Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / infiniband / hw / cxgb4 / mem.c
blob57e07c61ace2e8147badfcd87e7f19fa211e4746
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <rdma/ib_umem.h>
34 #include <linux/atomic.h>
36 #include "iw_cxgb4.h"
38 #define T4_ULPTX_MIN_IO 32
39 #define C4IW_MAX_INLINE_SIZE 96
41 static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
42 void *data)
44 struct sk_buff *skb;
45 struct ulp_mem_io *req;
46 struct ulptx_idata *sc;
47 u8 wr_len, *to_dp, *from_dp;
48 int copy_len, num_wqe, i, ret = 0;
49 struct c4iw_wr_wait wr_wait;
51 addr &= 0x7FFFFFF;
52 PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
53 num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
54 c4iw_init_wr_wait(&wr_wait);
55 for (i = 0; i < num_wqe; i++) {
57 copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
58 len;
59 wr_len = roundup(sizeof *req + sizeof *sc +
60 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
62 skb = alloc_skb(wr_len, GFP_KERNEL);
63 if (!skb)
64 return -ENOMEM;
65 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
67 req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
68 memset(req, 0, wr_len);
69 INIT_ULPTX_WR(req, wr_len, 0, 0);
71 if (i == (num_wqe-1)) {
72 req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
73 FW_WR_COMPL(1));
74 req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait;
75 } else
76 req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
77 req->wr.wr_mid = cpu_to_be32(
78 FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
80 req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE) | (1<<23));
81 req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
82 DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
83 req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
84 16));
85 req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
87 sc = (struct ulptx_idata *)(req + 1);
88 sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
89 sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
91 to_dp = (u8 *)(sc + 1);
92 from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
93 if (data)
94 memcpy(to_dp, from_dp, copy_len);
95 else
96 memset(to_dp, 0, copy_len);
97 if (copy_len % T4_ULPTX_MIN_IO)
98 memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
99 (copy_len % T4_ULPTX_MIN_IO));
100 ret = c4iw_ofld_send(rdev, skb);
101 if (ret)
102 return ret;
103 len -= C4IW_MAX_INLINE_SIZE;
106 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
107 return ret;
111 * Build and write a TPT entry.
112 * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
113 * pbl_size and pbl_addr
114 * OUT: stag index
116 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
117 u32 *stag, u8 stag_state, u32 pdid,
118 enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
119 int bind_enabled, u32 zbva, u64 to,
120 u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
122 int err;
123 struct fw_ri_tpte tpt;
124 u32 stag_idx;
125 static atomic_t key;
127 if (c4iw_fatal_error(rdev))
128 return -EIO;
130 stag_state = stag_state > 0;
131 stag_idx = (*stag) >> 8;
133 if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
134 stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
135 if (!stag_idx)
136 return -ENOMEM;
137 mutex_lock(&rdev->stats.lock);
138 rdev->stats.stag.cur += 32;
139 if (rdev->stats.stag.cur > rdev->stats.stag.max)
140 rdev->stats.stag.max = rdev->stats.stag.cur;
141 mutex_unlock(&rdev->stats.lock);
142 *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
144 PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
145 __func__, stag_state, type, pdid, stag_idx);
147 /* write TPT entry */
148 if (reset_tpt_entry)
149 memset(&tpt, 0, sizeof(tpt));
150 else {
151 tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
152 V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
153 V_FW_RI_TPTE_STAGSTATE(stag_state) |
154 V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
155 tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
156 (bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
157 V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
158 FW_RI_VA_BASED_TO))|
159 V_FW_RI_TPTE_PS(page_size));
160 tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
161 V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
162 tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
163 tpt.va_hi = cpu_to_be32((u32)(to >> 32));
164 tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
165 tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
166 tpt.len_hi = cpu_to_be32((u32)(len >> 32));
168 err = write_adapter_mem(rdev, stag_idx +
169 (rdev->lldi.vr->stag.start >> 5),
170 sizeof(tpt), &tpt);
172 if (reset_tpt_entry) {
173 c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
174 mutex_lock(&rdev->stats.lock);
175 rdev->stats.stag.cur -= 32;
176 mutex_unlock(&rdev->stats.lock);
178 return err;
181 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
182 u32 pbl_addr, u32 pbl_size)
184 int err;
186 PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
187 __func__, pbl_addr, rdev->lldi.vr->pbl.start,
188 pbl_size);
190 err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
191 return err;
194 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
195 u32 pbl_addr)
197 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
198 pbl_size, pbl_addr);
201 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
203 *stag = T4_STAG_UNSET;
204 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
205 0UL, 0, 0, 0, 0);
208 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
210 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
214 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
215 u32 pbl_size, u32 pbl_addr)
217 *stag = T4_STAG_UNSET;
218 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
219 0UL, 0, 0, pbl_size, pbl_addr);
222 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
224 u32 mmid;
226 mhp->attr.state = 1;
227 mhp->attr.stag = stag;
228 mmid = stag >> 8;
229 mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
230 PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
231 return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
234 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
235 struct c4iw_mr *mhp, int shift)
237 u32 stag = T4_STAG_UNSET;
238 int ret;
240 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
241 FW_RI_STAG_NSMR, mhp->attr.perms,
242 mhp->attr.mw_bind_enable, mhp->attr.zbva,
243 mhp->attr.va_fbo, mhp->attr.len, shift - 12,
244 mhp->attr.pbl_size, mhp->attr.pbl_addr);
245 if (ret)
246 return ret;
248 ret = finish_mem_reg(mhp, stag);
249 if (ret)
250 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
251 mhp->attr.pbl_addr);
252 return ret;
255 static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
256 struct c4iw_mr *mhp, int shift, int npages)
258 u32 stag;
259 int ret;
261 if (npages > mhp->attr.pbl_size)
262 return -ENOMEM;
264 stag = mhp->attr.stag;
265 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
266 FW_RI_STAG_NSMR, mhp->attr.perms,
267 mhp->attr.mw_bind_enable, mhp->attr.zbva,
268 mhp->attr.va_fbo, mhp->attr.len, shift - 12,
269 mhp->attr.pbl_size, mhp->attr.pbl_addr);
270 if (ret)
271 return ret;
273 ret = finish_mem_reg(mhp, stag);
274 if (ret)
275 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
276 mhp->attr.pbl_addr);
278 return ret;
281 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
283 mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
284 npages << 3);
286 if (!mhp->attr.pbl_addr)
287 return -ENOMEM;
289 mhp->attr.pbl_size = npages;
291 return 0;
294 static int build_phys_page_list(struct ib_phys_buf *buffer_list,
295 int num_phys_buf, u64 *iova_start,
296 u64 *total_size, int *npages,
297 int *shift, __be64 **page_list)
299 u64 mask;
300 int i, j, n;
302 mask = 0;
303 *total_size = 0;
304 for (i = 0; i < num_phys_buf; ++i) {
305 if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
306 return -EINVAL;
307 if (i != 0 && i != num_phys_buf - 1 &&
308 (buffer_list[i].size & ~PAGE_MASK))
309 return -EINVAL;
310 *total_size += buffer_list[i].size;
311 if (i > 0)
312 mask |= buffer_list[i].addr;
313 else
314 mask |= buffer_list[i].addr & PAGE_MASK;
315 if (i != num_phys_buf - 1)
316 mask |= buffer_list[i].addr + buffer_list[i].size;
317 else
318 mask |= (buffer_list[i].addr + buffer_list[i].size +
319 PAGE_SIZE - 1) & PAGE_MASK;
322 if (*total_size > 0xFFFFFFFFULL)
323 return -ENOMEM;
325 /* Find largest page shift we can use to cover buffers */
326 for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
327 if ((1ULL << *shift) & mask)
328 break;
330 buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
331 buffer_list[0].addr &= ~0ull << *shift;
333 *npages = 0;
334 for (i = 0; i < num_phys_buf; ++i)
335 *npages += (buffer_list[i].size +
336 (1ULL << *shift) - 1) >> *shift;
338 if (!*npages)
339 return -EINVAL;
341 *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
342 if (!*page_list)
343 return -ENOMEM;
345 n = 0;
346 for (i = 0; i < num_phys_buf; ++i)
347 for (j = 0;
348 j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
349 ++j)
350 (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
351 ((u64) j << *shift));
353 PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
354 __func__, (unsigned long long)*iova_start,
355 (unsigned long long)mask, *shift, (unsigned long long)*total_size,
356 *npages);
358 return 0;
362 int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
363 struct ib_pd *pd, struct ib_phys_buf *buffer_list,
364 int num_phys_buf, int acc, u64 *iova_start)
367 struct c4iw_mr mh, *mhp;
368 struct c4iw_pd *php;
369 struct c4iw_dev *rhp;
370 __be64 *page_list = NULL;
371 int shift = 0;
372 u64 total_size;
373 int npages;
374 int ret;
376 PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
378 /* There can be no memory windows */
379 if (atomic_read(&mr->usecnt))
380 return -EINVAL;
382 mhp = to_c4iw_mr(mr);
383 rhp = mhp->rhp;
384 php = to_c4iw_pd(mr->pd);
386 /* make sure we are on the same adapter */
387 if (rhp != php->rhp)
388 return -EINVAL;
390 memcpy(&mh, mhp, sizeof *mhp);
392 if (mr_rereg_mask & IB_MR_REREG_PD)
393 php = to_c4iw_pd(pd);
394 if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
395 mh.attr.perms = c4iw_ib_to_tpt_access(acc);
396 mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
397 IB_ACCESS_MW_BIND;
399 if (mr_rereg_mask & IB_MR_REREG_TRANS) {
400 ret = build_phys_page_list(buffer_list, num_phys_buf,
401 iova_start,
402 &total_size, &npages,
403 &shift, &page_list);
404 if (ret)
405 return ret;
408 ret = reregister_mem(rhp, php, &mh, shift, npages);
409 kfree(page_list);
410 if (ret)
411 return ret;
412 if (mr_rereg_mask & IB_MR_REREG_PD)
413 mhp->attr.pdid = php->pdid;
414 if (mr_rereg_mask & IB_MR_REREG_ACCESS)
415 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
416 if (mr_rereg_mask & IB_MR_REREG_TRANS) {
417 mhp->attr.zbva = 0;
418 mhp->attr.va_fbo = *iova_start;
419 mhp->attr.page_size = shift - 12;
420 mhp->attr.len = (u32) total_size;
421 mhp->attr.pbl_size = npages;
424 return 0;
427 struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
428 struct ib_phys_buf *buffer_list,
429 int num_phys_buf, int acc, u64 *iova_start)
431 __be64 *page_list;
432 int shift;
433 u64 total_size;
434 int npages;
435 struct c4iw_dev *rhp;
436 struct c4iw_pd *php;
437 struct c4iw_mr *mhp;
438 int ret;
440 PDBG("%s ib_pd %p\n", __func__, pd);
441 php = to_c4iw_pd(pd);
442 rhp = php->rhp;
444 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
445 if (!mhp)
446 return ERR_PTR(-ENOMEM);
448 mhp->rhp = rhp;
450 /* First check that we have enough alignment */
451 if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
452 ret = -EINVAL;
453 goto err;
456 if (num_phys_buf > 1 &&
457 ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
458 ret = -EINVAL;
459 goto err;
462 ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
463 &total_size, &npages, &shift,
464 &page_list);
465 if (ret)
466 goto err;
468 ret = alloc_pbl(mhp, npages);
469 if (ret) {
470 kfree(page_list);
471 goto err_pbl;
474 ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
475 npages);
476 kfree(page_list);
477 if (ret)
478 goto err_pbl;
480 mhp->attr.pdid = php->pdid;
481 mhp->attr.zbva = 0;
483 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
484 mhp->attr.va_fbo = *iova_start;
485 mhp->attr.page_size = shift - 12;
487 mhp->attr.len = (u32) total_size;
488 mhp->attr.pbl_size = npages;
489 ret = register_mem(rhp, php, mhp, shift);
490 if (ret)
491 goto err_pbl;
493 return &mhp->ibmr;
495 err_pbl:
496 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
497 mhp->attr.pbl_size << 3);
499 err:
500 kfree(mhp);
501 return ERR_PTR(ret);
505 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
507 struct c4iw_dev *rhp;
508 struct c4iw_pd *php;
509 struct c4iw_mr *mhp;
510 int ret;
511 u32 stag = T4_STAG_UNSET;
513 PDBG("%s ib_pd %p\n", __func__, pd);
514 php = to_c4iw_pd(pd);
515 rhp = php->rhp;
517 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
518 if (!mhp)
519 return ERR_PTR(-ENOMEM);
521 mhp->rhp = rhp;
522 mhp->attr.pdid = php->pdid;
523 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
524 mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
525 mhp->attr.zbva = 0;
526 mhp->attr.va_fbo = 0;
527 mhp->attr.page_size = 0;
528 mhp->attr.len = ~0UL;
529 mhp->attr.pbl_size = 0;
531 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
532 FW_RI_STAG_NSMR, mhp->attr.perms,
533 mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
534 if (ret)
535 goto err1;
537 ret = finish_mem_reg(mhp, stag);
538 if (ret)
539 goto err2;
540 return &mhp->ibmr;
541 err2:
542 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
543 mhp->attr.pbl_addr);
544 err1:
545 kfree(mhp);
546 return ERR_PTR(ret);
549 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
550 u64 virt, int acc, struct ib_udata *udata)
552 __be64 *pages;
553 int shift, n, len;
554 int i, j, k;
555 int err = 0;
556 struct ib_umem_chunk *chunk;
557 struct c4iw_dev *rhp;
558 struct c4iw_pd *php;
559 struct c4iw_mr *mhp;
561 PDBG("%s ib_pd %p\n", __func__, pd);
563 if (length == ~0ULL)
564 return ERR_PTR(-EINVAL);
566 if ((length + start) < start)
567 return ERR_PTR(-EINVAL);
569 php = to_c4iw_pd(pd);
570 rhp = php->rhp;
571 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
572 if (!mhp)
573 return ERR_PTR(-ENOMEM);
575 mhp->rhp = rhp;
577 mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
578 if (IS_ERR(mhp->umem)) {
579 err = PTR_ERR(mhp->umem);
580 kfree(mhp);
581 return ERR_PTR(err);
584 shift = ffs(mhp->umem->page_size) - 1;
586 n = 0;
587 list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
588 n += chunk->nents;
590 err = alloc_pbl(mhp, n);
591 if (err)
592 goto err;
594 pages = (__be64 *) __get_free_page(GFP_KERNEL);
595 if (!pages) {
596 err = -ENOMEM;
597 goto err_pbl;
600 i = n = 0;
602 list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
603 for (j = 0; j < chunk->nmap; ++j) {
604 len = sg_dma_len(&chunk->page_list[j]) >> shift;
605 for (k = 0; k < len; ++k) {
606 pages[i++] = cpu_to_be64(sg_dma_address(
607 &chunk->page_list[j]) +
608 mhp->umem->page_size * k);
609 if (i == PAGE_SIZE / sizeof *pages) {
610 err = write_pbl(&mhp->rhp->rdev,
611 pages,
612 mhp->attr.pbl_addr + (n << 3), i);
613 if (err)
614 goto pbl_done;
615 n += i;
616 i = 0;
621 if (i)
622 err = write_pbl(&mhp->rhp->rdev, pages,
623 mhp->attr.pbl_addr + (n << 3), i);
625 pbl_done:
626 free_page((unsigned long) pages);
627 if (err)
628 goto err_pbl;
630 mhp->attr.pdid = php->pdid;
631 mhp->attr.zbva = 0;
632 mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
633 mhp->attr.va_fbo = virt;
634 mhp->attr.page_size = shift - 12;
635 mhp->attr.len = length;
637 err = register_mem(rhp, php, mhp, shift);
638 if (err)
639 goto err_pbl;
641 return &mhp->ibmr;
643 err_pbl:
644 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
645 mhp->attr.pbl_size << 3);
647 err:
648 ib_umem_release(mhp->umem);
649 kfree(mhp);
650 return ERR_PTR(err);
653 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd)
655 struct c4iw_dev *rhp;
656 struct c4iw_pd *php;
657 struct c4iw_mw *mhp;
658 u32 mmid;
659 u32 stag = 0;
660 int ret;
662 php = to_c4iw_pd(pd);
663 rhp = php->rhp;
664 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
665 if (!mhp)
666 return ERR_PTR(-ENOMEM);
667 ret = allocate_window(&rhp->rdev, &stag, php->pdid);
668 if (ret) {
669 kfree(mhp);
670 return ERR_PTR(ret);
672 mhp->rhp = rhp;
673 mhp->attr.pdid = php->pdid;
674 mhp->attr.type = FW_RI_STAG_MW;
675 mhp->attr.stag = stag;
676 mmid = (stag) >> 8;
677 mhp->ibmw.rkey = stag;
678 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
679 deallocate_window(&rhp->rdev, mhp->attr.stag);
680 kfree(mhp);
681 return ERR_PTR(-ENOMEM);
683 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
684 return &(mhp->ibmw);
687 int c4iw_dealloc_mw(struct ib_mw *mw)
689 struct c4iw_dev *rhp;
690 struct c4iw_mw *mhp;
691 u32 mmid;
693 mhp = to_c4iw_mw(mw);
694 rhp = mhp->rhp;
695 mmid = (mw->rkey) >> 8;
696 remove_handle(rhp, &rhp->mmidr, mmid);
697 deallocate_window(&rhp->rdev, mhp->attr.stag);
698 kfree(mhp);
699 PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
700 return 0;
703 struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
705 struct c4iw_dev *rhp;
706 struct c4iw_pd *php;
707 struct c4iw_mr *mhp;
708 u32 mmid;
709 u32 stag = 0;
710 int ret = 0;
712 php = to_c4iw_pd(pd);
713 rhp = php->rhp;
714 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
715 if (!mhp) {
716 ret = -ENOMEM;
717 goto err;
720 mhp->rhp = rhp;
721 ret = alloc_pbl(mhp, pbl_depth);
722 if (ret)
723 goto err1;
724 mhp->attr.pbl_size = pbl_depth;
725 ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
726 mhp->attr.pbl_size, mhp->attr.pbl_addr);
727 if (ret)
728 goto err2;
729 mhp->attr.pdid = php->pdid;
730 mhp->attr.type = FW_RI_STAG_NSMR;
731 mhp->attr.stag = stag;
732 mhp->attr.state = 1;
733 mmid = (stag) >> 8;
734 mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
735 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
736 ret = -ENOMEM;
737 goto err3;
740 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
741 return &(mhp->ibmr);
742 err3:
743 dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
744 mhp->attr.pbl_addr);
745 err2:
746 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
747 mhp->attr.pbl_size << 3);
748 err1:
749 kfree(mhp);
750 err:
751 return ERR_PTR(ret);
754 struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
755 int page_list_len)
757 struct c4iw_fr_page_list *c4pl;
758 struct c4iw_dev *dev = to_c4iw_dev(device);
759 dma_addr_t dma_addr;
760 int size = sizeof *c4pl + page_list_len * sizeof(u64);
762 c4pl = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev, size,
763 &dma_addr, GFP_KERNEL);
764 if (!c4pl)
765 return ERR_PTR(-ENOMEM);
767 dma_unmap_addr_set(c4pl, mapping, dma_addr);
768 c4pl->dma_addr = dma_addr;
769 c4pl->dev = dev;
770 c4pl->size = size;
771 c4pl->ibpl.page_list = (u64 *)(c4pl + 1);
772 c4pl->ibpl.max_page_list_len = page_list_len;
774 return &c4pl->ibpl;
777 void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
779 struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
781 dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev, c4pl->size,
782 c4pl, dma_unmap_addr(c4pl, mapping));
785 int c4iw_dereg_mr(struct ib_mr *ib_mr)
787 struct c4iw_dev *rhp;
788 struct c4iw_mr *mhp;
789 u32 mmid;
791 PDBG("%s ib_mr %p\n", __func__, ib_mr);
792 /* There can be no memory windows */
793 if (atomic_read(&ib_mr->usecnt))
794 return -EINVAL;
796 mhp = to_c4iw_mr(ib_mr);
797 rhp = mhp->rhp;
798 mmid = mhp->attr.stag >> 8;
799 remove_handle(rhp, &rhp->mmidr, mmid);
800 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
801 mhp->attr.pbl_addr);
802 if (mhp->attr.pbl_size)
803 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
804 mhp->attr.pbl_size << 3);
805 if (mhp->kva)
806 kfree((void *) (unsigned long) mhp->kva);
807 if (mhp->umem)
808 ib_umem_release(mhp->umem);
809 PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
810 kfree(mhp);
811 return 0;