Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / isdn / hardware / mISDN / hfcpci.c
blob81363ffa5357f11213c6b87b3dc4b0d80786d6ae
1 /*
3 * hfcpci.c low level driver for CCD's hfc-pci based cards
5 * Author Werner Cornelius (werner@isdn4linux.de)
6 * based on existing driver for CCD hfc ISA cards
7 * type approval valid for HFC-S PCI A based card
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil <kkeil@novell.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 * Module options:
28 * debug:
29 * NOTE: only one poll value must be given for all cards
30 * See hfc_pci.h for debug flags.
32 * poll:
33 * NOTE: only one poll value must be given for all cards
34 * Give the number of samples for each fifo process.
35 * By default 128 is used. Decrease to reduce delay, increase to
36 * reduce cpu load. If unsure, don't mess with it!
37 * A value of 128 will use controller's interrupt. Other values will
38 * use kernel timer, because the controller will not allow lower values
39 * than 128.
40 * Also note that the value depends on the kernel timer frequency.
41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42 * If the kernel uses 100 Hz, steps of 80 samples are possible.
43 * If the kernel uses 300 Hz, steps of about 26 samples are possible.
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
54 #include "hfc_pci.h"
56 static const char *hfcpci_revision = "2.0";
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
66 module_param(debug, uint, S_IRUGO | S_IWUSR);
67 module_param(poll, uint, S_IRUGO | S_IWUSR);
69 enum {
70 HFC_CCD_2BD0,
71 HFC_CCD_B000,
72 HFC_CCD_B006,
73 HFC_CCD_B007,
74 HFC_CCD_B008,
75 HFC_CCD_B009,
76 HFC_CCD_B00A,
77 HFC_CCD_B00B,
78 HFC_CCD_B00C,
79 HFC_CCD_B100,
80 HFC_CCD_B700,
81 HFC_CCD_B701,
82 HFC_ASUS_0675,
83 HFC_BERKOM_A1T,
84 HFC_BERKOM_TCONCEPT,
85 HFC_ANIGMA_MC145575,
86 HFC_ZOLTRIX_2BD0,
87 HFC_DIGI_DF_M_IOM2_E,
88 HFC_DIGI_DF_M_E,
89 HFC_DIGI_DF_M_IOM2_A,
90 HFC_DIGI_DF_M_A,
91 HFC_ABOCOM_2BD1,
92 HFC_SITECOM_DC105V2,
95 struct hfcPCI_hw {
96 unsigned char cirm;
97 unsigned char ctmt;
98 unsigned char clkdel;
99 unsigned char states;
100 unsigned char conn;
101 unsigned char mst_m;
102 unsigned char int_m1;
103 unsigned char int_m2;
104 unsigned char sctrl;
105 unsigned char sctrl_r;
106 unsigned char sctrl_e;
107 unsigned char trm;
108 unsigned char fifo_en;
109 unsigned char bswapped;
110 unsigned char protocol;
111 int nt_timer;
112 unsigned char __iomem *pci_io; /* start of PCI IO memory */
113 dma_addr_t dmahandle;
114 void *fifos; /* FIFO memory */
115 int last_bfifo_cnt[2];
116 /* marker saving last b-fifo frame count */
117 struct timer_list timer;
120 #define HFC_CFG_MASTER 1
121 #define HFC_CFG_SLAVE 2
122 #define HFC_CFG_PCM 3
123 #define HFC_CFG_2HFC 4
124 #define HFC_CFG_SLAVEHFC 5
125 #define HFC_CFG_NEG_F0 6
126 #define HFC_CFG_SW_DD_DU 7
128 #define FLG_HFC_TIMER_T1 16
129 #define FLG_HFC_TIMER_T3 17
131 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
134 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
137 struct hfc_pci {
138 u_char subtype;
139 u_char chanlimit;
140 u_char initdone;
141 u_long cfg;
142 u_int irq;
143 u_int irqcnt;
144 struct pci_dev *pdev;
145 struct hfcPCI_hw hw;
146 spinlock_t lock; /* card lock */
147 struct dchannel dch;
148 struct bchannel bch[2];
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
155 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
159 static void
160 disable_hwirq(struct hfc_pci *hc)
162 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
167 * free hardware resources used by driver
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
172 /* disable memory mapped ports + busmaster */
173 pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174 del_timer(&hc->hw.timer);
175 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176 iounmap(hc->hw.pci_io);
180 * set mode (NT or TE)
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
185 if (hc->hw.protocol == ISDN_P_NT_S0) {
186 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */
187 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */
188 hc->hw.states = 1; /* G1 */
189 } else {
190 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */
191 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
192 hc->hw.states = 2; /* F2 */
194 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196 udelay(10);
197 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
202 * function called to reset the HFC PCI chip. A complete software reset of chip
203 * and fifos is done.
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
208 u_char val;
209 int cnt = 0;
211 printk(KERN_DEBUG "reset_hfcpci: entered\n");
212 val = Read_hfc(hc, HFCPCI_CHIP_ID);
213 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214 /* enable memory mapped ports, disable busmaster */
215 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216 disable_hwirq(hc);
217 /* enable memory ports + busmaster */
218 pci_write_config_word(hc->pdev, PCI_COMMAND,
219 PCI_ENA_MEMIO + PCI_ENA_MASTER);
220 val = Read_hfc(hc, HFCPCI_STATUS);
221 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222 hc->hw.cirm = HFCPCI_RESET; /* Reset On */
223 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
224 set_current_state(TASK_UNINTERRUPTIBLE);
225 mdelay(10); /* Timeout 10ms */
226 hc->hw.cirm = 0; /* Reset Off */
227 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228 val = Read_hfc(hc, HFCPCI_STATUS);
229 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230 while (cnt < 50000) { /* max 50000 us */
231 udelay(5);
232 cnt += 5;
233 val = Read_hfc(hc, HFCPCI_STATUS);
234 if (!(val & 2))
235 break;
237 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
239 hc->hw.fifo_en = 0x30; /* only D fifos enabled */
241 hc->hw.bswapped = 0; /* no exchange */
242 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
245 hc->hw.sctrl_r = 0;
246 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */
247 hc->hw.mst_m = 0;
248 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */
250 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
257 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
258 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
259 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
261 /* Clear already pending ints */
262 val = Read_hfc(hc, HFCPCI_INT_S1);
264 /* set NT/TE mode */
265 hfcpci_setmode(hc);
267 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
271 * Init GCI/IOM2 in master mode
272 * Slots 0 and 1 are set for B-chan 1 and 2
273 * D- and monitor/CI channel are not enabled
274 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275 * STIO2 is used as data input, B1+B2 from IOM->ST
276 * ST B-channel send disabled -> continuous 1s
277 * The IOM slots are always enabled
279 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280 /* set data flow directions: connect B1,B2: HFC to/from PCM */
281 hc->hw.conn = 0x09;
282 } else {
283 hc->hw.conn = 0x36; /* set data flow directions */
284 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289 } else {
290 Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291 Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292 Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293 Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
296 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297 val = Read_hfc(hc, HFCPCI_INT_S2);
301 * Timer function called when kernel timer expires
303 static void
304 hfcpci_Timer(struct hfc_pci *hc)
306 hc->hw.timer.expires = jiffies + 75;
307 /* WD RESET */
309 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
310 * add_timer(&hc->hw.timer);
316 * select a b-channel entry matching and active
318 static struct bchannel *
319 Sel_BCS(struct hfc_pci *hc, int channel)
321 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
322 (hc->bch[0].nr & channel))
323 return &hc->bch[0];
324 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
325 (hc->bch[1].nr & channel))
326 return &hc->bch[1];
327 else
328 return NULL;
332 * clear the desired B-channel rx fifo
334 static void
335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
337 u_char fifo_state;
338 struct bzfifo *bzr;
340 if (fifo) {
341 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
342 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
343 } else {
344 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
345 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
347 if (fifo_state)
348 hc->hw.fifo_en ^= fifo_state;
349 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
350 hc->hw.last_bfifo_cnt[fifo] = 0;
351 bzr->f1 = MAX_B_FRAMES;
352 bzr->f2 = bzr->f1; /* init F pointers to remain constant */
353 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
354 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
355 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
356 if (fifo_state)
357 hc->hw.fifo_en |= fifo_state;
358 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
362 * clear the desired B-channel tx fifo
364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
366 u_char fifo_state;
367 struct bzfifo *bzt;
369 if (fifo) {
370 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
371 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
372 } else {
373 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
374 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
376 if (fifo_state)
377 hc->hw.fifo_en ^= fifo_state;
378 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
379 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
380 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
381 "z1(%x) z2(%x) state(%x)\n",
382 fifo, bzt->f1, bzt->f2,
383 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
384 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
385 fifo_state);
386 bzt->f2 = MAX_B_FRAMES;
387 bzt->f1 = bzt->f2; /* init F pointers to remain constant */
388 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
389 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
390 if (fifo_state)
391 hc->hw.fifo_en |= fifo_state;
392 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
393 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
394 printk(KERN_DEBUG
395 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
396 fifo, bzt->f1, bzt->f2,
397 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
398 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
402 * read a complete B-frame out of the buffer
404 static void
405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
406 u_char *bdata, int count)
408 u_char *ptr, *ptr1, new_f2;
409 int maxlen, new_z2;
410 struct zt *zp;
412 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
413 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
414 zp = &bz->za[bz->f2]; /* point to Z-Regs */
415 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */
416 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
417 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
418 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
419 if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
420 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
421 if (bch->debug & DEBUG_HW)
422 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
423 "invalid length %d or crc\n", count);
424 #ifdef ERROR_STATISTIC
425 bch->err_inv++;
426 #endif
427 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
428 bz->f2 = new_f2; /* next buffer */
429 } else {
430 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
431 if (!bch->rx_skb) {
432 printk(KERN_WARNING "HFCPCI: receive out of memory\n");
433 return;
435 count -= 3;
436 ptr = skb_put(bch->rx_skb, count);
438 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439 maxlen = count; /* complete transfer */
440 else
441 maxlen = B_FIFO_SIZE + B_SUB_VAL -
442 le16_to_cpu(zp->z2); /* maximum */
444 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445 /* start of data */
446 memcpy(ptr, ptr1, maxlen); /* copy data */
447 count -= maxlen;
449 if (count) { /* rest remaining */
450 ptr += maxlen;
451 ptr1 = bdata; /* start of buffer */
452 memcpy(ptr, ptr1, count); /* rest */
454 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455 bz->f2 = new_f2; /* next buffer */
456 recv_Bchannel(bch, MISDN_ID_ANY, false);
461 * D-channel receive procedure
463 static int
464 receive_dmsg(struct hfc_pci *hc)
466 struct dchannel *dch = &hc->dch;
467 int maxlen;
468 int rcnt, total;
469 int count = 5;
470 u_char *ptr, *ptr1;
471 struct dfifo *df;
472 struct zt *zp;
474 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476 zp = &df->za[df->f2 & D_FREG_MASK];
477 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478 if (rcnt < 0)
479 rcnt += D_FIFO_SIZE;
480 rcnt++;
481 if (dch->debug & DEBUG_HW_DCHANNEL)
482 printk(KERN_DEBUG
483 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484 df->f1, df->f2,
485 le16_to_cpu(zp->z1),
486 le16_to_cpu(zp->z2),
487 rcnt);
489 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490 (df->data[le16_to_cpu(zp->z1)])) {
491 if (dch->debug & DEBUG_HW)
492 printk(KERN_DEBUG
493 "empty_fifo hfcpci paket inv. len "
494 "%d or crc %d\n",
495 rcnt,
496 df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498 cs->err_rx++;
499 #endif
500 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501 (MAX_D_FRAMES + 1); /* next buffer */
502 df->za[df->f2 & D_FREG_MASK].z2 =
503 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504 (D_FIFO_SIZE - 1));
505 } else {
506 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507 if (!dch->rx_skb) {
508 printk(KERN_WARNING
509 "HFC-PCI: D receive out of memory\n");
510 break;
512 total = rcnt;
513 rcnt -= 3;
514 ptr = skb_put(dch->rx_skb, rcnt);
516 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517 maxlen = rcnt; /* complete transfer */
518 else
519 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520 /* maximum */
522 ptr1 = df->data + le16_to_cpu(zp->z2);
523 /* start of data */
524 memcpy(ptr, ptr1, maxlen); /* copy data */
525 rcnt -= maxlen;
527 if (rcnt) { /* rest remaining */
528 ptr += maxlen;
529 ptr1 = df->data; /* start of buffer */
530 memcpy(ptr, ptr1, rcnt); /* rest */
532 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533 (MAX_D_FRAMES + 1); /* next buffer */
534 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536 recv_Dchannel(dch);
539 return 1;
543 * check for transparent receive data and read max one 'poll' size if avail
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547 struct bzfifo *txbz, u_char *bdata)
549 __le16 *z1r, *z2r, *z1t, *z2t;
550 int new_z2, fcnt_rx, fcnt_tx, maxlen;
551 u_char *ptr, *ptr1;
553 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
554 z2r = z1r + 1;
555 z1t = &txbz->za[MAX_B_FRAMES].z1;
556 z2t = z1t + 1;
558 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559 if (!fcnt_rx)
560 return; /* no data avail */
562 if (fcnt_rx <= 0)
563 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
564 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */
565 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566 new_z2 -= B_FIFO_SIZE; /* buffer wrap */
568 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
569 if (fcnt_tx <= 0)
570 fcnt_tx += B_FIFO_SIZE;
571 /* fcnt_tx contains available bytes in tx-fifo */
572 fcnt_tx = B_FIFO_SIZE - fcnt_tx;
573 /* remaining bytes to send (bytes in tx-fifo) */
575 if (test_bit(FLG_RX_OFF, &bch->Flags)) {
576 bch->dropcnt += fcnt_rx;
577 *z2r = cpu_to_le16(new_z2);
578 return;
580 maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
581 if (maxlen < 0) {
582 pr_warning("B%d: No bufferspace for %d bytes\n",
583 bch->nr, fcnt_rx);
584 } else {
585 ptr = skb_put(bch->rx_skb, fcnt_rx);
586 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
587 maxlen = fcnt_rx; /* complete transfer */
588 else
589 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
590 /* maximum */
592 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
593 /* start of data */
594 memcpy(ptr, ptr1, maxlen); /* copy data */
595 fcnt_rx -= maxlen;
597 if (fcnt_rx) { /* rest remaining */
598 ptr += maxlen;
599 ptr1 = bdata; /* start of buffer */
600 memcpy(ptr, ptr1, fcnt_rx); /* rest */
602 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
604 *z2r = cpu_to_le16(new_z2); /* new position */
608 * B-channel main receive routine
610 static void
611 main_rec_hfcpci(struct bchannel *bch)
613 struct hfc_pci *hc = bch->hw;
614 int rcnt, real_fifo;
615 int receive = 0, count = 5;
616 struct bzfifo *txbz, *rxbz;
617 u_char *bdata;
618 struct zt *zp;
620 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
621 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
622 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
623 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
624 real_fifo = 1;
625 } else {
626 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
627 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
628 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
629 real_fifo = 0;
631 Begin:
632 count--;
633 if (rxbz->f1 != rxbz->f2) {
634 if (bch->debug & DEBUG_HW_BCHANNEL)
635 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
636 bch->nr, rxbz->f1, rxbz->f2);
637 zp = &rxbz->za[rxbz->f2];
639 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
640 if (rcnt < 0)
641 rcnt += B_FIFO_SIZE;
642 rcnt++;
643 if (bch->debug & DEBUG_HW_BCHANNEL)
644 printk(KERN_DEBUG
645 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
646 bch->nr, le16_to_cpu(zp->z1),
647 le16_to_cpu(zp->z2), rcnt);
648 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
649 rcnt = rxbz->f1 - rxbz->f2;
650 if (rcnt < 0)
651 rcnt += MAX_B_FRAMES + 1;
652 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
653 rcnt = 0;
654 hfcpci_clear_fifo_rx(hc, real_fifo);
656 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
657 if (rcnt > 1)
658 receive = 1;
659 else
660 receive = 0;
661 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
662 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
663 return;
664 } else
665 receive = 0;
666 if (count && receive)
667 goto Begin;
672 * D-channel send routine
674 static void
675 hfcpci_fill_dfifo(struct hfc_pci *hc)
677 struct dchannel *dch = &hc->dch;
678 int fcnt;
679 int count, new_z1, maxlen;
680 struct dfifo *df;
681 u_char *src, *dst, new_f1;
683 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
684 printk(KERN_DEBUG "%s\n", __func__);
686 if (!dch->tx_skb)
687 return;
688 count = dch->tx_skb->len - dch->tx_idx;
689 if (count <= 0)
690 return;
691 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
693 if (dch->debug & DEBUG_HW_DFIFO)
694 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
695 df->f1, df->f2,
696 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
697 fcnt = df->f1 - df->f2; /* frame count actually buffered */
698 if (fcnt < 0)
699 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
700 if (fcnt > (MAX_D_FRAMES - 1)) {
701 if (dch->debug & DEBUG_HW_DCHANNEL)
702 printk(KERN_DEBUG
703 "hfcpci_fill_Dfifo more as 14 frames\n");
704 #ifdef ERROR_STATISTIC
705 cs->err_tx++;
706 #endif
707 return;
709 /* now determine free bytes in FIFO buffer */
710 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
711 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
712 if (maxlen <= 0)
713 maxlen += D_FIFO_SIZE; /* count now contains available bytes */
715 if (dch->debug & DEBUG_HW_DCHANNEL)
716 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
717 count, maxlen);
718 if (count > maxlen) {
719 if (dch->debug & DEBUG_HW_DCHANNEL)
720 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
721 return;
723 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
724 (D_FIFO_SIZE - 1);
725 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
726 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */
727 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
729 /* end fifo */
730 if (maxlen > count)
731 maxlen = count; /* limit size */
732 memcpy(dst, src, maxlen); /* first copy */
734 count -= maxlen; /* remaining bytes */
735 if (count) {
736 dst = df->data; /* start of buffer */
737 src += maxlen; /* new position */
738 memcpy(dst, src, count);
740 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
741 /* for next buffer */
742 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
743 /* new pos actual buffer */
744 df->f1 = new_f1; /* next frame */
745 dch->tx_idx = dch->tx_skb->len;
749 * B-channel send routine
751 static void
752 hfcpci_fill_fifo(struct bchannel *bch)
754 struct hfc_pci *hc = bch->hw;
755 int maxlen, fcnt;
756 int count, new_z1;
757 struct bzfifo *bz;
758 u_char *bdata;
759 u_char new_f1, *src, *dst;
760 __le16 *z1t, *z2t;
762 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
763 printk(KERN_DEBUG "%s\n", __func__);
764 if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
765 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
766 !test_bit(FLG_TRANSPARENT, &bch->Flags))
767 return;
768 count = HFCPCI_FILLEMPTY;
769 } else {
770 count = bch->tx_skb->len - bch->tx_idx;
772 if ((bch->nr & 2) && (!hc->hw.bswapped)) {
773 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
774 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
775 } else {
776 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
777 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
780 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
781 z1t = &bz->za[MAX_B_FRAMES].z1;
782 z2t = z1t + 1;
783 if (bch->debug & DEBUG_HW_BCHANNEL)
784 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
785 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
786 le16_to_cpu(*z1t), le16_to_cpu(*z2t));
787 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
788 if (fcnt <= 0)
789 fcnt += B_FIFO_SIZE;
790 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
791 /* fcnt contains available bytes in fifo */
792 if (count > fcnt)
793 count = fcnt;
794 new_z1 = le16_to_cpu(*z1t) + count;
795 /* new buffer Position */
796 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
798 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800 /* end of fifo */
801 if (bch->debug & DEBUG_HW_BFIFO)
802 printk(KERN_DEBUG "hfcpci_FFt fillempty "
803 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804 fcnt, maxlen, new_z1, dst);
805 if (maxlen > count)
806 maxlen = count; /* limit size */
807 memset(dst, bch->fill[0], maxlen); /* first copy */
808 count -= maxlen; /* remaining bytes */
809 if (count) {
810 dst = bdata; /* start of buffer */
811 memset(dst, bch->fill[0], count);
813 *z1t = cpu_to_le16(new_z1); /* now send data */
814 return;
816 /* fcnt contains available bytes in fifo */
817 fcnt = B_FIFO_SIZE - fcnt;
818 /* remaining bytes to send (bytes in fifo) */
820 next_t_frame:
821 count = bch->tx_skb->len - bch->tx_idx;
822 /* maximum fill shall be poll*2 */
823 if (count > (poll << 1) - fcnt)
824 count = (poll << 1) - fcnt;
825 if (count <= 0)
826 return;
827 /* data is suitable for fifo */
828 new_z1 = le16_to_cpu(*z1t) + count;
829 /* new buffer Position */
830 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
831 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
832 src = bch->tx_skb->data + bch->tx_idx;
833 /* source pointer */
834 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
835 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
836 /* end of fifo */
837 if (bch->debug & DEBUG_HW_BFIFO)
838 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
839 "maxl(%d) nz1(%x) dst(%p)\n",
840 fcnt, maxlen, new_z1, dst);
841 fcnt += count;
842 bch->tx_idx += count;
843 if (maxlen > count)
844 maxlen = count; /* limit size */
845 memcpy(dst, src, maxlen); /* first copy */
846 count -= maxlen; /* remaining bytes */
847 if (count) {
848 dst = bdata; /* start of buffer */
849 src += maxlen; /* new position */
850 memcpy(dst, src, count);
852 *z1t = cpu_to_le16(new_z1); /* now send data */
853 if (bch->tx_idx < bch->tx_skb->len)
854 return;
855 dev_kfree_skb(bch->tx_skb);
856 if (get_next_bframe(bch))
857 goto next_t_frame;
858 return;
860 if (bch->debug & DEBUG_HW_BCHANNEL)
861 printk(KERN_DEBUG
862 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863 __func__, bch->nr, bz->f1, bz->f2,
864 bz->za[bz->f1].z1);
865 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
866 if (fcnt < 0)
867 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
868 if (fcnt > (MAX_B_FRAMES - 1)) {
869 if (bch->debug & DEBUG_HW_BCHANNEL)
870 printk(KERN_DEBUG
871 "hfcpci_fill_Bfifo more as 14 frames\n");
872 return;
874 /* now determine free bytes in FIFO buffer */
875 maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876 le16_to_cpu(bz->za[bz->f1].z1) - 1;
877 if (maxlen <= 0)
878 maxlen += B_FIFO_SIZE; /* count now contains available bytes */
880 if (bch->debug & DEBUG_HW_BCHANNEL)
881 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882 bch->nr, count, maxlen);
884 if (maxlen < count) {
885 if (bch->debug & DEBUG_HW_BCHANNEL)
886 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887 return;
889 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890 /* new buffer Position */
891 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892 new_z1 -= B_FIFO_SIZE; /* buffer wrap */
894 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */
896 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898 /* end fifo */
899 if (maxlen > count)
900 maxlen = count; /* limit size */
901 memcpy(dst, src, maxlen); /* first copy */
903 count -= maxlen; /* remaining bytes */
904 if (count) {
905 dst = bdata; /* start of buffer */
906 src += maxlen; /* new position */
907 memcpy(dst, src, count);
909 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */
910 bz->f1 = new_f1; /* next frame */
911 dev_kfree_skb(bch->tx_skb);
912 get_next_bframe(bch);
918 * handle L1 state changes TE
921 static void
922 ph_state_te(struct dchannel *dch)
924 if (dch->debug)
925 printk(KERN_DEBUG "%s: TE newstate %x\n",
926 __func__, dch->state);
927 switch (dch->state) {
928 case 0:
929 l1_event(dch->l1, HW_RESET_IND);
930 break;
931 case 3:
932 l1_event(dch->l1, HW_DEACT_IND);
933 break;
934 case 5:
935 case 8:
936 l1_event(dch->l1, ANYSIGNAL);
937 break;
938 case 6:
939 l1_event(dch->l1, INFO2);
940 break;
941 case 7:
942 l1_event(dch->l1, INFO4_P8);
943 break;
948 * handle L1 state changes NT
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953 struct hfc_pci *hc = dch->hw;
955 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958 hc->hw.nt_timer = 0;
959 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961 hc->hw.mst_m |= HFCPCI_MASTER;
962 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
967 static void
968 ph_state_nt(struct dchannel *dch)
970 struct hfc_pci *hc = dch->hw;
972 if (dch->debug)
973 printk(KERN_DEBUG "%s: NT newstate %x\n",
974 __func__, dch->state);
975 switch (dch->state) {
976 case 2:
977 if (hc->hw.nt_timer < 0) {
978 hc->hw.nt_timer = 0;
979 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983 /* Clear already pending ints */
984 (void) Read_hfc(hc, HFCPCI_INT_S1);
985 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986 udelay(10);
987 Write_hfc(hc, HFCPCI_STATES, 4);
988 dch->state = 4;
989 } else if (hc->hw.nt_timer == 0) {
990 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992 hc->hw.nt_timer = NT_T1_COUNT;
993 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994 hc->hw.ctmt |= HFCPCI_TIM3_125;
995 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996 HFCPCI_CLTIMER);
997 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999 /* allow G2 -> G3 transition */
1000 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001 } else {
1002 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1004 break;
1005 case 1:
1006 hc->hw.nt_timer = 0;
1007 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012 hc->hw.mst_m &= ~HFCPCI_MASTER;
1013 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017 break;
1018 case 4:
1019 hc->hw.nt_timer = 0;
1020 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024 break;
1025 case 3:
1026 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027 if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028 &dch->Flags)) {
1029 handle_nt_timer3(dch);
1030 break;
1032 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033 hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035 hc->hw.nt_timer = NT_T3_COUNT;
1036 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037 hc->hw.ctmt |= HFCPCI_TIM3_125;
1038 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039 HFCPCI_CLTIMER);
1041 break;
1045 static void
1046 ph_state(struct dchannel *dch)
1048 struct hfc_pci *hc = dch->hw;
1050 if (hc->hw.protocol == ISDN_P_NT_S0) {
1051 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052 hc->hw.nt_timer < 0)
1053 handle_nt_timer3(dch);
1054 else
1055 ph_state_nt(dch);
1056 } else
1057 ph_state_te(dch);
1061 * Layer 1 callback function
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1066 struct hfc_pci *hc = dch->hw;
1068 switch (cmd) {
1069 case INFO3_P8:
1070 case INFO3_P10:
1071 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072 hc->hw.mst_m |= HFCPCI_MASTER;
1073 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074 break;
1075 case HW_RESET_REQ:
1076 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077 /* HFC ST 3 */
1078 udelay(6);
1079 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */
1080 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081 hc->hw.mst_m |= HFCPCI_MASTER;
1082 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084 HFCPCI_DO_ACTION);
1085 l1_event(dch->l1, HW_POWERUP_IND);
1086 break;
1087 case HW_DEACT_REQ:
1088 hc->hw.mst_m &= ~HFCPCI_MASTER;
1089 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090 skb_queue_purge(&dch->squeue);
1091 if (dch->tx_skb) {
1092 dev_kfree_skb(dch->tx_skb);
1093 dch->tx_skb = NULL;
1095 dch->tx_idx = 0;
1096 if (dch->rx_skb) {
1097 dev_kfree_skb(dch->rx_skb);
1098 dch->rx_skb = NULL;
1100 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102 del_timer(&dch->timer);
1103 break;
1104 case HW_POWERUP_REQ:
1105 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106 break;
1107 case PH_ACTIVATE_IND:
1108 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110 GFP_ATOMIC);
1111 break;
1112 case PH_DEACTIVATE_IND:
1113 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115 GFP_ATOMIC);
1116 break;
1117 default:
1118 if (dch->debug & DEBUG_HW)
1119 printk(KERN_DEBUG "%s: unknown command %x\n",
1120 __func__, cmd);
1121 return -1;
1123 return 0;
1127 * Interrupt handler
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1132 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133 hfcpci_fill_fifo(bch);
1134 else {
1135 if (bch->tx_skb)
1136 dev_kfree_skb(bch->tx_skb);
1137 if (get_next_bframe(bch))
1138 hfcpci_fill_fifo(bch);
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1145 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146 hfcpci_fill_dfifo(dch->hw);
1147 else {
1148 if (dch->tx_skb)
1149 dev_kfree_skb(dch->tx_skb);
1150 if (get_next_dframe(dch))
1151 hfcpci_fill_dfifo(dch->hw);
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1158 struct hfc_pci *hc = dev_id;
1159 u_char exval;
1160 struct bchannel *bch;
1161 u_char val, stat;
1163 spin_lock(&hc->lock);
1164 if (!(hc->hw.int_m2 & 0x08)) {
1165 spin_unlock(&hc->lock);
1166 return IRQ_NONE; /* not initialised */
1168 stat = Read_hfc(hc, HFCPCI_STATUS);
1169 if (HFCPCI_ANYINT & stat) {
1170 val = Read_hfc(hc, HFCPCI_INT_S1);
1171 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172 printk(KERN_DEBUG
1173 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174 } else {
1175 /* shared */
1176 spin_unlock(&hc->lock);
1177 return IRQ_NONE;
1179 hc->irqcnt++;
1181 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183 val &= hc->hw.int_m1;
1184 if (val & 0x40) { /* state machine irq */
1185 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187 printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188 hc->dch.state, exval);
1189 hc->dch.state = exval;
1190 schedule_event(&hc->dch, FLG_PHCHANGE);
1191 val &= ~0x40;
1193 if (val & 0x80) { /* timer irq */
1194 if (hc->hw.protocol == ISDN_P_NT_S0) {
1195 if ((--hc->hw.nt_timer) < 0)
1196 schedule_event(&hc->dch, FLG_PHCHANGE);
1198 val &= ~0x80;
1199 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1201 if (val & 0x08) { /* B1 rx */
1202 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203 if (bch)
1204 main_rec_hfcpci(bch);
1205 else if (hc->dch.debug)
1206 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1208 if (val & 0x10) { /* B2 rx */
1209 bch = Sel_BCS(hc, 2);
1210 if (bch)
1211 main_rec_hfcpci(bch);
1212 else if (hc->dch.debug)
1213 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1215 if (val & 0x01) { /* B1 tx */
1216 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217 if (bch)
1218 tx_birq(bch);
1219 else if (hc->dch.debug)
1220 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1222 if (val & 0x02) { /* B2 tx */
1223 bch = Sel_BCS(hc, 2);
1224 if (bch)
1225 tx_birq(bch);
1226 else if (hc->dch.debug)
1227 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1229 if (val & 0x20) /* D rx */
1230 receive_dmsg(hc);
1231 if (val & 0x04) { /* D tx */
1232 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233 del_timer(&hc->dch.timer);
1234 tx_dirq(&hc->dch);
1236 spin_unlock(&hc->lock);
1237 return IRQ_HANDLED;
1241 * timer callback for D-chan busy resolution. Currently no function
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1249 * activate/deactivate hardware for selected channels and mode
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1254 struct hfc_pci *hc = bch->hw;
1255 int fifo2;
1256 u_char rx_slot = 0, tx_slot = 0, pcm_mode;
1258 if (bch->debug & DEBUG_HW_BCHANNEL)
1259 printk(KERN_DEBUG
1260 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261 bch->state, protocol, bch->nr, bc);
1263 fifo2 = bc;
1264 pcm_mode = (bc >> 24) & 0xff;
1265 if (pcm_mode) { /* PCM SLOT USE */
1266 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267 printk(KERN_WARNING
1268 "%s: pcm channel id without HFC_CFG_PCM\n",
1269 __func__);
1270 rx_slot = (bc >> 8) & 0xff;
1271 tx_slot = (bc >> 16) & 0xff;
1272 bc = bc & 0xff;
1273 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275 __func__);
1276 if (hc->chanlimit > 1) {
1277 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1278 hc->hw.sctrl_e &= ~0x80;
1279 } else {
1280 if (bc & 2) {
1281 if (protocol != ISDN_P_NONE) {
1282 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283 hc->hw.sctrl_e |= 0x80;
1284 } else {
1285 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286 hc->hw.sctrl_e &= ~0x80;
1288 fifo2 = 1;
1289 } else {
1290 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1291 hc->hw.sctrl_e &= ~0x80;
1294 switch (protocol) {
1295 case (-1): /* used for init */
1296 bch->state = -1;
1297 bch->nr = bc;
1298 case (ISDN_P_NONE):
1299 if (bch->state == ISDN_P_NONE)
1300 return 0;
1301 if (bc & 2) {
1302 hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303 hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304 } else {
1305 hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306 hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1308 if (fifo2 & 2) {
1309 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311 HFCPCI_INTS_B2REC);
1312 } else {
1313 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315 HFCPCI_INTS_B1REC);
1317 #ifdef REVERSE_BITORDER
1318 if (bch->nr & 2)
1319 hc->hw.cirm &= 0x7f;
1320 else
1321 hc->hw.cirm &= 0xbf;
1322 #endif
1323 bch->state = ISDN_P_NONE;
1324 bch->nr = bc;
1325 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327 break;
1328 case (ISDN_P_B_RAW):
1329 bch->state = protocol;
1330 bch->nr = bc;
1331 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333 if (bc & 2) {
1334 hc->hw.sctrl |= SCTRL_B2_ENA;
1335 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337 hc->hw.cirm |= 0x80;
1338 #endif
1339 } else {
1340 hc->hw.sctrl |= SCTRL_B1_ENA;
1341 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343 hc->hw.cirm |= 0x40;
1344 #endif
1346 if (fifo2 & 2) {
1347 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348 if (!tics)
1349 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350 HFCPCI_INTS_B2REC);
1351 hc->hw.ctmt |= 2;
1352 hc->hw.conn &= ~0x18;
1353 } else {
1354 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355 if (!tics)
1356 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357 HFCPCI_INTS_B1REC);
1358 hc->hw.ctmt |= 1;
1359 hc->hw.conn &= ~0x03;
1361 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362 break;
1363 case (ISDN_P_B_HDLC):
1364 bch->state = protocol;
1365 bch->nr = bc;
1366 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368 if (bc & 2) {
1369 hc->hw.sctrl |= SCTRL_B2_ENA;
1370 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371 } else {
1372 hc->hw.sctrl |= SCTRL_B1_ENA;
1373 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1375 if (fifo2 & 2) {
1376 hc->hw.last_bfifo_cnt[1] = 0;
1377 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379 HFCPCI_INTS_B2REC);
1380 hc->hw.ctmt &= ~2;
1381 hc->hw.conn &= ~0x18;
1382 } else {
1383 hc->hw.last_bfifo_cnt[0] = 0;
1384 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386 HFCPCI_INTS_B1REC);
1387 hc->hw.ctmt &= ~1;
1388 hc->hw.conn &= ~0x03;
1390 test_and_set_bit(FLG_HDLC, &bch->Flags);
1391 break;
1392 default:
1393 printk(KERN_DEBUG "prot not known %x\n", protocol);
1394 return -ENOPROTOOPT;
1396 if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397 if ((protocol == ISDN_P_NONE) ||
1398 (protocol == -1)) { /* init case */
1399 rx_slot = 0;
1400 tx_slot = 0;
1401 } else {
1402 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403 rx_slot |= 0xC0;
1404 tx_slot |= 0xC0;
1405 } else {
1406 rx_slot |= 0x80;
1407 tx_slot |= 0x80;
1410 if (bc & 2) {
1411 hc->hw.conn &= 0xc7;
1412 hc->hw.conn |= 0x08;
1413 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414 __func__, tx_slot);
1415 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416 __func__, rx_slot);
1417 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419 } else {
1420 hc->hw.conn &= 0xf8;
1421 hc->hw.conn |= 0x01;
1422 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423 __func__, tx_slot);
1424 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425 __func__, rx_slot);
1426 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1430 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440 return 0;
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1446 struct hfc_pci *hc = bch->hw;
1448 if (bch->debug & DEBUG_HW_BCHANNEL)
1449 printk(KERN_DEBUG
1450 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451 bch->state, protocol, bch->nr, chan);
1452 if (bch->nr != chan) {
1453 printk(KERN_DEBUG
1454 "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455 bch->nr, chan);
1456 return -EINVAL;
1458 switch (protocol) {
1459 case (ISDN_P_B_RAW):
1460 bch->state = protocol;
1461 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462 if (chan & 2) {
1463 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465 if (!tics)
1466 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467 hc->hw.ctmt |= 2;
1468 hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470 hc->hw.cirm |= 0x80;
1471 #endif
1472 } else {
1473 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475 if (!tics)
1476 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477 hc->hw.ctmt |= 1;
1478 hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480 hc->hw.cirm |= 0x40;
1481 #endif
1483 break;
1484 case (ISDN_P_B_HDLC):
1485 bch->state = protocol;
1486 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487 if (chan & 2) {
1488 hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489 hc->hw.last_bfifo_cnt[1] = 0;
1490 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492 hc->hw.ctmt &= ~2;
1493 hc->hw.conn &= ~0x18;
1494 } else {
1495 hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496 hc->hw.last_bfifo_cnt[0] = 0;
1497 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499 hc->hw.ctmt &= ~1;
1500 hc->hw.conn &= ~0x03;
1502 break;
1503 default:
1504 printk(KERN_DEBUG "prot not known %x\n", protocol);
1505 return -ENOPROTOOPT;
1507 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515 return 0;
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1521 struct hfc_pci *hc = bch->hw;
1522 u_long flags;
1524 spin_lock_irqsave(&hc->lock, flags);
1525 mISDN_clear_bchannel(bch);
1526 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1527 spin_unlock_irqrestore(&hc->lock, flags);
1531 * Layer 1 B-channel hardware access
1533 static int
1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1536 return mISDN_ctrl_bchannel(bch, cq);
1538 static int
1539 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1541 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1542 struct hfc_pci *hc = bch->hw;
1543 int ret = -EINVAL;
1544 u_long flags;
1546 if (bch->debug & DEBUG_HW)
1547 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1548 switch (cmd) {
1549 case HW_TESTRX_RAW:
1550 spin_lock_irqsave(&hc->lock, flags);
1551 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1552 spin_unlock_irqrestore(&hc->lock, flags);
1553 break;
1554 case HW_TESTRX_HDLC:
1555 spin_lock_irqsave(&hc->lock, flags);
1556 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1557 spin_unlock_irqrestore(&hc->lock, flags);
1558 break;
1559 case HW_TESTRX_OFF:
1560 spin_lock_irqsave(&hc->lock, flags);
1561 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1562 spin_unlock_irqrestore(&hc->lock, flags);
1563 ret = 0;
1564 break;
1565 case CLOSE_CHANNEL:
1566 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1567 deactivate_bchannel(bch);
1568 ch->protocol = ISDN_P_NONE;
1569 ch->peer = NULL;
1570 module_put(THIS_MODULE);
1571 ret = 0;
1572 break;
1573 case CONTROL_CHANNEL:
1574 ret = channel_bctrl(bch, arg);
1575 break;
1576 default:
1577 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1578 __func__, cmd);
1580 return ret;
1584 * Layer2 -> Layer 1 Dchannel data
1586 static int
1587 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1589 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1590 struct dchannel *dch = container_of(dev, struct dchannel, dev);
1591 struct hfc_pci *hc = dch->hw;
1592 int ret = -EINVAL;
1593 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1594 unsigned int id;
1595 u_long flags;
1597 switch (hh->prim) {
1598 case PH_DATA_REQ:
1599 spin_lock_irqsave(&hc->lock, flags);
1600 ret = dchannel_senddata(dch, skb);
1601 if (ret > 0) { /* direct TX */
1602 id = hh->id; /* skb can be freed */
1603 hfcpci_fill_dfifo(dch->hw);
1604 ret = 0;
1605 spin_unlock_irqrestore(&hc->lock, flags);
1606 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1607 } else
1608 spin_unlock_irqrestore(&hc->lock, flags);
1609 return ret;
1610 case PH_ACTIVATE_REQ:
1611 spin_lock_irqsave(&hc->lock, flags);
1612 if (hc->hw.protocol == ISDN_P_NT_S0) {
1613 ret = 0;
1614 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1615 hc->hw.mst_m |= HFCPCI_MASTER;
1616 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1617 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1618 spin_unlock_irqrestore(&hc->lock, flags);
1619 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1620 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1621 break;
1623 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1624 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1625 HFCPCI_DO_ACTION | 1);
1626 } else
1627 ret = l1_event(dch->l1, hh->prim);
1628 spin_unlock_irqrestore(&hc->lock, flags);
1629 break;
1630 case PH_DEACTIVATE_REQ:
1631 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1632 spin_lock_irqsave(&hc->lock, flags);
1633 if (hc->hw.protocol == ISDN_P_NT_S0) {
1634 /* prepare deactivation */
1635 Write_hfc(hc, HFCPCI_STATES, 0x40);
1636 skb_queue_purge(&dch->squeue);
1637 if (dch->tx_skb) {
1638 dev_kfree_skb(dch->tx_skb);
1639 dch->tx_skb = NULL;
1641 dch->tx_idx = 0;
1642 if (dch->rx_skb) {
1643 dev_kfree_skb(dch->rx_skb);
1644 dch->rx_skb = NULL;
1646 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1647 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1648 del_timer(&dch->timer);
1649 #ifdef FIXME
1650 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1651 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1652 #endif
1653 hc->hw.mst_m &= ~HFCPCI_MASTER;
1654 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1655 ret = 0;
1656 } else {
1657 ret = l1_event(dch->l1, hh->prim);
1659 spin_unlock_irqrestore(&hc->lock, flags);
1660 break;
1662 if (!ret)
1663 dev_kfree_skb(skb);
1664 return ret;
1668 * Layer2 -> Layer 1 Bchannel data
1670 static int
1671 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1673 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1674 struct hfc_pci *hc = bch->hw;
1675 int ret = -EINVAL;
1676 struct mISDNhead *hh = mISDN_HEAD_P(skb);
1677 unsigned long flags;
1679 switch (hh->prim) {
1680 case PH_DATA_REQ:
1681 spin_lock_irqsave(&hc->lock, flags);
1682 ret = bchannel_senddata(bch, skb);
1683 if (ret > 0) { /* direct TX */
1684 hfcpci_fill_fifo(bch);
1685 ret = 0;
1687 spin_unlock_irqrestore(&hc->lock, flags);
1688 return ret;
1689 case PH_ACTIVATE_REQ:
1690 spin_lock_irqsave(&hc->lock, flags);
1691 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1692 ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1693 else
1694 ret = 0;
1695 spin_unlock_irqrestore(&hc->lock, flags);
1696 if (!ret)
1697 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1698 NULL, GFP_KERNEL);
1699 break;
1700 case PH_DEACTIVATE_REQ:
1701 deactivate_bchannel(bch);
1702 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1703 NULL, GFP_KERNEL);
1704 ret = 0;
1705 break;
1707 if (!ret)
1708 dev_kfree_skb(skb);
1709 return ret;
1713 * called for card init message
1716 static void
1717 inithfcpci(struct hfc_pci *hc)
1719 printk(KERN_DEBUG "inithfcpci: entered\n");
1720 hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1721 hc->dch.timer.data = (long) &hc->dch;
1722 init_timer(&hc->dch.timer);
1723 hc->chanlimit = 2;
1724 mode_hfcpci(&hc->bch[0], 1, -1);
1725 mode_hfcpci(&hc->bch[1], 2, -1);
1729 static int
1730 init_card(struct hfc_pci *hc)
1732 int cnt = 3;
1733 u_long flags;
1735 printk(KERN_DEBUG "init_card: entered\n");
1738 spin_lock_irqsave(&hc->lock, flags);
1739 disable_hwirq(hc);
1740 spin_unlock_irqrestore(&hc->lock, flags);
1741 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1742 printk(KERN_WARNING
1743 "mISDN: couldn't get interrupt %d\n", hc->irq);
1744 return -EIO;
1746 spin_lock_irqsave(&hc->lock, flags);
1747 reset_hfcpci(hc);
1748 while (cnt) {
1749 inithfcpci(hc);
1751 * Finally enable IRQ output
1752 * this is only allowed, if an IRQ routine is already
1753 * established for this HFC, so don't do that earlier
1755 enable_hwirq(hc);
1756 spin_unlock_irqrestore(&hc->lock, flags);
1757 /* Timeout 80ms */
1758 current->state = TASK_UNINTERRUPTIBLE;
1759 schedule_timeout((80 * HZ) / 1000);
1760 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1761 hc->irq, hc->irqcnt);
1762 /* now switch timer interrupt off */
1763 spin_lock_irqsave(&hc->lock, flags);
1764 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1765 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1766 /* reinit mode reg */
1767 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1768 if (!hc->irqcnt) {
1769 printk(KERN_WARNING
1770 "HFC PCI: IRQ(%d) getting no interrupts "
1771 "during init %d\n", hc->irq, 4 - cnt);
1772 if (cnt == 1)
1773 break;
1774 else {
1775 reset_hfcpci(hc);
1776 cnt--;
1778 } else {
1779 spin_unlock_irqrestore(&hc->lock, flags);
1780 hc->initdone = 1;
1781 return 0;
1784 disable_hwirq(hc);
1785 spin_unlock_irqrestore(&hc->lock, flags);
1786 free_irq(hc->irq, hc);
1787 return -EIO;
1790 static int
1791 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1793 int ret = 0;
1794 u_char slot;
1796 switch (cq->op) {
1797 case MISDN_CTRL_GETOP:
1798 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1799 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1800 break;
1801 case MISDN_CTRL_LOOP:
1802 /* channel 0 disabled loop */
1803 if (cq->channel < 0 || cq->channel > 2) {
1804 ret = -EINVAL;
1805 break;
1807 if (cq->channel & 1) {
1808 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1809 slot = 0xC0;
1810 else
1811 slot = 0x80;
1812 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1813 __func__, slot);
1814 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1815 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1816 hc->hw.conn = (hc->hw.conn & ~7) | 6;
1817 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1819 if (cq->channel & 2) {
1820 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1821 slot = 0xC1;
1822 else
1823 slot = 0x81;
1824 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1825 __func__, slot);
1826 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1827 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1828 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1829 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1831 if (cq->channel & 3)
1832 hc->hw.trm |= 0x80; /* enable IOM-loop */
1833 else {
1834 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1835 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1836 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1838 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1839 break;
1840 case MISDN_CTRL_CONNECT:
1841 if (cq->channel == cq->p1) {
1842 ret = -EINVAL;
1843 break;
1845 if (cq->channel < 1 || cq->channel > 2 ||
1846 cq->p1 < 1 || cq->p1 > 2) {
1847 ret = -EINVAL;
1848 break;
1850 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1851 slot = 0xC0;
1852 else
1853 slot = 0x80;
1854 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1855 __func__, slot);
1856 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1857 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1858 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1859 slot = 0xC1;
1860 else
1861 slot = 0x81;
1862 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1863 __func__, slot);
1864 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1865 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1866 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1867 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1868 hc->hw.trm |= 0x80;
1869 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1870 break;
1871 case MISDN_CTRL_DISCONNECT:
1872 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1873 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1874 hc->hw.trm &= 0x7f; /* disable IOM-loop */
1875 break;
1876 case MISDN_CTRL_L1_TIMER3:
1877 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1878 break;
1879 default:
1880 printk(KERN_WARNING "%s: unknown Op %x\n",
1881 __func__, cq->op);
1882 ret = -EINVAL;
1883 break;
1885 return ret;
1888 static int
1889 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1890 struct channel_req *rq)
1892 int err = 0;
1894 if (debug & DEBUG_HW_OPEN)
1895 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1896 hc->dch.dev.id, __builtin_return_address(0));
1897 if (rq->protocol == ISDN_P_NONE)
1898 return -EINVAL;
1899 if (rq->adr.channel == 1) {
1900 /* TODO: E-Channel */
1901 return -EINVAL;
1903 if (!hc->initdone) {
1904 if (rq->protocol == ISDN_P_TE_S0) {
1905 err = create_l1(&hc->dch, hfc_l1callback);
1906 if (err)
1907 return err;
1909 hc->hw.protocol = rq->protocol;
1910 ch->protocol = rq->protocol;
1911 err = init_card(hc);
1912 if (err)
1913 return err;
1914 } else {
1915 if (rq->protocol != ch->protocol) {
1916 if (hc->hw.protocol == ISDN_P_TE_S0)
1917 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1918 if (rq->protocol == ISDN_P_TE_S0) {
1919 err = create_l1(&hc->dch, hfc_l1callback);
1920 if (err)
1921 return err;
1923 hc->hw.protocol = rq->protocol;
1924 ch->protocol = rq->protocol;
1925 hfcpci_setmode(hc);
1929 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1930 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1931 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1932 0, NULL, GFP_KERNEL);
1934 rq->ch = ch;
1935 if (!try_module_get(THIS_MODULE))
1936 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1937 return 0;
1940 static int
1941 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1943 struct bchannel *bch;
1945 if (rq->adr.channel == 0 || rq->adr.channel > 2)
1946 return -EINVAL;
1947 if (rq->protocol == ISDN_P_NONE)
1948 return -EINVAL;
1949 bch = &hc->bch[rq->adr.channel - 1];
1950 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1951 return -EBUSY; /* b-channel can be only open once */
1952 bch->ch.protocol = rq->protocol;
1953 rq->ch = &bch->ch; /* TODO: E-channel */
1954 if (!try_module_get(THIS_MODULE))
1955 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1956 return 0;
1960 * device control function
1962 static int
1963 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1965 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1966 struct dchannel *dch = container_of(dev, struct dchannel, dev);
1967 struct hfc_pci *hc = dch->hw;
1968 struct channel_req *rq;
1969 int err = 0;
1971 if (dch->debug & DEBUG_HW)
1972 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1973 __func__, cmd, arg);
1974 switch (cmd) {
1975 case OPEN_CHANNEL:
1976 rq = arg;
1977 if ((rq->protocol == ISDN_P_TE_S0) ||
1978 (rq->protocol == ISDN_P_NT_S0))
1979 err = open_dchannel(hc, ch, rq);
1980 else
1981 err = open_bchannel(hc, rq);
1982 break;
1983 case CLOSE_CHANNEL:
1984 if (debug & DEBUG_HW_OPEN)
1985 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1986 __func__, hc->dch.dev.id,
1987 __builtin_return_address(0));
1988 module_put(THIS_MODULE);
1989 break;
1990 case CONTROL_CHANNEL:
1991 err = channel_ctrl(hc, arg);
1992 break;
1993 default:
1994 if (dch->debug & DEBUG_HW)
1995 printk(KERN_DEBUG "%s: unknown command %x\n",
1996 __func__, cmd);
1997 return -EINVAL;
1999 return err;
2002 static int
2003 setup_hw(struct hfc_pci *hc)
2005 void *buffer;
2007 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2008 hc->hw.cirm = 0;
2009 hc->dch.state = 0;
2010 pci_set_master(hc->pdev);
2011 if (!hc->irq) {
2012 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2013 return 1;
2015 hc->hw.pci_io =
2016 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2018 if (!hc->hw.pci_io) {
2019 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2020 return 1;
2022 /* Allocate memory for FIFOS */
2023 /* the memory needs to be on a 32k boundary within the first 4G */
2024 pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2025 buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2026 /* We silently assume the address is okay if nonzero */
2027 if (!buffer) {
2028 printk(KERN_WARNING
2029 "HFC-PCI: Error allocating memory for FIFO!\n");
2030 return 1;
2032 hc->hw.fifos = buffer;
2033 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2034 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2035 printk(KERN_INFO
2036 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2037 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2038 (u_long) hc->hw.dmahandle, hc->irq, HZ);
2039 /* enable memory mapped ports, disable busmaster */
2040 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2041 hc->hw.int_m2 = 0;
2042 disable_hwirq(hc);
2043 hc->hw.int_m1 = 0;
2044 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2045 /* At this point the needed PCI config is done */
2046 /* fifos are still not enabled */
2047 hc->hw.timer.function = (void *) hfcpci_Timer;
2048 hc->hw.timer.data = (long) hc;
2049 init_timer(&hc->hw.timer);
2050 /* default PCM master */
2051 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2052 return 0;
2055 static void
2056 release_card(struct hfc_pci *hc) {
2057 u_long flags;
2059 spin_lock_irqsave(&hc->lock, flags);
2060 hc->hw.int_m2 = 0; /* interrupt output off ! */
2061 disable_hwirq(hc);
2062 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2063 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2064 if (hc->dch.timer.function != NULL) {
2065 del_timer(&hc->dch.timer);
2066 hc->dch.timer.function = NULL;
2068 spin_unlock_irqrestore(&hc->lock, flags);
2069 if (hc->hw.protocol == ISDN_P_TE_S0)
2070 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2071 if (hc->initdone)
2072 free_irq(hc->irq, hc);
2073 release_io_hfcpci(hc); /* must release after free_irq! */
2074 mISDN_unregister_device(&hc->dch.dev);
2075 mISDN_freebchannel(&hc->bch[1]);
2076 mISDN_freebchannel(&hc->bch[0]);
2077 mISDN_freedchannel(&hc->dch);
2078 pci_set_drvdata(hc->pdev, NULL);
2079 kfree(hc);
2082 static int
2083 setup_card(struct hfc_pci *card)
2085 int err = -EINVAL;
2086 u_int i;
2087 char name[MISDN_MAX_IDLEN];
2089 card->dch.debug = debug;
2090 spin_lock_init(&card->lock);
2091 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2092 card->dch.hw = card;
2093 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2094 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2095 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2096 card->dch.dev.D.send = hfcpci_l2l1D;
2097 card->dch.dev.D.ctrl = hfc_dctrl;
2098 card->dch.dev.nrbchan = 2;
2099 for (i = 0; i < 2; i++) {
2100 card->bch[i].nr = i + 1;
2101 set_channelmap(i + 1, card->dch.dev.channelmap);
2102 card->bch[i].debug = debug;
2103 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2104 card->bch[i].hw = card;
2105 card->bch[i].ch.send = hfcpci_l2l1B;
2106 card->bch[i].ch.ctrl = hfc_bctrl;
2107 card->bch[i].ch.nr = i + 1;
2108 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2110 err = setup_hw(card);
2111 if (err)
2112 goto error;
2113 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2114 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2115 if (err)
2116 goto error;
2117 HFC_cnt++;
2118 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2119 return 0;
2120 error:
2121 mISDN_freebchannel(&card->bch[1]);
2122 mISDN_freebchannel(&card->bch[0]);
2123 mISDN_freedchannel(&card->dch);
2124 kfree(card);
2125 return err;
2128 /* private data in the PCI devices list */
2129 struct _hfc_map {
2130 u_int subtype;
2131 u_int flag;
2132 char *name;
2135 static const struct _hfc_map hfc_map[] =
2137 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2138 {HFC_CCD_B000, 0, "Billion B000"},
2139 {HFC_CCD_B006, 0, "Billion B006"},
2140 {HFC_CCD_B007, 0, "Billion B007"},
2141 {HFC_CCD_B008, 0, "Billion B008"},
2142 {HFC_CCD_B009, 0, "Billion B009"},
2143 {HFC_CCD_B00A, 0, "Billion B00A"},
2144 {HFC_CCD_B00B, 0, "Billion B00B"},
2145 {HFC_CCD_B00C, 0, "Billion B00C"},
2146 {HFC_CCD_B100, 0, "Seyeon B100"},
2147 {HFC_CCD_B700, 0, "Primux II S0 B700"},
2148 {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2149 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2150 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2151 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2152 {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2153 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2154 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2155 {HFC_DIGI_DF_M_IOM2_E, 0,
2156 "Digi International DataFire Micro V IOM2 (Europe)"},
2157 {HFC_DIGI_DF_M_E, 0,
2158 "Digi International DataFire Micro V (Europe)"},
2159 {HFC_DIGI_DF_M_IOM2_A, 0,
2160 "Digi International DataFire Micro V IOM2 (North America)"},
2161 {HFC_DIGI_DF_M_A, 0,
2162 "Digi International DataFire Micro V (North America)"},
2163 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2167 static struct pci_device_id hfc_ids[] =
2169 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2170 (unsigned long) &hfc_map[0] },
2171 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2172 (unsigned long) &hfc_map[1] },
2173 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2174 (unsigned long) &hfc_map[2] },
2175 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2176 (unsigned long) &hfc_map[3] },
2177 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2178 (unsigned long) &hfc_map[4] },
2179 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2180 (unsigned long) &hfc_map[5] },
2181 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2182 (unsigned long) &hfc_map[6] },
2183 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2184 (unsigned long) &hfc_map[7] },
2185 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2186 (unsigned long) &hfc_map[8] },
2187 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2188 (unsigned long) &hfc_map[9] },
2189 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2190 (unsigned long) &hfc_map[10] },
2191 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2192 (unsigned long) &hfc_map[11] },
2193 { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2194 (unsigned long) &hfc_map[12] },
2195 { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2196 (unsigned long) &hfc_map[13] },
2197 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2198 (unsigned long) &hfc_map[14] },
2199 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2200 (unsigned long) &hfc_map[15] },
2201 { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2202 (unsigned long) &hfc_map[16] },
2203 { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2204 (unsigned long) &hfc_map[17] },
2205 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2206 (unsigned long) &hfc_map[18] },
2207 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2208 (unsigned long) &hfc_map[19] },
2209 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2210 (unsigned long) &hfc_map[20] },
2211 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2212 (unsigned long) &hfc_map[21] },
2213 { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2214 (unsigned long) &hfc_map[22] },
2218 static int __devinit
2219 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2221 int err = -ENOMEM;
2222 struct hfc_pci *card;
2223 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2225 card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2226 if (!card) {
2227 printk(KERN_ERR "No kmem for HFC card\n");
2228 return err;
2230 card->pdev = pdev;
2231 card->subtype = m->subtype;
2232 err = pci_enable_device(pdev);
2233 if (err) {
2234 kfree(card);
2235 return err;
2238 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2239 m->name, pci_name(pdev));
2241 card->irq = pdev->irq;
2242 pci_set_drvdata(pdev, card);
2243 err = setup_card(card);
2244 if (err)
2245 pci_set_drvdata(pdev, NULL);
2246 return err;
2249 static void __devexit
2250 hfc_remove_pci(struct pci_dev *pdev)
2252 struct hfc_pci *card = pci_get_drvdata(pdev);
2254 if (card)
2255 release_card(card);
2256 else
2257 if (debug)
2258 printk(KERN_DEBUG "%s: drvdata already removed\n",
2259 __func__);
2263 static struct pci_driver hfc_driver = {
2264 .name = "hfcpci",
2265 .probe = hfc_probe,
2266 .remove = __devexit_p(hfc_remove_pci),
2267 .id_table = hfc_ids,
2270 static int
2271 _hfcpci_softirq(struct device *dev, void *arg)
2273 struct hfc_pci *hc = dev_get_drvdata(dev);
2274 struct bchannel *bch;
2275 if (hc == NULL)
2276 return 0;
2278 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2279 spin_lock(&hc->lock);
2280 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2281 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2282 main_rec_hfcpci(bch);
2283 tx_birq(bch);
2285 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2286 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2287 main_rec_hfcpci(bch);
2288 tx_birq(bch);
2290 spin_unlock(&hc->lock);
2292 return 0;
2295 static void
2296 hfcpci_softirq(void *arg)
2298 (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2299 _hfcpci_softirq);
2301 /* if next event would be in the past ... */
2302 if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2303 hfc_jiffies = jiffies + 1;
2304 else
2305 hfc_jiffies += tics;
2306 hfc_tl.expires = hfc_jiffies;
2307 add_timer(&hfc_tl);
2310 static int __init
2311 HFC_init(void)
2313 int err;
2315 if (!poll)
2316 poll = HFCPCI_BTRANS_THRESHOLD;
2318 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2319 tics = (poll * HZ) / 8000;
2320 if (tics < 1)
2321 tics = 1;
2322 poll = (tics * 8000) / HZ;
2323 if (poll > 256 || poll < 8) {
2324 printk(KERN_ERR "%s: Wrong poll value %d not in range "
2325 "of 8..256.\n", __func__, poll);
2326 err = -EINVAL;
2327 return err;
2330 if (poll != HFCPCI_BTRANS_THRESHOLD) {
2331 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2332 __func__, poll);
2333 hfc_tl.function = (void *)hfcpci_softirq;
2334 hfc_tl.data = 0;
2335 init_timer(&hfc_tl);
2336 hfc_tl.expires = jiffies + tics;
2337 hfc_jiffies = hfc_tl.expires;
2338 add_timer(&hfc_tl);
2339 } else
2340 tics = 0; /* indicate the use of controller's timer */
2342 err = pci_register_driver(&hfc_driver);
2343 if (err) {
2344 if (timer_pending(&hfc_tl))
2345 del_timer(&hfc_tl);
2348 return err;
2351 static void __exit
2352 HFC_cleanup(void)
2354 if (timer_pending(&hfc_tl))
2355 del_timer(&hfc_tl);
2357 pci_unregister_driver(&hfc_driver);
2360 module_init(HFC_init);
2361 module_exit(HFC_cleanup);
2363 MODULE_DEVICE_TABLE(pci, hfc_ids);