);
293 if (unlikely(push
== NULL
))
296 /* synchronise with the rendering channel, if necessary */
298 ret
= RING_SPACE(chan
, 10);
303 offset
= nvc0_software_crtc(chan
, nv_crtc
->index
);
304 offset
+= evo
->sem
.offset
;
306 BEGIN_NVC0(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
307 OUT_RING (chan
, upper_32_bits(offset
));
308 OUT_RING (chan
, lower_32_bits(offset
));
309 OUT_RING (chan
, 0xf00d0000 | evo
->sem
.value
);
310 OUT_RING (chan
, 0x1002);
311 BEGIN_NVC0(chan
, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH
, 4);
312 OUT_RING (chan
, upper_32_bits(offset
));
313 OUT_RING (chan
, lower_32_bits(offset
^ 0x10));
314 OUT_RING (chan
, 0x74b1e000);
315 OUT_RING (chan
, 0x1001);
318 nouveau_bo_wr32(disp
->sync
, evo
->sem
.offset
/ 4,
319 0xf00d0000 | evo
->sem
.value
);
320 evo_sync(crtc
->dev
, EVO_MASTER
);
324 evo_mthd(push
, 0x0100, 1);
325 evo_data(push
, 0xfffe0000);
326 evo_mthd(push
, 0x0084, 1);
327 evo_data(push
, swap_interval
);
328 if (!(swap_interval
& 0x00000100)) {
329 evo_mthd(push
, 0x00e0, 1);
330 evo_data(push
, 0x40000000);
332 evo_mthd(push
, 0x0088, 4);
333 evo_data(push
, evo
->sem
.offset
);
334 evo_data(push
, 0xf00d0000 | evo
->sem
.value
);
335 evo_data(push
, 0x74b1e000);
336 evo_data(push
, NvEvoSync
);
337 evo_mthd(push
, 0x00a0, 2);
338 evo_data(push
, 0x00000000);
339 evo_data(push
, 0x00000000);
340 evo_mthd(push
, 0x00c0, 1);
341 evo_data(push
, nv_fb
->r_dma
);
342 evo_mthd(push
, 0x0110, 2);
343 evo_data(push
, 0x00000000);
344 evo_data(push
, 0x00000000);
345 evo_mthd(push
, 0x0400, 5);
346 evo_data(push
, nv_fb
->nvbo
->bo
.offset
>> 8);
348 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
349 evo_data(push
, nv_fb
->r_pitch
);
350 evo_data(push
, nv_fb
->r_format
);
351 evo_mthd(push
, 0x0080, 1);
352 evo_data(push
, 0x00000000);
353 evo_kick(push
, crtc
->dev
, evo
->idx
);
355 evo
->sem
.offset
^= 0x10;
360 /******************************************************************************
362 *****************************************************************************/
364 nvd0_crtc_set_dither(struct nouveau_crtc
*nv_crtc
, bool update
)
366 struct drm_nouveau_private
*dev_priv
= nv_crtc
->base
.dev
->dev_private
;
367 struct drm_device
*dev
= nv_crtc
->base
.dev
;
368 struct nouveau_connector
*nv_connector
;
369 struct drm_connector
*connector
;
370 u32
*push
, mode
= 0x00;
373 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
374 connector
= &nv_connector
->base
;
375 if (nv_connector
->dithering_mode
== DITHERING_MODE_AUTO
) {
376 if (nv_crtc
->base
.fb
->depth
> connector
->display_info
.bpc
* 3)
377 mode
= DITHERING_MODE_DYNAMIC2X2
;
379 mode
= nv_connector
->dithering_mode
;
382 if (nv_connector
->dithering_depth
== DITHERING_DEPTH_AUTO
) {
383 if (connector
->display_info
.bpc
>= 8)
384 mode
|= DITHERING_DEPTH_8BPC
;
386 mode
|= nv_connector
->dithering_depth
;
389 if (dev_priv
->card_type
< NV_E0
)
390 mthd
= 0x0490 + (nv_crtc
->index
* 0x0300);
392 mthd
= 0x04a0 + (nv_crtc
->index
* 0x0300);
394 push
= evo_wait(dev
, EVO_MASTER
, 4);
396 evo_mthd(push
, mthd
, 1);
397 evo_data(push
, mode
);
399 evo_mthd(push
, 0x0080, 1);
400 evo_data(push
, 0x00000000);
402 evo_kick(push
, dev
, EVO_MASTER
);
409 nvd0_crtc_set_scale(struct nouveau_crtc
*nv_crtc
, bool update
)
411 struct drm_display_mode
*omode
, *umode
= &nv_crtc
->base
.mode
;
412 struct drm_device
*dev
= nv_crtc
->base
.dev
;
413 struct drm_crtc
*crtc
= &nv_crtc
->base
;
414 struct nouveau_connector
*nv_connector
;
415 int mode
= DRM_MODE_SCALE_NONE
;
418 /* start off at the resolution we programmed the crtc for, this
419 * effectively handles NONE/FULL scaling
421 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
422 if (nv_connector
&& nv_connector
->native_mode
)
423 mode
= nv_connector
->scaling_mode
;
425 if (mode
!= DRM_MODE_SCALE_NONE
)
426 omode
= nv_connector
->native_mode
;
430 oX
= omode
->hdisplay
;
431 oY
= omode
->vdisplay
;
432 if (omode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
435 /* add overscan compensation if necessary, will keep the aspect
436 * ratio the same as the backend mode unless overridden by the
437 * user setting both hborder and vborder properties.
439 if (nv_connector
&& ( nv_connector
->underscan
== UNDERSCAN_ON
||
440 (nv_connector
->underscan
== UNDERSCAN_AUTO
&&
441 nv_connector
->edid
&&
442 drm_detect_hdmi_monitor(nv_connector
->edid
)))) {
443 u32 bX
= nv_connector
->underscan_hborder
;
444 u32 bY
= nv_connector
->underscan_vborder
;
445 u32 aspect
= (oY
<< 19) / oX
;
449 if (bY
) oY
-= (bY
* 2);
450 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
452 oX
-= (oX
>> 4) + 32;
453 if (bY
) oY
-= (bY
* 2);
454 else oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
458 /* handle CENTER/ASPECT scaling, taking into account the areas
459 * removed already for overscan compensation
462 case DRM_MODE_SCALE_CENTER
:
463 oX
= min((u32
)umode
->hdisplay
, oX
);
464 oY
= min((u32
)umode
->vdisplay
, oY
);
466 case DRM_MODE_SCALE_ASPECT
:
468 u32 aspect
= (umode
->hdisplay
<< 19) / umode
->vdisplay
;
469 oX
= ((oY
* aspect
) + (aspect
/ 2)) >> 19;
471 u32 aspect
= (umode
->vdisplay
<< 19) / umode
->hdisplay
;
472 oY
= ((oX
* aspect
) + (aspect
/ 2)) >> 19;
479 push
= evo_wait(dev
, EVO_MASTER
, 8);
481 evo_mthd(push
, 0x04c0 + (nv_crtc
->index
* 0x300), 3);
482 evo_data(push
, (oY
<< 16) | oX
);
483 evo_data(push
, (oY
<< 16) | oX
);
484 evo_data(push
, (oY
<< 16) | oX
);
485 evo_mthd(push
, 0x0494 + (nv_crtc
->index
* 0x300), 1);
486 evo_data(push
, 0x00000000);
487 evo_mthd(push
, 0x04b8 + (nv_crtc
->index
* 0x300), 1);
488 evo_data(push
, (umode
->vdisplay
<< 16) | umode
->hdisplay
);
489 evo_kick(push
, dev
, EVO_MASTER
);
491 nvd0_display_flip_stop(crtc
);
492 nvd0_display_flip_next(crtc
, crtc
->fb
, NULL
, 1);
500 nvd0_crtc_set_image(struct nouveau_crtc
*nv_crtc
, struct drm_framebuffer
*fb
,
501 int x
, int y
, bool update
)
503 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(fb
);
506 push
= evo_wait(fb
->dev
, EVO_MASTER
, 16);
508 evo_mthd(push
, 0x0460 + (nv_crtc
->index
* 0x300), 1);
509 evo_data(push
, nvfb
->nvbo
->bo
.offset
>> 8);
510 evo_mthd(push
, 0x0468 + (nv_crtc
->index
* 0x300), 4);
511 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
512 evo_data(push
, nvfb
->r_pitch
);
513 evo_data(push
, nvfb
->r_format
);
514 evo_data(push
, nvfb
->r_dma
);
515 evo_mthd(push
, 0x04b0 + (nv_crtc
->index
* 0x300), 1);
516 evo_data(push
, (y
<< 16) | x
);
518 evo_mthd(push
, 0x0080, 1);
519 evo_data(push
, 0x00000000);
521 evo_kick(push
, fb
->dev
, EVO_MASTER
);
524 nv_crtc
->fb
.tile_flags
= nvfb
->r_dma
;
529 nvd0_crtc_cursor_show(struct nouveau_crtc
*nv_crtc
, bool show
, bool update
)
531 struct drm_device
*dev
= nv_crtc
->base
.dev
;
532 u32
*push
= evo_wait(dev
, EVO_MASTER
, 16);
535 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 2);
536 evo_data(push
, 0x85000000);
537 evo_data(push
, nv_crtc
->cursor
.nvbo
->bo
.offset
>> 8);
538 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
539 evo_data(push
, NvEvoVRAM
);
541 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 1);
542 evo_data(push
, 0x05000000);
543 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
544 evo_data(push
, 0x00000000);
548 evo_mthd(push
, 0x0080, 1);
549 evo_data(push
, 0x00000000);
552 evo_kick(push
, dev
, EVO_MASTER
);
557 nvd0_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
562 nvd0_crtc_prepare(struct drm_crtc
*crtc
)
564 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
567 nvd0_display_flip_stop(crtc
);
569 push
= evo_wait(crtc
->dev
, EVO_MASTER
, 2);
571 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
572 evo_data(push
, 0x00000000);
573 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 1);
574 evo_data(push
, 0x03000000);
575 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
576 evo_data(push
, 0x00000000);
577 evo_kick(push
, crtc
->dev
, EVO_MASTER
);
580 nvd0_crtc_cursor_show(nv_crtc
, false, false);
584 nvd0_crtc_commit(struct drm_crtc
*crtc
)
586 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
589 push
= evo_wait(crtc
->dev
, EVO_MASTER
, 32);
591 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
592 evo_data(push
, nv_crtc
->fb
.tile_flags
);
593 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 4);
594 evo_data(push
, 0x83000000);
595 evo_data(push
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
596 evo_data(push
, 0x00000000);
597 evo_data(push
, 0x00000000);
598 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
599 evo_data(push
, NvEvoVRAM
);
600 evo_mthd(push
, 0x0430 + (nv_crtc
->index
* 0x300), 1);
601 evo_data(push
, 0xffffff00);
602 evo_kick(push
, crtc
->dev
, EVO_MASTER
);
605 nvd0_crtc_cursor_show(nv_crtc
, nv_crtc
->cursor
.visible
, true);
606 nvd0_display_flip_next(crtc
, crtc
->fb
, NULL
, 1);
610 nvd0_crtc_mode_fixup(struct drm_crtc
*crtc
, const struct drm_display_mode
*mode
,
611 struct drm_display_mode
*adjusted_mode
)
617 nvd0_crtc_swap_fbs(struct drm_crtc
*crtc
, struct drm_framebuffer
*old_fb
)
619 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(crtc
->fb
);
622 ret
= nouveau_bo_pin(nvfb
->nvbo
, TTM_PL_FLAG_VRAM
);
627 nvfb
= nouveau_framebuffer(old_fb
);
628 nouveau_bo_unpin(nvfb
->nvbo
);
635 nvd0_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*umode
,
636 struct drm_display_mode
*mode
, int x
, int y
,
637 struct drm_framebuffer
*old_fb
)
639 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
640 struct nouveau_connector
*nv_connector
;
641 u32 ilace
= (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) ? 2 : 1;
642 u32 vscan
= (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) ? 2 : 1;
643 u32 hactive
, hsynce
, hbackp
, hfrontp
, hblanke
, hblanks
;
644 u32 vactive
, vsynce
, vbackp
, vfrontp
, vblanke
, vblanks
;
645 u32 vblan2e
= 0, vblan2s
= 1;
649 hactive
= mode
->htotal
;
650 hsynce
= mode
->hsync_end
- mode
->hsync_start
- 1;
651 hbackp
= mode
->htotal
- mode
->hsync_end
;
652 hblanke
= hsynce
+ hbackp
;
653 hfrontp
= mode
->hsync_start
- mode
->hdisplay
;
654 hblanks
= mode
->htotal
- hfrontp
- 1;
656 vactive
= mode
->vtotal
* vscan
/ ilace
;
657 vsynce
= ((mode
->vsync_end
- mode
->vsync_start
) * vscan
/ ilace
) - 1;
658 vbackp
= (mode
->vtotal
- mode
->vsync_end
) * vscan
/ ilace
;
659 vblanke
= vsynce
+ vbackp
;
660 vfrontp
= (mode
->vsync_start
- mode
->vdisplay
) * vscan
/ ilace
;
661 vblanks
= vactive
- vfrontp
- 1;
662 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
663 vblan2e
= vactive
+ vsynce
+ vbackp
;
664 vblan2s
= vblan2e
+ (mode
->vdisplay
* vscan
/ ilace
);
665 vactive
= (vactive
* 2) + 1;
668 ret
= nvd0_crtc_swap_fbs(crtc
, old_fb
);
672 push
= evo_wait(crtc
->dev
, EVO_MASTER
, 64);
674 evo_mthd(push
, 0x0410 + (nv_crtc
->index
* 0x300), 6);
675 evo_data(push
, 0x00000000);
676 evo_data(push
, (vactive
<< 16) | hactive
);
677 evo_data(push
, ( vsynce
<< 16) | hsynce
);
678 evo_data(push
, (vblanke
<< 16) | hblanke
);
679 evo_data(push
, (vblanks
<< 16) | hblanks
);
680 evo_data(push
, (vblan2e
<< 16) | vblan2s
);
681 evo_mthd(push
, 0x042c + (nv_crtc
->index
* 0x300), 1);
682 evo_data(push
, 0x00000000); /* ??? */
683 evo_mthd(push
, 0x0450 + (nv_crtc
->index
* 0x300), 3);
684 evo_data(push
, mode
->clock
* 1000);
685 evo_data(push
, 0x00200000); /* ??? */
686 evo_data(push
, mode
->clock
* 1000);
687 evo_mthd(push
, 0x04d0 + (nv_crtc
->index
* 0x300), 2);
688 evo_data(push
, 0x00000311);
689 evo_data(push
, 0x00000100);
690 evo_kick(push
, crtc
->dev
, EVO_MASTER
);
693 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
694 nvd0_crtc_set_dither(nv_crtc
, false);
695 nvd0_crtc_set_scale(nv_crtc
, false);
696 nvd0_crtc_set_image(nv_crtc
, crtc
->fb
, x
, y
, false);
701 nvd0_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
702 struct drm_framebuffer
*old_fb
)
704 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
708 NV_DEBUG_KMS(crtc
->dev
, "No FB bound\n");
712 ret
= nvd0_crtc_swap_fbs(crtc
, old_fb
);
716 nvd0_display_flip_stop(crtc
);
717 nvd0_crtc_set_image(nv_crtc
, crtc
->fb
, x
, y
, true);
718 nvd0_display_flip_next(crtc
, crtc
->fb
, NULL
, 1);
723 nvd0_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
724 struct drm_framebuffer
*fb
, int x
, int y
,
725 enum mode_set_atomic state
)
727 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
728 nvd0_display_flip_stop(crtc
);
729 nvd0_crtc_set_image(nv_crtc
, fb
, x
, y
, true);
734 nvd0_crtc_lut_load(struct drm_crtc
*crtc
)
736 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
737 void __iomem
*lut
= nvbo_kmap_obj_iovirtual(nv_crtc
->lut
.nvbo
);
740 for (i
= 0; i
< 256; i
++) {
741 writew(0x6000 + (nv_crtc
->lut
.r
[i
] >> 2), lut
+ (i
* 0x20) + 0);
742 writew(0x6000 + (nv_crtc
->lut
.g
[i
] >> 2), lut
+ (i
* 0x20) + 2);
743 writew(0x6000 + (nv_crtc
->lut
.b
[i
] >> 2), lut
+ (i
* 0x20) + 4);
748 nvd0_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
749 uint32_t handle
, uint32_t width
, uint32_t height
)
751 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
752 struct drm_device
*dev
= crtc
->dev
;
753 struct drm_gem_object
*gem
;
754 struct nouveau_bo
*nvbo
;
755 bool visible
= (handle
!= 0);
759 if (width
!= 64 || height
!= 64)
762 gem
= drm_gem_object_lookup(dev
, file_priv
, handle
);
765 nvbo
= nouveau_gem_object(gem
);
767 ret
= nouveau_bo_map(nvbo
);
769 for (i
= 0; i
< 64 * 64; i
++) {
770 u32 v
= nouveau_bo_rd32(nvbo
, i
);
771 nouveau_bo_wr32(nv_crtc
->cursor
.nvbo
, i
, v
);
773 nouveau_bo_unmap(nvbo
);
776 drm_gem_object_unreference_unlocked(gem
);
779 if (visible
!= nv_crtc
->cursor
.visible
) {
780 nvd0_crtc_cursor_show(nv_crtc
, visible
, true);
781 nv_crtc
->cursor
.visible
= visible
;
788 nvd0_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
790 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
791 int ch
= EVO_CURS(nv_crtc
->index
);
793 evo_piow(crtc
->dev
, ch
, 0x0084, (y
<< 16) | (x
& 0xffff));
794 evo_piow(crtc
->dev
, ch
, 0x0080, 0x00000000);
799 nvd0_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
800 uint32_t start
, uint32_t size
)
802 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
803 u32 end
= max(start
+ size
, (u32
)256);
806 for (i
= start
; i
< end
; i
++) {
807 nv_crtc
->lut
.r
[i
] = r
[i
];
808 nv_crtc
->lut
.g
[i
] = g
[i
];
809 nv_crtc
->lut
.b
[i
] = b
[i
];
812 nvd0_crtc_lut_load(crtc
);
816 nvd0_crtc_destroy(struct drm_crtc
*crtc
)
818 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
819 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
820 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
821 nouveau_bo_unmap(nv_crtc
->lut
.nvbo
);
822 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
823 drm_crtc_cleanup(crtc
);
827 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc
= {
828 .dpms
= nvd0_crtc_dpms
,
829 .prepare
= nvd0_crtc_prepare
,
830 .commit
= nvd0_crtc_commit
,
831 .mode_fixup
= nvd0_crtc_mode_fixup
,
832 .mode_set
= nvd0_crtc_mode_set
,
833 .mode_set_base
= nvd0_crtc_mode_set_base
,
834 .mode_set_base_atomic
= nvd0_crtc_mode_set_base_atomic
,
835 .load_lut
= nvd0_crtc_lut_load
,
838 static const struct drm_crtc_funcs nvd0_crtc_func
= {
839 .cursor_set
= nvd0_crtc_cursor_set
,
840 .cursor_move
= nvd0_crtc_cursor_move
,
841 .gamma_set
= nvd0_crtc_gamma_set
,
842 .set_config
= drm_crtc_helper_set_config
,
843 .destroy
= nvd0_crtc_destroy
,
844 .page_flip
= nouveau_crtc_page_flip
,
848 nvd0_cursor_set_pos(struct nouveau_crtc
*nv_crtc
, int x
, int y
)
853 nvd0_cursor_set_offset(struct nouveau_crtc
*nv_crtc
, uint32_t offset
)
858 nvd0_crtc_create(struct drm_device
*dev
, int index
)
860 struct nouveau_crtc
*nv_crtc
;
861 struct drm_crtc
*crtc
;
864 nv_crtc
= kzalloc(sizeof(*nv_crtc
), GFP_KERNEL
);
868 nv_crtc
->index
= index
;
869 nv_crtc
->set_dither
= nvd0_crtc_set_dither
;
870 nv_crtc
->set_scale
= nvd0_crtc_set_scale
;
871 nv_crtc
->cursor
.set_offset
= nvd0_cursor_set_offset
;
872 nv_crtc
->cursor
.set_pos
= nvd0_cursor_set_pos
;
873 for (i
= 0; i
< 256; i
++) {
874 nv_crtc
->lut
.r
[i
] = i
<< 8;
875 nv_crtc
->lut
.g
[i
] = i
<< 8;
876 nv_crtc
->lut
.b
[i
] = i
<< 8;
879 crtc
= &nv_crtc
->base
;
880 drm_crtc_init(dev
, crtc
, &nvd0_crtc_func
);
881 drm_crtc_helper_add(crtc
, &nvd0_crtc_hfunc
);
882 drm_mode_crtc_set_gamma_size(crtc
, 256);
884 ret
= nouveau_bo_new(dev
, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM
,
885 0, 0x0000, NULL
, &nv_crtc
->cursor
.nvbo
);
887 ret
= nouveau_bo_pin(nv_crtc
->cursor
.nvbo
, TTM_PL_FLAG_VRAM
);
889 ret
= nouveau_bo_map(nv_crtc
->cursor
.nvbo
);
891 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
897 ret
= nouveau_bo_new(dev
, 8192, 0x100, TTM_PL_FLAG_VRAM
,
898 0, 0x0000, NULL
, &nv_crtc
->lut
.nvbo
);
900 ret
= nouveau_bo_pin(nv_crtc
->lut
.nvbo
, TTM_PL_FLAG_VRAM
);
902 ret
= nouveau_bo_map(nv_crtc
->lut
.nvbo
);
904 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
910 nvd0_crtc_lut_load(crtc
);
914 nvd0_crtc_destroy(crtc
);
918 /******************************************************************************
920 *****************************************************************************/
922 nvd0_dac_dpms(struct drm_encoder
*encoder
, int mode
)
924 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
925 struct drm_device
*dev
= encoder
->dev
;
926 int or = nv_encoder
->or;
929 dpms_ctrl
= 0x80000000;
930 if (mode
== DRM_MODE_DPMS_STANDBY
|| mode
== DRM_MODE_DPMS_OFF
)
931 dpms_ctrl
|= 0x00000001;
932 if (mode
== DRM_MODE_DPMS_SUSPEND
|| mode
== DRM_MODE_DPMS_OFF
)
933 dpms_ctrl
|= 0x00000004;
935 nv_wait(dev
, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
936 nv_mask(dev
, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl
);
937 nv_wait(dev
, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
941 nvd0_dac_mode_fixup(struct drm_encoder
*encoder
,
942 const struct drm_display_mode
*mode
,
943 struct drm_display_mode
*adjusted_mode
)
945 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
946 struct nouveau_connector
*nv_connector
;
948 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
949 if (nv_connector
&& nv_connector
->native_mode
) {
950 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
951 int id
= adjusted_mode
->base
.id
;
952 *adjusted_mode
= *nv_connector
->native_mode
;
953 adjusted_mode
->base
.id
= id
;
961 nvd0_dac_commit(struct drm_encoder
*encoder
)
966 nvd0_dac_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
967 struct drm_display_mode
*adjusted_mode
)
969 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
970 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
971 u32 syncs
, magic
, *push
;
974 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
976 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
979 magic
= 0x31ec6000 | (nv_crtc
->index
<< 25);
980 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
983 nvd0_dac_dpms(encoder
, DRM_MODE_DPMS_ON
);
985 push
= evo_wait(encoder
->dev
, EVO_MASTER
, 8);
987 evo_mthd(push
, 0x0404 + (nv_crtc
->index
* 0x300), 2);
988 evo_data(push
, syncs
);
989 evo_data(push
, magic
);
990 evo_mthd(push
, 0x0180 + (nv_encoder
->or * 0x020), 2);
991 evo_data(push
, 1 << nv_crtc
->index
);
992 evo_data(push
, 0x00ff);
993 evo_kick(push
, encoder
->dev
, EVO_MASTER
);
996 nv_encoder
->crtc
= encoder
->crtc
;
1000 nvd0_dac_disconnect(struct drm_encoder
*encoder
)
1002 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1003 struct drm_device
*dev
= encoder
->dev
;
1006 if (nv_encoder
->crtc
) {
1007 nvd0_crtc_prepare(nv_encoder
->crtc
);
1009 push
= evo_wait(dev
, EVO_MASTER
, 4);
1011 evo_mthd(push
, 0x0180 + (nv_encoder
->or * 0x20), 1);
1012 evo_data(push
, 0x00000000);
1013 evo_mthd(push
, 0x0080, 1);
1014 evo_data(push
, 0x00000000);
1015 evo_kick(push
, dev
, EVO_MASTER
);
1018 nv_encoder
->crtc
= NULL
;
1022 static enum drm_connector_status
1023 nvd0_dac_detect(struct drm_encoder
*encoder
, struct drm_connector
*connector
)
1025 enum drm_connector_status status
= connector_status_disconnected
;
1026 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1027 struct drm_device
*dev
= encoder
->dev
;
1028 int or = nv_encoder
->or;
1031 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x00100000);
1033 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x80000000);
1035 load
= nv_rd32(dev
, 0x61a00c + (or * 0x800));
1036 if ((load
& 0x38000000) == 0x38000000)
1037 status
= connector_status_connected
;
1039 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x00000000);
1044 nvd0_dac_destroy(struct drm_encoder
*encoder
)
1046 drm_encoder_cleanup(encoder
);
1050 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc
= {
1051 .dpms
= nvd0_dac_dpms
,
1052 .mode_fixup
= nvd0_dac_mode_fixup
,
1053 .prepare
= nvd0_dac_disconnect
,
1054 .commit
= nvd0_dac_commit
,
1055 .mode_set
= nvd0_dac_mode_set
,
1056 .disable
= nvd0_dac_disconnect
,
1057 .get_crtc
= nvd0_display_crtc_get
,
1058 .detect
= nvd0_dac_detect
1061 static const struct drm_encoder_funcs nvd0_dac_func
= {
1062 .destroy
= nvd0_dac_destroy
,
1066 nvd0_dac_create(struct drm_connector
*connector
, struct dcb_entry
*dcbe
)
1068 struct drm_device
*dev
= connector
->dev
;
1069 struct nouveau_encoder
*nv_encoder
;
1070 struct drm_encoder
*encoder
;
1072 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
1075 nv_encoder
->dcb
= dcbe
;
1076 nv_encoder
->or = ffs(dcbe
->or) - 1;
1078 encoder
= to_drm_encoder(nv_encoder
);
1079 encoder
->possible_crtcs
= dcbe
->heads
;
1080 encoder
->possible_clones
= 0;
1081 drm_encoder_init(dev
, encoder
, &nvd0_dac_func
, DRM_MODE_ENCODER_DAC
);
1082 drm_encoder_helper_add(encoder
, &nvd0_dac_hfunc
);
1084 drm_mode_connector_attach_encoder(connector
, encoder
);
1088 /******************************************************************************
1090 *****************************************************************************/
1092 nvd0_audio_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
)
1094 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1095 struct nouveau_connector
*nv_connector
;
1096 struct drm_device
*dev
= encoder
->dev
;
1097 int i
, or = nv_encoder
->or * 0x30;
1099 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1100 if (!drm_detect_monitor_audio(nv_connector
->edid
))
1103 nv_mask(dev
, 0x10ec10 + or, 0x80000003, 0x80000001);
1105 drm_edid_to_eld(&nv_connector
->base
, nv_connector
->edid
);
1106 if (nv_connector
->base
.eld
[0]) {
1107 u8
*eld
= nv_connector
->base
.eld
;
1109 for (i
= 0; i
< eld
[2] * 4; i
++)
1110 nv_wr32(dev
, 0x10ec00 + or, (i
<< 8) | eld
[i
]);
1111 for (i
= eld
[2] * 4; i
< 0x60; i
++)
1112 nv_wr32(dev
, 0x10ec00 + or, (i
<< 8) | 0x00);
1114 nv_mask(dev
, 0x10ec10 + or, 0x80000002, 0x80000002);
1119 nvd0_audio_disconnect(struct drm_encoder
*encoder
)
1121 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1122 struct drm_device
*dev
= encoder
->dev
;
1123 int or = nv_encoder
->or * 0x30;
1125 nv_mask(dev
, 0x10ec10 + or, 0x80000003, 0x80000000);
1128 /******************************************************************************
1130 *****************************************************************************/
1132 nvd0_hdmi_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
)
1134 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1135 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
1136 struct nouveau_connector
*nv_connector
;
1137 struct drm_device
*dev
= encoder
->dev
;
1138 int head
= nv_crtc
->index
* 0x800;
1139 u32 rekey
= 56; /* binary driver, and tegra constant */
1142 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1143 if (!drm_detect_hdmi_monitor(nv_connector
->edid
))
1146 max_ac_packet
= mode
->htotal
- mode
->hdisplay
;
1147 max_ac_packet
-= rekey
;
1148 max_ac_packet
-= 18; /* constant from tegra */
1149 max_ac_packet
/= 32;
1152 nv_mask(dev
, 0x616714 + head
, 0x00000001, 0x00000000);
1153 nv_wr32(dev
, 0x61671c + head
, 0x000d0282);
1154 nv_wr32(dev
, 0x616720 + head
, 0x0000006f);
1155 nv_wr32(dev
, 0x616724 + head
, 0x00000000);
1156 nv_wr32(dev
, 0x616728 + head
, 0x00000000);
1157 nv_wr32(dev
, 0x61672c + head
, 0x00000000);
1158 nv_mask(dev
, 0x616714 + head
, 0x00000001, 0x00000001);
1160 /* ??? InfoFrame? */
1161 nv_mask(dev
, 0x6167a4 + head
, 0x00000001, 0x00000000);
1162 nv_wr32(dev
, 0x6167ac + head
, 0x00000010);
1163 nv_mask(dev
, 0x6167a4 + head
, 0x00000001, 0x00000001);
1166 nv_mask(dev
, 0x616798 + head
, 0x401f007f, 0x40000000 | rekey
|
1167 max_ac_packet
<< 16);
1169 /* NFI, audio doesn't work without it though.. */
1170 nv_mask(dev
, 0x616548 + head
, 0x00000070, 0x00000000);
1172 nvd0_audio_mode_set(encoder
, mode
);
1176 nvd0_hdmi_disconnect(struct drm_encoder
*encoder
)
1178 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1179 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(nv_encoder
->crtc
);
1180 struct drm_device
*dev
= encoder
->dev
;
1181 int head
= nv_crtc
->index
* 0x800;
1183 nvd0_audio_disconnect(encoder
);
1185 nv_mask(dev
, 0x616798 + head
, 0x40000000, 0x00000000);
1186 nv_mask(dev
, 0x6167a4 + head
, 0x00000001, 0x00000000);
1187 nv_mask(dev
, 0x616714 + head
, 0x00000001, 0x00000000);
1190 /******************************************************************************
1192 *****************************************************************************/
1194 nvd0_sor_dp_lane_map(struct drm_device
*dev
, struct dcb_entry
*dcb
, u8 lane
)
1196 static const u8 nvd0
[] = { 16, 8, 0, 24 };
1201 nvd0_sor_dp_train_set(struct drm_device
*dev
, struct dcb_entry
*dcb
, u8 pattern
)
1203 const u32
or = ffs(dcb
->or) - 1, link
= !(dcb
->sorconf
.link
& 1);
1204 const u32 loff
= (or * 0x800) + (link
* 0x80);
1205 nv_mask(dev
, 0x61c110 + loff
, 0x0f0f0f0f, 0x01010101 * pattern
);
1209 nvd0_sor_dp_train_adj(struct drm_device
*dev
, struct dcb_entry
*dcb
,
1210 u8 lane
, u8 swing
, u8 preem
)
1212 const u32
or = ffs(dcb
->or) - 1, link
= !(dcb
->sorconf
.link
& 1);
1213 const u32 loff
= (or * 0x800) + (link
* 0x80);
1214 u32 shift
= nvd0_sor_dp_lane_map(dev
, dcb
, lane
);
1215 u32 mask
= 0x000000ff << shift
;
1216 u8
*table
, *entry
, *config
= NULL
;
1219 case 0: preem
+= 0; break;
1220 case 1: preem
+= 4; break;
1221 case 2: preem
+= 7; break;
1222 case 3: preem
+= 9; break;
1225 table
= nouveau_dp_bios_data(dev
, dcb
, &entry
);
1227 if (table
[0] == 0x30) {
1228 config
= entry
+ table
[4];
1229 config
+= table
[5] * preem
;
1231 if (table
[0] == 0x40) {
1232 config
= table
+ table
[1];
1233 config
+= table
[2] * table
[3];
1234 config
+= table
[6] * preem
;
1239 NV_ERROR(dev
, "PDISP: unsupported DP table for chipset\n");
1243 nv_mask(dev
, 0x61c118 + loff
, mask
, config
[1] << shift
);
1244 nv_mask(dev
, 0x61c120 + loff
, mask
, config
[2] << shift
);
1245 nv_mask(dev
, 0x61c130 + loff
, 0x0000ff00, config
[3] << 8);
1246 nv_mask(dev
, 0x61c13c + loff
, 0x00000000, 0x00000000);
1250 nvd0_sor_dp_link_set(struct drm_device
*dev
, struct dcb_entry
*dcb
, int crtc
,
1251 int link_nr
, u32 link_bw
, bool enhframe
)
1253 const u32
or = ffs(dcb
->or) - 1, link
= !(dcb
->sorconf
.link
& 1);
1254 const u32 loff
= (or * 0x800) + (link
* 0x80);
1255 const u32 soff
= (or * 0x800);
1256 u32 dpctrl
= nv_rd32(dev
, 0x61c10c + loff
) & ~0x001f4000;
1257 u32 clksor
= nv_rd32(dev
, 0x612300 + soff
) & ~0x007c0000;
1258 u32 script
= 0x0000, lane_mask
= 0;
1264 table
= nouveau_dp_bios_data(dev
, dcb
, &entry
);
1266 if (table
[0] == 0x30) entry
= ROMPTR(dev
, entry
[10]);
1267 else if (table
[0] == 0x40) entry
= ROMPTR(dev
, entry
[9]);
1271 if (entry
[0] >= link_bw
)
1276 nouveau_bios_run_init_table(dev
, script
, dcb
, crtc
);
1279 clksor
|= link_bw
<< 18;
1280 dpctrl
|= ((1 << link_nr
) - 1) << 16;
1282 dpctrl
|= 0x00004000;
1284 for (i
= 0; i
< link_nr
; i
++)
1285 lane_mask
|= 1 << (nvd0_sor_dp_lane_map(dev
, dcb
, i
) >> 3);
1287 nv_wr32(dev
, 0x612300 + soff
, clksor
);
1288 nv_wr32(dev
, 0x61c10c + loff
, dpctrl
);
1289 nv_mask(dev
, 0x61c130 + loff
, 0x0000000f, lane_mask
);
1293 nvd0_sor_dp_link_get(struct drm_device
*dev
, struct dcb_entry
*dcb
,
1294 u32
*link_nr
, u32
*link_bw
)
1296 const u32
or = ffs(dcb
->or) - 1, link
= !(dcb
->sorconf
.link
& 1);
1297 const u32 loff
= (or * 0x800) + (link
* 0x80);
1298 const u32 soff
= (or * 0x800);
1299 u32 dpctrl
= nv_rd32(dev
, 0x61c10c + loff
) & 0x000f0000;
1300 u32 clksor
= nv_rd32(dev
, 0x612300 + soff
);
1302 if (dpctrl
> 0x00030000) *link_nr
= 4;
1303 else if (dpctrl
> 0x00010000) *link_nr
= 2;
1306 *link_bw
= (clksor
& 0x007c0000) >> 18;
1311 nvd0_sor_dp_calc_tu(struct drm_device
*dev
, struct dcb_entry
*dcb
,
1312 u32 crtc
, u32 datarate
)
1314 const u32 symbol
= 100000;
1316 u32 link_nr
, link_bw
;
1319 nvd0_sor_dp_link_get(dev
, dcb
, &link_nr
, &link_bw
);
1323 do_div(ratio
, link_nr
* link_bw
);
1325 value
= (symbol
- ratio
) * TU
;
1327 do_div(value
, symbol
);
1328 do_div(value
, symbol
);
1331 value
|= 0x08000000;
1333 nv_wr32(dev
, 0x616610 + (crtc
* 0x800), value
);
1337 nvd0_sor_dpms(struct drm_encoder
*encoder
, int mode
)
1339 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1340 struct drm_device
*dev
= encoder
->dev
;
1341 struct drm_encoder
*partner
;
1342 int or = nv_encoder
->or;
1345 nv_encoder
->last_dpms
= mode
;
1347 list_for_each_entry(partner
, &dev
->mode_config
.encoder_list
, head
) {
1348 struct nouveau_encoder
*nv_partner
= nouveau_encoder(partner
);
1350 if (partner
->encoder_type
!= DRM_MODE_ENCODER_TMDS
)
1353 if (nv_partner
!= nv_encoder
&&
1354 nv_partner
->dcb
->or == nv_encoder
->dcb
->or) {
1355 if (nv_partner
->last_dpms
== DRM_MODE_DPMS_ON
)
1361 dpms_ctrl
= (mode
== DRM_MODE_DPMS_ON
);
1362 dpms_ctrl
|= 0x80000000;
1364 nv_wait(dev
, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1365 nv_mask(dev
, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl
);
1366 nv_wait(dev
, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1367 nv_wait(dev
, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1369 if (nv_encoder
->dcb
->type
== OUTPUT_DP
) {
1370 struct dp_train_func func
= {
1371 .link_set
= nvd0_sor_dp_link_set
,
1372 .train_set
= nvd0_sor_dp_train_set
,
1373 .train_adj
= nvd0_sor_dp_train_adj
1376 nouveau_dp_dpms(encoder
, mode
, nv_encoder
->dp
.datarate
, &func
);
1381 nvd0_sor_mode_fixup(struct drm_encoder
*encoder
,
1382 const struct drm_display_mode
*mode
,
1383 struct drm_display_mode
*adjusted_mode
)
1385 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1386 struct nouveau_connector
*nv_connector
;
1388 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1389 if (nv_connector
&& nv_connector
->native_mode
) {
1390 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
1391 int id
= adjusted_mode
->base
.id
;
1392 *adjusted_mode
= *nv_connector
->native_mode
;
1393 adjusted_mode
->base
.id
= id
;
1401 nvd0_sor_disconnect(struct drm_encoder
*encoder
)
1403 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1404 struct drm_device
*dev
= encoder
->dev
;
1407 if (nv_encoder
->crtc
) {
1408 nvd0_crtc_prepare(nv_encoder
->crtc
);
1410 push
= evo_wait(dev
, EVO_MASTER
, 4);
1412 evo_mthd(push
, 0x0200 + (nv_encoder
->or * 0x20), 1);
1413 evo_data(push
, 0x00000000);
1414 evo_mthd(push
, 0x0080, 1);
1415 evo_data(push
, 0x00000000);
1416 evo_kick(push
, dev
, EVO_MASTER
);
1419 nvd0_hdmi_disconnect(encoder
);
1421 nv_encoder
->crtc
= NULL
;
1422 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
1427 nvd0_sor_prepare(struct drm_encoder
*encoder
)
1429 nvd0_sor_disconnect(encoder
);
1430 if (nouveau_encoder(encoder
)->dcb
->type
== OUTPUT_DP
)
1431 evo_sync(encoder
->dev
, EVO_MASTER
);
1435 nvd0_sor_commit(struct drm_encoder
*encoder
)
1440 nvd0_sor_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*umode
,
1441 struct drm_display_mode
*mode
)
1443 struct drm_device
*dev
= encoder
->dev
;
1444 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1445 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
1446 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
1447 struct nouveau_connector
*nv_connector
;
1448 struct nvbios
*bios
= &dev_priv
->vbios
;
1449 u32 mode_ctrl
= (1 << nv_crtc
->index
);
1450 u32 syncs
, magic
, *push
;
1454 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
1455 syncs
|= 0x00000008;
1456 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
1457 syncs
|= 0x00000010;
1459 magic
= 0x31ec6000 | (nv_crtc
->index
<< 25);
1460 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
1461 magic
|= 0x00000001;
1463 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
1464 switch (nv_encoder
->dcb
->type
) {
1466 if (nv_encoder
->dcb
->sorconf
.link
& 1) {
1467 if (mode
->clock
< 165000)
1468 mode_ctrl
|= 0x00000100;
1470 mode_ctrl
|= 0x00000500;
1472 mode_ctrl
|= 0x00000200;
1475 or_config
= (mode_ctrl
& 0x00000f00) >> 8;
1476 if (mode
->clock
>= 165000)
1477 or_config
|= 0x0100;
1479 nvd0_hdmi_mode_set(encoder
, mode
);
1482 or_config
= (mode_ctrl
& 0x00000f00) >> 8;
1483 if (bios
->fp_no_ddc
) {
1484 if (bios
->fp
.dual_link
)
1485 or_config
|= 0x0100;
1486 if (bios
->fp
.if_is_24bit
)
1487 or_config
|= 0x0200;
1489 if (nv_connector
->type
== DCB_CONNECTOR_LVDS_SPWG
) {
1490 if (((u8
*)nv_connector
->edid
)[121] == 2)
1491 or_config
|= 0x0100;
1493 if (mode
->clock
>= bios
->fp
.duallink_transition_clk
) {
1494 or_config
|= 0x0100;
1497 if (or_config
& 0x0100) {
1498 if (bios
->fp
.strapless_is_24bit
& 2)
1499 or_config
|= 0x0200;
1501 if (bios
->fp
.strapless_is_24bit
& 1)
1502 or_config
|= 0x0200;
1505 if (nv_connector
->base
.display_info
.bpc
== 8)
1506 or_config
|= 0x0200;
1511 if (nv_connector
->base
.display_info
.bpc
== 6) {
1512 nv_encoder
->dp
.datarate
= mode
->clock
* 18 / 8;
1513 syncs
|= 0x00000002 << 6;
1515 nv_encoder
->dp
.datarate
= mode
->clock
* 24 / 8;
1516 syncs
|= 0x00000005 << 6;
1519 if (nv_encoder
->dcb
->sorconf
.link
& 1)
1520 mode_ctrl
|= 0x00000800;
1522 mode_ctrl
|= 0x00000900;
1524 or_config
= (mode_ctrl
& 0x00000f00) >> 8;
1531 nvd0_sor_dpms(encoder
, DRM_MODE_DPMS_ON
);
1533 if (nv_encoder
->dcb
->type
== OUTPUT_DP
) {
1534 nvd0_sor_dp_calc_tu(dev
, nv_encoder
->dcb
, nv_crtc
->index
,
1535 nv_encoder
->dp
.datarate
);
1538 push
= evo_wait(dev
, EVO_MASTER
, 8);
1540 evo_mthd(push
, 0x0404 + (nv_crtc
->index
* 0x300), 2);
1541 evo_data(push
, syncs
);
1542 evo_data(push
, magic
);
1543 evo_mthd(push
, 0x0200 + (nv_encoder
->or * 0x020), 2);
1544 evo_data(push
, mode_ctrl
);
1545 evo_data(push
, or_config
);
1546 evo_kick(push
, dev
, EVO_MASTER
);
1549 nv_encoder
->crtc
= encoder
->crtc
;
1553 nvd0_sor_destroy(struct drm_encoder
*encoder
)
1555 drm_encoder_cleanup(encoder
);
1559 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc
= {
1560 .dpms
= nvd0_sor_dpms
,
1561 .mode_fixup
= nvd0_sor_mode_fixup
,
1562 .prepare
= nvd0_sor_prepare
,
1563 .commit
= nvd0_sor_commit
,
1564 .mode_set
= nvd0_sor_mode_set
,
1565 .disable
= nvd0_sor_disconnect
,
1566 .get_crtc
= nvd0_display_crtc_get
,
1569 static const struct drm_encoder_funcs nvd0_sor_func
= {
1570 .destroy
= nvd0_sor_destroy
,
1574 nvd0_sor_create(struct drm_connector
*connector
, struct dcb_entry
*dcbe
)
1576 struct drm_device
*dev
= connector
->dev
;
1577 struct nouveau_encoder
*nv_encoder
;
1578 struct drm_encoder
*encoder
;
1580 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
1583 nv_encoder
->dcb
= dcbe
;
1584 nv_encoder
->or = ffs(dcbe
->or) - 1;
1585 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
1587 encoder
= to_drm_encoder(nv_encoder
);
1588 encoder
->possible_crtcs
= dcbe
->heads
;
1589 encoder
->possible_clones
= 0;
1590 drm_encoder_init(dev
, encoder
, &nvd0_sor_func
, DRM_MODE_ENCODER_TMDS
);
1591 drm_encoder_helper_add(encoder
, &nvd0_sor_hfunc
);
1593 drm_mode_connector_attach_encoder(connector
, encoder
);
1597 /******************************************************************************
1599 *****************************************************************************/
1600 static struct dcb_entry
*
1601 lookup_dcb(struct drm_device
*dev
, int id
, u32 mc
)
1603 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1604 int type
, or, i
, link
= -1;
1607 type
= OUTPUT_ANALOG
;
1610 switch (mc
& 0x00000f00) {
1611 case 0x00000000: link
= 0; type
= OUTPUT_LVDS
; break;
1612 case 0x00000100: link
= 0; type
= OUTPUT_TMDS
; break;
1613 case 0x00000200: link
= 1; type
= OUTPUT_TMDS
; break;
1614 case 0x00000500: link
= 0; type
= OUTPUT_TMDS
; break;
1615 case 0x00000800: link
= 0; type
= OUTPUT_DP
; break;
1616 case 0x00000900: link
= 1; type
= OUTPUT_DP
; break;
1618 NV_ERROR(dev
, "PDISP: unknown SOR mc 0x%08x\n", mc
);
1625 for (i
= 0; i
< dev_priv
->vbios
.dcb
.entries
; i
++) {
1626 struct dcb_entry
*dcb
= &dev_priv
->vbios
.dcb
.entry
[i
];
1627 if (dcb
->type
== type
&& (dcb
->or & (1 << or)) &&
1628 (link
< 0 || link
== !(dcb
->sorconf
.link
& 1)))
1632 NV_ERROR(dev
, "PDISP: DCB for %d/0x%08x not found\n", id
, mc
);
1637 nvd0_display_unk1_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1639 struct dcb_entry
*dcb
;
1642 for (i
= 0; mask
&& i
< 8; i
++) {
1643 u32 mcc
= nv_rd32(dev
, 0x640180 + (i
* 0x20));
1644 if (!(mcc
& (1 << crtc
)))
1647 dcb
= lookup_dcb(dev
, i
, mcc
);
1651 nouveau_bios_run_display_table(dev
, 0x0000, -1, dcb
, crtc
);
1654 nv_wr32(dev
, 0x6101d4, 0x00000000);
1655 nv_wr32(dev
, 0x6109d4, 0x00000000);
1656 nv_wr32(dev
, 0x6101d0, 0x80000000);
1660 nvd0_display_unk2_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1662 struct dcb_entry
*dcb
;
1666 for (i
= 0; mask
&& i
< 8; i
++) {
1667 u32 mcc
= nv_rd32(dev
, 0x640180 + (i
* 0x20));
1668 if (!(mcc
& (1 << crtc
)))
1671 dcb
= lookup_dcb(dev
, i
, mcc
);
1675 nouveau_bios_run_display_table(dev
, 0x0000, -2, dcb
, crtc
);
1678 pclk
= nv_rd32(dev
, 0x660450 + (crtc
* 0x300)) / 1000;
1679 NV_DEBUG_KMS(dev
, "PDISP: crtc %d pclk %d mask 0x%08x\n",
1681 if (pclk
&& (mask
& 0x00010000)) {
1682 nv50_crtc_set_clock(dev
, crtc
, pclk
);
1685 for (i
= 0; mask
&& i
< 8; i
++) {
1686 u32 mcp
= nv_rd32(dev
, 0x660180 + (i
* 0x20));
1687 u32 cfg
= nv_rd32(dev
, 0x660184 + (i
* 0x20));
1688 if (!(mcp
& (1 << crtc
)))
1691 dcb
= lookup_dcb(dev
, i
, mcp
);
1694 or = ffs(dcb
->or) - 1;
1696 nouveau_bios_run_display_table(dev
, cfg
, pclk
, dcb
, crtc
);
1698 nv_wr32(dev
, 0x612200 + (crtc
* 0x800), 0x00000000);
1699 switch (dcb
->type
) {
1701 nv_wr32(dev
, 0x612280 + (or * 0x800), 0x00000000);
1706 if (cfg
& 0x00000100)
1711 nv_mask(dev
, 0x612300 + (or * 0x800), 0x00000707, tmp
);
1720 nv_wr32(dev
, 0x6101d4, 0x00000000);
1721 nv_wr32(dev
, 0x6109d4, 0x00000000);
1722 nv_wr32(dev
, 0x6101d0, 0x80000000);
1726 nvd0_display_unk4_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1728 struct dcb_entry
*dcb
;
1731 pclk
= nv_rd32(dev
, 0x660450 + (crtc
* 0x300)) / 1000;
1733 for (i
= 0; mask
&& i
< 8; i
++) {
1734 u32 mcp
= nv_rd32(dev
, 0x660180 + (i
* 0x20));
1735 u32 cfg
= nv_rd32(dev
, 0x660184 + (i
* 0x20));
1736 if (!(mcp
& (1 << crtc
)))
1739 dcb
= lookup_dcb(dev
, i
, mcp
);
1743 nouveau_bios_run_display_table(dev
, cfg
, -pclk
, dcb
, crtc
);
1746 nv_wr32(dev
, 0x6101d4, 0x00000000);
1747 nv_wr32(dev
, 0x6109d4, 0x00000000);
1748 nv_wr32(dev
, 0x6101d0, 0x80000000);
1752 nvd0_display_bh(unsigned long data
)
1754 struct drm_device
*dev
= (struct drm_device
*)data
;
1755 struct nvd0_display
*disp
= nvd0_display(dev
);
1756 u32 mask
= 0, crtc
= ~0;
1759 if (drm_debug
& (DRM_UT_DRIVER
| DRM_UT_KMS
)) {
1760 NV_INFO(dev
, "PDISP: modeset req %d\n", disp
->modeset
);
1761 NV_INFO(dev
, " STAT: 0x%08x 0x%08x 0x%08x\n",
1762 nv_rd32(dev
, 0x6101d0),
1763 nv_rd32(dev
, 0x6101d4), nv_rd32(dev
, 0x6109d4));
1764 for (i
= 0; i
< 8; i
++) {
1765 NV_INFO(dev
, " %s%d: 0x%08x 0x%08x\n",
1766 i
< 4 ? "DAC" : "SOR", i
,
1767 nv_rd32(dev
, 0x640180 + (i
* 0x20)),
1768 nv_rd32(dev
, 0x660180 + (i
* 0x20)));
1772 while (!mask
&& ++crtc
< dev
->mode_config
.num_crtc
)
1773 mask
= nv_rd32(dev
, 0x6101d4 + (crtc
* 0x800));
1775 if (disp
->modeset
& 0x00000001)
1776 nvd0_display_unk1_handler(dev
, crtc
, mask
);
1777 if (disp
->modeset
& 0x00000002)
1778 nvd0_display_unk2_handler(dev
, crtc
, mask
);
1779 if (disp
->modeset
& 0x00000004)
1780 nvd0_display_unk4_handler(dev
, crtc
, mask
);
1784 nvd0_display_intr(struct drm_device
*dev
)
1786 struct nvd0_display
*disp
= nvd0_display(dev
);
1787 u32 intr
= nv_rd32(dev
, 0x610088);
1790 if (intr
& 0x00000001) {
1791 u32 stat
= nv_rd32(dev
, 0x61008c);
1792 nv_wr32(dev
, 0x61008c, stat
);
1793 intr
&= ~0x00000001;
1796 if (intr
& 0x00000002) {
1797 u32 stat
= nv_rd32(dev
, 0x61009c);
1798 int chid
= ffs(stat
) - 1;
1800 u32 mthd
= nv_rd32(dev
, 0x6101f0 + (chid
* 12));
1801 u32 data
= nv_rd32(dev
, 0x6101f4 + (chid
* 12));
1802 u32 unkn
= nv_rd32(dev
, 0x6101f8 + (chid
* 12));
1804 NV_INFO(dev
, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1806 chid
, (mthd
& 0x0000ffc), data
, mthd
, unkn
);
1807 nv_wr32(dev
, 0x61009c, (1 << chid
));
1808 nv_wr32(dev
, 0x6101f0 + (chid
* 12), 0x90000000);
1811 intr
&= ~0x00000002;
1814 if (intr
& 0x00100000) {
1815 u32 stat
= nv_rd32(dev
, 0x6100ac);
1817 if (stat
& 0x00000007) {
1818 disp
->modeset
= stat
;
1819 tasklet_schedule(&disp
->tasklet
);
1821 nv_wr32(dev
, 0x6100ac, (stat
& 0x00000007));
1822 stat
&= ~0x00000007;
1826 NV_INFO(dev
, "PDISP: unknown intr24 0x%08x\n", stat
);
1827 nv_wr32(dev
, 0x6100ac, stat
);
1830 intr
&= ~0x00100000;
1833 for (i
= 0; i
< dev
->mode_config
.num_crtc
; i
++) {
1834 u32 mask
= 0x01000000 << i
;
1836 u32 stat
= nv_rd32(dev
, 0x6100bc + (i
* 0x800));
1837 nv_wr32(dev
, 0x6100bc + (i
* 0x800), stat
);
1843 NV_INFO(dev
, "PDISP: unknown intr 0x%08x\n", intr
);
1846 /******************************************************************************
1848 *****************************************************************************/
1850 nvd0_display_fini(struct drm_device
*dev
)
1854 /* fini cursors + overlays + flips */
1855 for (i
= 1; i
>= 0; i
--) {
1856 evo_fini_pio(dev
, EVO_CURS(i
));
1857 evo_fini_pio(dev
, EVO_OIMM(i
));
1858 evo_fini_dma(dev
, EVO_OVLY(i
));
1859 evo_fini_dma(dev
, EVO_FLIP(i
));
1863 evo_fini_dma(dev
, EVO_MASTER
);
1867 nvd0_display_init(struct drm_device
*dev
)
1869 struct nvd0_display
*disp
= nvd0_display(dev
);
1873 if (nv_rd32(dev
, 0x6100ac) & 0x00000100) {
1874 nv_wr32(dev
, 0x6100ac, 0x00000100);
1875 nv_mask(dev
, 0x6194e8, 0x00000001, 0x00000000);
1876 if (!nv_wait(dev
, 0x6194e8, 0x00000002, 0x00000000)) {
1877 NV_ERROR(dev
, "PDISP: 0x6194e8 0x%08x\n",
1878 nv_rd32(dev
, 0x6194e8));
1883 /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1884 * work at all unless you do the SOR part below.
1886 for (i
= 0; i
< 3; i
++) {
1887 u32 dac
= nv_rd32(dev
, 0x61a000 + (i
* 0x800));
1888 nv_wr32(dev
, 0x6101c0 + (i
* 0x800), dac
);
1891 for (i
= 0; i
< 4; i
++) {
1892 u32 sor
= nv_rd32(dev
, 0x61c000 + (i
* 0x800));
1893 nv_wr32(dev
, 0x6301c4 + (i
* 0x800), sor
);
1896 for (i
= 0; i
< dev
->mode_config
.num_crtc
; i
++) {
1897 u32 crtc0
= nv_rd32(dev
, 0x616104 + (i
* 0x800));
1898 u32 crtc1
= nv_rd32(dev
, 0x616108 + (i
* 0x800));
1899 u32 crtc2
= nv_rd32(dev
, 0x61610c + (i
* 0x800));
1900 nv_wr32(dev
, 0x6101b4 + (i
* 0x800), crtc0
);
1901 nv_wr32(dev
, 0x6101b8 + (i
* 0x800), crtc1
);
1902 nv_wr32(dev
, 0x6101bc + (i
* 0x800), crtc2
);
1905 /* point at our hash table / objects, enable interrupts */
1906 nv_wr32(dev
, 0x610010, (disp
->mem
->vinst
>> 8) | 9);
1907 nv_mask(dev
, 0x6100b0, 0x00000307, 0x00000307);
1910 ret
= evo_init_dma(dev
, EVO_MASTER
);
1914 /* init flips + overlays + cursors */
1915 for (i
= 0; i
< dev
->mode_config
.num_crtc
; i
++) {
1916 if ((ret
= evo_init_dma(dev
, EVO_FLIP(i
))) ||
1917 (ret
= evo_init_dma(dev
, EVO_OVLY(i
))) ||
1918 (ret
= evo_init_pio(dev
, EVO_OIMM(i
))) ||
1919 (ret
= evo_init_pio(dev
, EVO_CURS(i
))))
1923 push
= evo_wait(dev
, EVO_MASTER
, 32);
1928 evo_mthd(push
, 0x0088, 1);
1929 evo_data(push
, NvEvoSync
);
1930 evo_mthd(push
, 0x0084, 1);
1931 evo_data(push
, 0x00000000);
1932 evo_mthd(push
, 0x0084, 1);
1933 evo_data(push
, 0x80000000);
1934 evo_mthd(push
, 0x008c, 1);
1935 evo_data(push
, 0x00000000);
1936 evo_kick(push
, dev
, EVO_MASTER
);
1940 nvd0_display_fini(dev
);
1945 nvd0_display_destroy(struct drm_device
*dev
)
1947 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1948 struct nvd0_display
*disp
= nvd0_display(dev
);
1949 struct pci_dev
*pdev
= dev
->pdev
;
1952 for (i
= 0; i
< EVO_DMA_NR
; i
++) {
1953 struct evo
*evo
= &disp
->evo
[i
];
1954 pci_free_consistent(pdev
, PAGE_SIZE
, evo
->ptr
, evo
->handle
);
1957 nouveau_gpuobj_ref(NULL
, &disp
->mem
);
1958 nouveau_bo_unmap(disp
->sync
);
1959 nouveau_bo_ref(NULL
, &disp
->sync
);
1960 nouveau_irq_unregister(dev
, 26);
1962 dev_priv
->engine
.display
.priv
= NULL
;
1967 nvd0_display_create(struct drm_device
*dev
)
1969 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1970 struct nouveau_instmem_engine
*pinstmem
= &dev_priv
->engine
.instmem
;
1971 struct dcb_table
*dcb
= &dev_priv
->vbios
.dcb
;
1972 struct drm_connector
*connector
, *tmp
;
1973 struct pci_dev
*pdev
= dev
->pdev
;
1974 struct nvd0_display
*disp
;
1975 struct dcb_entry
*dcbe
;
1978 disp
= kzalloc(sizeof(*disp
), GFP_KERNEL
);
1981 dev_priv
->engine
.display
.priv
= disp
;
1983 /* create crtc objects to represent the hw heads */
1984 crtcs
= nv_rd32(dev
, 0x022448);
1985 for (i
= 0; i
< crtcs
; i
++) {
1986 ret
= nvd0_crtc_create(dev
, i
);
1991 /* create encoder/connector objects based on VBIOS DCB table */
1992 for (i
= 0, dcbe
= &dcb
->entry
[0]; i
< dcb
->entries
; i
++, dcbe
++) {
1993 connector
= nouveau_connector_create(dev
, dcbe
->connector
);
1994 if (IS_ERR(connector
))
1997 if (dcbe
->location
!= DCB_LOC_ON_CHIP
) {
1998 NV_WARN(dev
, "skipping off-chip encoder %d/%d\n",
1999 dcbe
->type
, ffs(dcbe
->or) - 1);
2003 switch (dcbe
->type
) {
2007 nvd0_sor_create(connector
, dcbe
);
2010 nvd0_dac_create(connector
, dcbe
);
2013 NV_WARN(dev
, "skipping unsupported encoder %d/%d\n",
2014 dcbe
->type
, ffs(dcbe
->or) - 1);
2019 /* cull any connectors we created that don't have an encoder */
2020 list_for_each_entry_safe(connector
, tmp
, &dev
->mode_config
.connector_list
, head
) {
2021 if (connector
->encoder_ids
[0])
2024 NV_WARN(dev
, "%s has no encoders, removing\n",
2025 drm_get_connector_name(connector
));
2026 connector
->funcs
->destroy(connector
);
2029 /* setup interrupt handling */
2030 tasklet_init(&disp
->tasklet
, nvd0_display_bh
, (unsigned long)dev
);
2031 nouveau_irq_register(dev
, 26, nvd0_display_intr
);
2033 /* small shared memory area we use for notifiers and semaphores */
2034 ret
= nouveau_bo_new(dev
, 4096, 0x1000, TTM_PL_FLAG_VRAM
,
2035 0, 0x0000, NULL
, &disp
->sync
);
2037 ret
= nouveau_bo_pin(disp
->sync
, TTM_PL_FLAG_VRAM
);
2039 ret
= nouveau_bo_map(disp
->sync
);
2041 nouveau_bo_ref(NULL
, &disp
->sync
);
2047 /* hash table and dma objects for the memory areas we care about */
2048 ret
= nouveau_gpuobj_new(dev
, NULL
, 0x4000, 0x10000,
2049 NVOBJ_FLAG_ZERO_ALLOC
, &disp
->mem
);
2053 /* create evo dma channels */
2054 for (i
= 0; i
< EVO_DMA_NR
; i
++) {
2055 struct evo
*evo
= &disp
->evo
[i
];
2056 u64 offset
= disp
->sync
->bo
.offset
;
2057 u32 dmao
= 0x1000 + (i
* 0x100);
2058 u32 hash
= 0x0000 + (i
* 0x040);
2061 evo
->sem
.offset
= EVO_SYNC(evo
->idx
, 0x00);
2062 evo
->ptr
= pci_alloc_consistent(pdev
, PAGE_SIZE
, &evo
->handle
);
2068 nv_wo32(disp
->mem
, dmao
+ 0x00, 0x00000049);
2069 nv_wo32(disp
->mem
, dmao
+ 0x04, (offset
+ 0x0000) >> 8);
2070 nv_wo32(disp
->mem
, dmao
+ 0x08, (offset
+ 0x0fff) >> 8);
2071 nv_wo32(disp
->mem
, dmao
+ 0x0c, 0x00000000);
2072 nv_wo32(disp
->mem
, dmao
+ 0x10, 0x00000000);
2073 nv_wo32(disp
->mem
, dmao
+ 0x14, 0x00000000);
2074 nv_wo32(disp
->mem
, hash
+ 0x00, NvEvoSync
);
2075 nv_wo32(disp
->mem
, hash
+ 0x04, 0x00000001 | (i
<< 27) |
2076 ((dmao
+ 0x00) << 9));
2078 nv_wo32(disp
->mem
, dmao
+ 0x20, 0x00000049);
2079 nv_wo32(disp
->mem
, dmao
+ 0x24, 0x00000000);
2080 nv_wo32(disp
->mem
, dmao
+ 0x28, (dev_priv
->vram_size
- 1) >> 8);
2081 nv_wo32(disp
->mem
, dmao
+ 0x2c, 0x00000000);
2082 nv_wo32(disp
->mem
, dmao
+ 0x30, 0x00000000);
2083 nv_wo32(disp
->mem
, dmao
+ 0x34, 0x00000000);
2084 nv_wo32(disp
->mem
, hash
+ 0x08, NvEvoVRAM
);
2085 nv_wo32(disp
->mem
, hash
+ 0x0c, 0x00000001 | (i
<< 27) |
2086 ((dmao
+ 0x20) << 9));
2088 nv_wo32(disp
->mem
, dmao
+ 0x40, 0x00000009);
2089 nv_wo32(disp
->mem
, dmao
+ 0x44, 0x00000000);
2090 nv_wo32(disp
->mem
, dmao
+ 0x48, (dev_priv
->vram_size
- 1) >> 8);
2091 nv_wo32(disp
->mem
, dmao
+ 0x4c, 0x00000000);
2092 nv_wo32(disp
->mem
, dmao
+ 0x50, 0x00000000);
2093 nv_wo32(disp
->mem
, dmao
+ 0x54, 0x00000000);
2094 nv_wo32(disp
->mem
, hash
+ 0x10, NvEvoVRAM_LP
);
2095 nv_wo32(disp
->mem
, hash
+ 0x14, 0x00000001 | (i
<< 27) |
2096 ((dmao
+ 0x40) << 9));
2098 nv_wo32(disp
->mem
, dmao
+ 0x60, 0x0fe00009);
2099 nv_wo32(disp
->mem
, dmao
+ 0x64, 0x00000000);
2100 nv_wo32(disp
->mem
, dmao
+ 0x68, (dev_priv
->vram_size
- 1) >> 8);
2101 nv_wo32(disp
->mem
, dmao
+ 0x6c, 0x00000000);
2102 nv_wo32(disp
->mem
, dmao
+ 0x70, 0x00000000);
2103 nv_wo32(disp
->mem
, dmao
+ 0x74, 0x00000000);
2104 nv_wo32(disp
->mem
, hash
+ 0x18, NvEvoFB32
);
2105 nv_wo32(disp
->mem
, hash
+ 0x1c, 0x00000001 | (i
<< 27) |
2106 ((dmao
+ 0x60) << 9));
2109 pinstmem
->flush(dev
);
2113 nvd0_display_destroy(dev
);