Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / md / raid1.c
blob05bb49e13648267d21a02efb698db165d0180026
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
81 static void r1bio_pool_free(void *r1_bio, void *data)
83 kfree(r1_bio);
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
142 r1_bio->master_bio = NULL;
144 return r1_bio;
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
158 static void r1buf_pool_free(void *__r1_bio, void *data)
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
174 r1bio_pool_free(r1bio, data);
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
179 int i;
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
189 static void free_r1bio(struct r1bio *r1_bio)
191 struct r1conf *conf = r1_bio->mddev->private;
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(struct r1bio *r1_bio)
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(struct r1bio *r1_bio)
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
233 static void call_bio_endio(struct r1bio *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
256 allow_barrier(conf);
260 static void raid_end_bio_io(struct r1bio *r1_bio)
262 struct bio *bio = r1_bio->master_bio;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
272 call_bio_endio(r1_bio);
274 free_r1bio(r1_bio);
278 * Update disk head position estimator based on IRQ completion info.
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
282 struct r1conf *conf = r1_bio->mddev->private;
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
289 * Find the disk number which triggered given bio
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
304 return mirror;
307 static void raid1_end_read_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
314 mirror = r1_bio->read_disk;
316 * this branch is our 'one mirror IO has finished' event handler:
318 update_head_pos(mirror, r1_bio);
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
336 if (uptodate)
337 raid_end_bio_io(r1_bio);
338 else {
340 * oops, read error:
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
357 static void close_write(struct r1bio *r1_bio)
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
376 static void r1_bio_write_done(struct r1bio *r1_bio)
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
392 static void raid1_end_write_request(struct bio *bio, int error)
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
400 mirror = find_bio_disk(r1_bio, bio);
403 * 'one mirror IO has finished' event handler:
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
425 sector_t first_bad;
426 int bad_sectors;
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
471 * Let's see if all mirrored write operations have finished
472 * already.
474 r1_bio_write_done(r1_bio);
476 if (to_put)
477 bio_put(to_put);
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
493 * The rdev for the device selected will have nr_pending incremented.
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
502 int disk;
503 sector_t best_dist;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
506 int choose_first;
507 int choose_next_idle;
509 rcu_read_lock();
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
515 retry:
516 sectors = r1_bio->sectors;
517 best_disk = -1;
518 best_dist_disk = -1;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
523 has_nonrot_disk = 0;
524 choose_next_idle = 0;
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
528 choose_first = 1;
529 else
530 choose_first = 0;
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 sector_t dist;
534 sector_t first_bad;
535 int bad_sectors;
536 unsigned int pending;
537 bool nonrot;
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
544 continue;
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
547 continue;
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
560 best_disk = disk;
562 continue;
564 /* This is a reasonable device to use. It might
565 * even be best.
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
589 if (choose_first)
590 break;
592 continue;
593 } else
594 best_good_sectors = sectors;
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
600 if (choose_first) {
601 best_disk = disk;
602 break;
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
610 best_disk = disk;
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
632 break;
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
640 if (choose_next_idle)
641 continue;
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
648 if (dist < best_dist) {
649 best_dist = dist;
650 best_dist_disk = disk;
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
676 rdev_dec_pending(rdev, conf->mddev);
677 goto retry;
679 sectors = best_good_sectors;
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
686 rcu_read_unlock();
687 *max_sectors = sectors;
689 return best_disk;
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
719 rcu_read_unlock();
721 return max;
725 int md_raid1_congested(struct mddev *mddev, int bits)
727 struct r1conf *conf = mddev->private;
728 int i, ret = 0;
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
734 rcu_read_lock();
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
740 BUG_ON(!q);
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
751 rcu_read_unlock();
752 return ret;
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
756 static int raid1_congested(void *data, int bits)
758 struct mddev *mddev = data;
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
764 static void flush_pending_writes(struct r1conf *conf)
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
769 spin_lock_irq(&conf->device_lock);
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
784 generic_make_request(bio);
785 bio = next;
787 } else
788 spin_unlock_irq(&conf->device_lock);
791 /* Barriers....
792 * Sometimes we need to suspend IO while we do something else,
793 * either some resync/recovery, or reconfigure the array.
794 * To do this we raise a 'barrier'.
795 * The 'barrier' is a counter that can be raised multiple times
796 * to count how many activities are happening which preclude
797 * normal IO.
798 * We can only raise the barrier if there is no pending IO.
799 * i.e. if nr_pending == 0.
800 * We choose only to raise the barrier if no-one is waiting for the
801 * barrier to go down. This means that as soon as an IO request
802 * is ready, no other operations which require a barrier will start
803 * until the IO request has had a chance.
805 * So: regular IO calls 'wait_barrier'. When that returns there
806 * is no backgroup IO happening, It must arrange to call
807 * allow_barrier when it has finished its IO.
808 * backgroup IO calls must call raise_barrier. Once that returns
809 * there is no normal IO happeing. It must arrange to call
810 * lower_barrier when the particular background IO completes.
812 #define RESYNC_DEPTH 32
814 static void raise_barrier(struct r1conf *conf)
816 spin_lock_irq(&conf->resync_lock);
818 /* Wait until no block IO is waiting */
819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 conf->resync_lock, );
822 /* block any new IO from starting */
823 conf->barrier++;
825 /* Now wait for all pending IO to complete */
826 wait_event_lock_irq(conf->wait_barrier,
827 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
828 conf->resync_lock, );
830 spin_unlock_irq(&conf->resync_lock);
833 static void lower_barrier(struct r1conf *conf)
835 unsigned long flags;
836 BUG_ON(conf->barrier <= 0);
837 spin_lock_irqsave(&conf->resync_lock, flags);
838 conf->barrier--;
839 spin_unlock_irqrestore(&conf->resync_lock, flags);
840 wake_up(&conf->wait_barrier);
843 static void wait_barrier(struct r1conf *conf)
845 spin_lock_irq(&conf->resync_lock);
846 if (conf->barrier) {
847 conf->nr_waiting++;
848 /* Wait for the barrier to drop.
849 * However if there are already pending
850 * requests (preventing the barrier from
851 * rising completely), and the
852 * pre-process bio queue isn't empty,
853 * then don't wait, as we need to empty
854 * that queue to get the nr_pending
855 * count down.
857 wait_event_lock_irq(conf->wait_barrier,
858 !conf->barrier ||
859 (conf->nr_pending &&
860 current->bio_list &&
861 !bio_list_empty(current->bio_list)),
862 conf->resync_lock,
864 conf->nr_waiting--;
866 conf->nr_pending++;
867 spin_unlock_irq(&conf->resync_lock);
870 static void allow_barrier(struct r1conf *conf)
872 unsigned long flags;
873 spin_lock_irqsave(&conf->resync_lock, flags);
874 conf->nr_pending--;
875 spin_unlock_irqrestore(&conf->resync_lock, flags);
876 wake_up(&conf->wait_barrier);
879 static void freeze_array(struct r1conf *conf)
881 /* stop syncio and normal IO and wait for everything to
882 * go quite.
883 * We increment barrier and nr_waiting, and then
884 * wait until nr_pending match nr_queued+1
885 * This is called in the context of one normal IO request
886 * that has failed. Thus any sync request that might be pending
887 * will be blocked by nr_pending, and we need to wait for
888 * pending IO requests to complete or be queued for re-try.
889 * Thus the number queued (nr_queued) plus this request (1)
890 * must match the number of pending IOs (nr_pending) before
891 * we continue.
893 spin_lock_irq(&conf->resync_lock);
894 conf->barrier++;
895 conf->nr_waiting++;
896 wait_event_lock_irq(conf->wait_barrier,
897 conf->nr_pending == conf->nr_queued+1,
898 conf->resync_lock,
899 flush_pending_writes(conf));
900 spin_unlock_irq(&conf->resync_lock);
902 static void unfreeze_array(struct r1conf *conf)
904 /* reverse the effect of the freeze */
905 spin_lock_irq(&conf->resync_lock);
906 conf->barrier--;
907 conf->nr_waiting--;
908 wake_up(&conf->wait_barrier);
909 spin_unlock_irq(&conf->resync_lock);
913 /* duplicate the data pages for behind I/O
915 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
917 int i;
918 struct bio_vec *bvec;
919 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
920 GFP_NOIO);
921 if (unlikely(!bvecs))
922 return;
924 bio_for_each_segment(bvec, bio, i) {
925 bvecs[i] = *bvec;
926 bvecs[i].bv_page = alloc_page(GFP_NOIO);
927 if (unlikely(!bvecs[i].bv_page))
928 goto do_sync_io;
929 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
930 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
931 kunmap(bvecs[i].bv_page);
932 kunmap(bvec->bv_page);
934 r1_bio->behind_bvecs = bvecs;
935 r1_bio->behind_page_count = bio->bi_vcnt;
936 set_bit(R1BIO_BehindIO, &r1_bio->state);
937 return;
939 do_sync_io:
940 for (i = 0; i < bio->bi_vcnt; i++)
941 if (bvecs[i].bv_page)
942 put_page(bvecs[i].bv_page);
943 kfree(bvecs);
944 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
947 struct raid1_plug_cb {
948 struct blk_plug_cb cb;
949 struct bio_list pending;
950 int pending_cnt;
953 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
955 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
956 cb);
957 struct mddev *mddev = plug->cb.data;
958 struct r1conf *conf = mddev->private;
959 struct bio *bio;
961 if (from_schedule) {
962 spin_lock_irq(&conf->device_lock);
963 bio_list_merge(&conf->pending_bio_list, &plug->pending);
964 conf->pending_count += plug->pending_cnt;
965 spin_unlock_irq(&conf->device_lock);
966 md_wakeup_thread(mddev->thread);
967 kfree(plug);
968 return;
971 /* we aren't scheduling, so we can do the write-out directly. */
972 bio = bio_list_get(&plug->pending);
973 bitmap_unplug(mddev->bitmap);
974 wake_up(&conf->wait_barrier);
976 while (bio) { /* submit pending writes */
977 struct bio *next = bio->bi_next;
978 bio->bi_next = NULL;
979 generic_make_request(bio);
980 bio = next;
982 kfree(plug);
985 static void make_request(struct mddev *mddev, struct bio * bio)
987 struct r1conf *conf = mddev->private;
988 struct raid1_info *mirror;
989 struct r1bio *r1_bio;
990 struct bio *read_bio;
991 int i, disks;
992 struct bitmap *bitmap;
993 unsigned long flags;
994 const int rw = bio_data_dir(bio);
995 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
996 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
997 struct md_rdev *blocked_rdev;
998 struct blk_plug_cb *cb;
999 struct raid1_plug_cb *plug = NULL;
1000 int first_clone;
1001 int sectors_handled;
1002 int max_sectors;
1005 * Register the new request and wait if the reconstruction
1006 * thread has put up a bar for new requests.
1007 * Continue immediately if no resync is active currently.
1010 md_write_start(mddev, bio); /* wait on superblock update early */
1012 if (bio_data_dir(bio) == WRITE &&
1013 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1014 bio->bi_sector < mddev->suspend_hi) {
1015 /* As the suspend_* range is controlled by
1016 * userspace, we want an interruptible
1017 * wait.
1019 DEFINE_WAIT(w);
1020 for (;;) {
1021 flush_signals(current);
1022 prepare_to_wait(&conf->wait_barrier,
1023 &w, TASK_INTERRUPTIBLE);
1024 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1025 bio->bi_sector >= mddev->suspend_hi)
1026 break;
1027 schedule();
1029 finish_wait(&conf->wait_barrier, &w);
1032 wait_barrier(conf);
1034 bitmap = mddev->bitmap;
1037 * make_request() can abort the operation when READA is being
1038 * used and no empty request is available.
1041 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1043 r1_bio->master_bio = bio;
1044 r1_bio->sectors = bio->bi_size >> 9;
1045 r1_bio->state = 0;
1046 r1_bio->mddev = mddev;
1047 r1_bio->sector = bio->bi_sector;
1049 /* We might need to issue multiple reads to different
1050 * devices if there are bad blocks around, so we keep
1051 * track of the number of reads in bio->bi_phys_segments.
1052 * If this is 0, there is only one r1_bio and no locking
1053 * will be needed when requests complete. If it is
1054 * non-zero, then it is the number of not-completed requests.
1056 bio->bi_phys_segments = 0;
1057 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1059 if (rw == READ) {
1061 * read balancing logic:
1063 int rdisk;
1065 read_again:
1066 rdisk = read_balance(conf, r1_bio, &max_sectors);
1068 if (rdisk < 0) {
1069 /* couldn't find anywhere to read from */
1070 raid_end_bio_io(r1_bio);
1071 return;
1073 mirror = conf->mirrors + rdisk;
1075 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1076 bitmap) {
1077 /* Reading from a write-mostly device must
1078 * take care not to over-take any writes
1079 * that are 'behind'
1081 wait_event(bitmap->behind_wait,
1082 atomic_read(&bitmap->behind_writes) == 0);
1084 r1_bio->read_disk = rdisk;
1086 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1087 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1088 max_sectors);
1090 r1_bio->bios[rdisk] = read_bio;
1092 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1093 read_bio->bi_bdev = mirror->rdev->bdev;
1094 read_bio->bi_end_io = raid1_end_read_request;
1095 read_bio->bi_rw = READ | do_sync;
1096 read_bio->bi_private = r1_bio;
1098 if (max_sectors < r1_bio->sectors) {
1099 /* could not read all from this device, so we will
1100 * need another r1_bio.
1103 sectors_handled = (r1_bio->sector + max_sectors
1104 - bio->bi_sector);
1105 r1_bio->sectors = max_sectors;
1106 spin_lock_irq(&conf->device_lock);
1107 if (bio->bi_phys_segments == 0)
1108 bio->bi_phys_segments = 2;
1109 else
1110 bio->bi_phys_segments++;
1111 spin_unlock_irq(&conf->device_lock);
1112 /* Cannot call generic_make_request directly
1113 * as that will be queued in __make_request
1114 * and subsequent mempool_alloc might block waiting
1115 * for it. So hand bio over to raid1d.
1117 reschedule_retry(r1_bio);
1119 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1121 r1_bio->master_bio = bio;
1122 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1123 r1_bio->state = 0;
1124 r1_bio->mddev = mddev;
1125 r1_bio->sector = bio->bi_sector + sectors_handled;
1126 goto read_again;
1127 } else
1128 generic_make_request(read_bio);
1129 return;
1133 * WRITE:
1135 if (conf->pending_count >= max_queued_requests) {
1136 md_wakeup_thread(mddev->thread);
1137 wait_event(conf->wait_barrier,
1138 conf->pending_count < max_queued_requests);
1140 /* first select target devices under rcu_lock and
1141 * inc refcount on their rdev. Record them by setting
1142 * bios[x] to bio
1143 * If there are known/acknowledged bad blocks on any device on
1144 * which we have seen a write error, we want to avoid writing those
1145 * blocks.
1146 * This potentially requires several writes to write around
1147 * the bad blocks. Each set of writes gets it's own r1bio
1148 * with a set of bios attached.
1151 disks = conf->raid_disks * 2;
1152 retry_write:
1153 blocked_rdev = NULL;
1154 rcu_read_lock();
1155 max_sectors = r1_bio->sectors;
1156 for (i = 0; i < disks; i++) {
1157 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1158 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1159 atomic_inc(&rdev->nr_pending);
1160 blocked_rdev = rdev;
1161 break;
1163 r1_bio->bios[i] = NULL;
1164 if (!rdev || test_bit(Faulty, &rdev->flags)
1165 || test_bit(Unmerged, &rdev->flags)) {
1166 if (i < conf->raid_disks)
1167 set_bit(R1BIO_Degraded, &r1_bio->state);
1168 continue;
1171 atomic_inc(&rdev->nr_pending);
1172 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1173 sector_t first_bad;
1174 int bad_sectors;
1175 int is_bad;
1177 is_bad = is_badblock(rdev, r1_bio->sector,
1178 max_sectors,
1179 &first_bad, &bad_sectors);
1180 if (is_bad < 0) {
1181 /* mustn't write here until the bad block is
1182 * acknowledged*/
1183 set_bit(BlockedBadBlocks, &rdev->flags);
1184 blocked_rdev = rdev;
1185 break;
1187 if (is_bad && first_bad <= r1_bio->sector) {
1188 /* Cannot write here at all */
1189 bad_sectors -= (r1_bio->sector - first_bad);
1190 if (bad_sectors < max_sectors)
1191 /* mustn't write more than bad_sectors
1192 * to other devices yet
1194 max_sectors = bad_sectors;
1195 rdev_dec_pending(rdev, mddev);
1196 /* We don't set R1BIO_Degraded as that
1197 * only applies if the disk is
1198 * missing, so it might be re-added,
1199 * and we want to know to recover this
1200 * chunk.
1201 * In this case the device is here,
1202 * and the fact that this chunk is not
1203 * in-sync is recorded in the bad
1204 * block log
1206 continue;
1208 if (is_bad) {
1209 int good_sectors = first_bad - r1_bio->sector;
1210 if (good_sectors < max_sectors)
1211 max_sectors = good_sectors;
1214 r1_bio->bios[i] = bio;
1216 rcu_read_unlock();
1218 if (unlikely(blocked_rdev)) {
1219 /* Wait for this device to become unblocked */
1220 int j;
1222 for (j = 0; j < i; j++)
1223 if (r1_bio->bios[j])
1224 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1225 r1_bio->state = 0;
1226 allow_barrier(conf);
1227 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1228 wait_barrier(conf);
1229 goto retry_write;
1232 if (max_sectors < r1_bio->sectors) {
1233 /* We are splitting this write into multiple parts, so
1234 * we need to prepare for allocating another r1_bio.
1236 r1_bio->sectors = max_sectors;
1237 spin_lock_irq(&conf->device_lock);
1238 if (bio->bi_phys_segments == 0)
1239 bio->bi_phys_segments = 2;
1240 else
1241 bio->bi_phys_segments++;
1242 spin_unlock_irq(&conf->device_lock);
1244 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1246 atomic_set(&r1_bio->remaining, 1);
1247 atomic_set(&r1_bio->behind_remaining, 0);
1249 first_clone = 1;
1250 for (i = 0; i < disks; i++) {
1251 struct bio *mbio;
1252 if (!r1_bio->bios[i])
1253 continue;
1255 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1256 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1258 if (first_clone) {
1259 /* do behind I/O ?
1260 * Not if there are too many, or cannot
1261 * allocate memory, or a reader on WriteMostly
1262 * is waiting for behind writes to flush */
1263 if (bitmap &&
1264 (atomic_read(&bitmap->behind_writes)
1265 < mddev->bitmap_info.max_write_behind) &&
1266 !waitqueue_active(&bitmap->behind_wait))
1267 alloc_behind_pages(mbio, r1_bio);
1269 bitmap_startwrite(bitmap, r1_bio->sector,
1270 r1_bio->sectors,
1271 test_bit(R1BIO_BehindIO,
1272 &r1_bio->state));
1273 first_clone = 0;
1275 if (r1_bio->behind_bvecs) {
1276 struct bio_vec *bvec;
1277 int j;
1279 /* Yes, I really want the '__' version so that
1280 * we clear any unused pointer in the io_vec, rather
1281 * than leave them unchanged. This is important
1282 * because when we come to free the pages, we won't
1283 * know the original bi_idx, so we just free
1284 * them all
1286 __bio_for_each_segment(bvec, mbio, j, 0)
1287 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1288 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1289 atomic_inc(&r1_bio->behind_remaining);
1292 r1_bio->bios[i] = mbio;
1294 mbio->bi_sector = (r1_bio->sector +
1295 conf->mirrors[i].rdev->data_offset);
1296 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1297 mbio->bi_end_io = raid1_end_write_request;
1298 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1299 mbio->bi_private = r1_bio;
1301 atomic_inc(&r1_bio->remaining);
1303 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1304 if (cb)
1305 plug = container_of(cb, struct raid1_plug_cb, cb);
1306 else
1307 plug = NULL;
1308 spin_lock_irqsave(&conf->device_lock, flags);
1309 if (plug) {
1310 bio_list_add(&plug->pending, mbio);
1311 plug->pending_cnt++;
1312 } else {
1313 bio_list_add(&conf->pending_bio_list, mbio);
1314 conf->pending_count++;
1316 spin_unlock_irqrestore(&conf->device_lock, flags);
1317 if (!plug)
1318 md_wakeup_thread(mddev->thread);
1320 /* Mustn't call r1_bio_write_done before this next test,
1321 * as it could result in the bio being freed.
1323 if (sectors_handled < (bio->bi_size >> 9)) {
1324 r1_bio_write_done(r1_bio);
1325 /* We need another r1_bio. It has already been counted
1326 * in bio->bi_phys_segments
1328 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1329 r1_bio->master_bio = bio;
1330 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1331 r1_bio->state = 0;
1332 r1_bio->mddev = mddev;
1333 r1_bio->sector = bio->bi_sector + sectors_handled;
1334 goto retry_write;
1337 r1_bio_write_done(r1_bio);
1339 /* In case raid1d snuck in to freeze_array */
1340 wake_up(&conf->wait_barrier);
1343 static void status(struct seq_file *seq, struct mddev *mddev)
1345 struct r1conf *conf = mddev->private;
1346 int i;
1348 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1349 conf->raid_disks - mddev->degraded);
1350 rcu_read_lock();
1351 for (i = 0; i < conf->raid_disks; i++) {
1352 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1353 seq_printf(seq, "%s",
1354 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1356 rcu_read_unlock();
1357 seq_printf(seq, "]");
1361 static void error(struct mddev *mddev, struct md_rdev *rdev)
1363 char b[BDEVNAME_SIZE];
1364 struct r1conf *conf = mddev->private;
1367 * If it is not operational, then we have already marked it as dead
1368 * else if it is the last working disks, ignore the error, let the
1369 * next level up know.
1370 * else mark the drive as failed
1372 if (test_bit(In_sync, &rdev->flags)
1373 && (conf->raid_disks - mddev->degraded) == 1) {
1375 * Don't fail the drive, act as though we were just a
1376 * normal single drive.
1377 * However don't try a recovery from this drive as
1378 * it is very likely to fail.
1380 conf->recovery_disabled = mddev->recovery_disabled;
1381 return;
1383 set_bit(Blocked, &rdev->flags);
1384 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1385 unsigned long flags;
1386 spin_lock_irqsave(&conf->device_lock, flags);
1387 mddev->degraded++;
1388 set_bit(Faulty, &rdev->flags);
1389 spin_unlock_irqrestore(&conf->device_lock, flags);
1391 * if recovery is running, make sure it aborts.
1393 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1394 } else
1395 set_bit(Faulty, &rdev->flags);
1396 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1397 printk(KERN_ALERT
1398 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1399 "md/raid1:%s: Operation continuing on %d devices.\n",
1400 mdname(mddev), bdevname(rdev->bdev, b),
1401 mdname(mddev), conf->raid_disks - mddev->degraded);
1404 static void print_conf(struct r1conf *conf)
1406 int i;
1408 printk(KERN_DEBUG "RAID1 conf printout:\n");
1409 if (!conf) {
1410 printk(KERN_DEBUG "(!conf)\n");
1411 return;
1413 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1414 conf->raid_disks);
1416 rcu_read_lock();
1417 for (i = 0; i < conf->raid_disks; i++) {
1418 char b[BDEVNAME_SIZE];
1419 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1420 if (rdev)
1421 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1422 i, !test_bit(In_sync, &rdev->flags),
1423 !test_bit(Faulty, &rdev->flags),
1424 bdevname(rdev->bdev,b));
1426 rcu_read_unlock();
1429 static void close_sync(struct r1conf *conf)
1431 wait_barrier(conf);
1432 allow_barrier(conf);
1434 mempool_destroy(conf->r1buf_pool);
1435 conf->r1buf_pool = NULL;
1438 static int raid1_spare_active(struct mddev *mddev)
1440 int i;
1441 struct r1conf *conf = mddev->private;
1442 int count = 0;
1443 unsigned long flags;
1446 * Find all failed disks within the RAID1 configuration
1447 * and mark them readable.
1448 * Called under mddev lock, so rcu protection not needed.
1450 for (i = 0; i < conf->raid_disks; i++) {
1451 struct md_rdev *rdev = conf->mirrors[i].rdev;
1452 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1453 if (repl
1454 && repl->recovery_offset == MaxSector
1455 && !test_bit(Faulty, &repl->flags)
1456 && !test_and_set_bit(In_sync, &repl->flags)) {
1457 /* replacement has just become active */
1458 if (!rdev ||
1459 !test_and_clear_bit(In_sync, &rdev->flags))
1460 count++;
1461 if (rdev) {
1462 /* Replaced device not technically
1463 * faulty, but we need to be sure
1464 * it gets removed and never re-added
1466 set_bit(Faulty, &rdev->flags);
1467 sysfs_notify_dirent_safe(
1468 rdev->sysfs_state);
1471 if (rdev
1472 && !test_bit(Faulty, &rdev->flags)
1473 && !test_and_set_bit(In_sync, &rdev->flags)) {
1474 count++;
1475 sysfs_notify_dirent_safe(rdev->sysfs_state);
1478 spin_lock_irqsave(&conf->device_lock, flags);
1479 mddev->degraded -= count;
1480 spin_unlock_irqrestore(&conf->device_lock, flags);
1482 print_conf(conf);
1483 return count;
1487 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1489 struct r1conf *conf = mddev->private;
1490 int err = -EEXIST;
1491 int mirror = 0;
1492 struct raid1_info *p;
1493 int first = 0;
1494 int last = conf->raid_disks - 1;
1495 struct request_queue *q = bdev_get_queue(rdev->bdev);
1497 if (mddev->recovery_disabled == conf->recovery_disabled)
1498 return -EBUSY;
1500 if (rdev->raid_disk >= 0)
1501 first = last = rdev->raid_disk;
1503 if (q->merge_bvec_fn) {
1504 set_bit(Unmerged, &rdev->flags);
1505 mddev->merge_check_needed = 1;
1508 for (mirror = first; mirror <= last; mirror++) {
1509 p = conf->mirrors+mirror;
1510 if (!p->rdev) {
1512 disk_stack_limits(mddev->gendisk, rdev->bdev,
1513 rdev->data_offset << 9);
1515 p->head_position = 0;
1516 rdev->raid_disk = mirror;
1517 err = 0;
1518 /* As all devices are equivalent, we don't need a full recovery
1519 * if this was recently any drive of the array
1521 if (rdev->saved_raid_disk < 0)
1522 conf->fullsync = 1;
1523 rcu_assign_pointer(p->rdev, rdev);
1524 break;
1526 if (test_bit(WantReplacement, &p->rdev->flags) &&
1527 p[conf->raid_disks].rdev == NULL) {
1528 /* Add this device as a replacement */
1529 clear_bit(In_sync, &rdev->flags);
1530 set_bit(Replacement, &rdev->flags);
1531 rdev->raid_disk = mirror;
1532 err = 0;
1533 conf->fullsync = 1;
1534 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1535 break;
1538 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1539 /* Some requests might not have seen this new
1540 * merge_bvec_fn. We must wait for them to complete
1541 * before merging the device fully.
1542 * First we make sure any code which has tested
1543 * our function has submitted the request, then
1544 * we wait for all outstanding requests to complete.
1546 synchronize_sched();
1547 raise_barrier(conf);
1548 lower_barrier(conf);
1549 clear_bit(Unmerged, &rdev->flags);
1551 md_integrity_add_rdev(rdev, mddev);
1552 print_conf(conf);
1553 return err;
1556 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1558 struct r1conf *conf = mddev->private;
1559 int err = 0;
1560 int number = rdev->raid_disk;
1561 struct raid1_info *p = conf->mirrors + number;
1563 if (rdev != p->rdev)
1564 p = conf->mirrors + conf->raid_disks + number;
1566 print_conf(conf);
1567 if (rdev == p->rdev) {
1568 if (test_bit(In_sync, &rdev->flags) ||
1569 atomic_read(&rdev->nr_pending)) {
1570 err = -EBUSY;
1571 goto abort;
1573 /* Only remove non-faulty devices if recovery
1574 * is not possible.
1576 if (!test_bit(Faulty, &rdev->flags) &&
1577 mddev->recovery_disabled != conf->recovery_disabled &&
1578 mddev->degraded < conf->raid_disks) {
1579 err = -EBUSY;
1580 goto abort;
1582 p->rdev = NULL;
1583 synchronize_rcu();
1584 if (atomic_read(&rdev->nr_pending)) {
1585 /* lost the race, try later */
1586 err = -EBUSY;
1587 p->rdev = rdev;
1588 goto abort;
1589 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1590 /* We just removed a device that is being replaced.
1591 * Move down the replacement. We drain all IO before
1592 * doing this to avoid confusion.
1594 struct md_rdev *repl =
1595 conf->mirrors[conf->raid_disks + number].rdev;
1596 raise_barrier(conf);
1597 clear_bit(Replacement, &repl->flags);
1598 p->rdev = repl;
1599 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1600 lower_barrier(conf);
1601 clear_bit(WantReplacement, &rdev->flags);
1602 } else
1603 clear_bit(WantReplacement, &rdev->flags);
1604 err = md_integrity_register(mddev);
1606 abort:
1608 print_conf(conf);
1609 return err;
1613 static void end_sync_read(struct bio *bio, int error)
1615 struct r1bio *r1_bio = bio->bi_private;
1617 update_head_pos(r1_bio->read_disk, r1_bio);
1620 * we have read a block, now it needs to be re-written,
1621 * or re-read if the read failed.
1622 * We don't do much here, just schedule handling by raid1d
1624 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1625 set_bit(R1BIO_Uptodate, &r1_bio->state);
1627 if (atomic_dec_and_test(&r1_bio->remaining))
1628 reschedule_retry(r1_bio);
1631 static void end_sync_write(struct bio *bio, int error)
1633 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1634 struct r1bio *r1_bio = bio->bi_private;
1635 struct mddev *mddev = r1_bio->mddev;
1636 struct r1conf *conf = mddev->private;
1637 int mirror=0;
1638 sector_t first_bad;
1639 int bad_sectors;
1641 mirror = find_bio_disk(r1_bio, bio);
1643 if (!uptodate) {
1644 sector_t sync_blocks = 0;
1645 sector_t s = r1_bio->sector;
1646 long sectors_to_go = r1_bio->sectors;
1647 /* make sure these bits doesn't get cleared. */
1648 do {
1649 bitmap_end_sync(mddev->bitmap, s,
1650 &sync_blocks, 1);
1651 s += sync_blocks;
1652 sectors_to_go -= sync_blocks;
1653 } while (sectors_to_go > 0);
1654 set_bit(WriteErrorSeen,
1655 &conf->mirrors[mirror].rdev->flags);
1656 if (!test_and_set_bit(WantReplacement,
1657 &conf->mirrors[mirror].rdev->flags))
1658 set_bit(MD_RECOVERY_NEEDED, &
1659 mddev->recovery);
1660 set_bit(R1BIO_WriteError, &r1_bio->state);
1661 } else if (is_badblock(conf->mirrors[mirror].rdev,
1662 r1_bio->sector,
1663 r1_bio->sectors,
1664 &first_bad, &bad_sectors) &&
1665 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1666 r1_bio->sector,
1667 r1_bio->sectors,
1668 &first_bad, &bad_sectors)
1670 set_bit(R1BIO_MadeGood, &r1_bio->state);
1672 if (atomic_dec_and_test(&r1_bio->remaining)) {
1673 int s = r1_bio->sectors;
1674 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1675 test_bit(R1BIO_WriteError, &r1_bio->state))
1676 reschedule_retry(r1_bio);
1677 else {
1678 put_buf(r1_bio);
1679 md_done_sync(mddev, s, uptodate);
1684 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1685 int sectors, struct page *page, int rw)
1687 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1688 /* success */
1689 return 1;
1690 if (rw == WRITE) {
1691 set_bit(WriteErrorSeen, &rdev->flags);
1692 if (!test_and_set_bit(WantReplacement,
1693 &rdev->flags))
1694 set_bit(MD_RECOVERY_NEEDED, &
1695 rdev->mddev->recovery);
1697 /* need to record an error - either for the block or the device */
1698 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1699 md_error(rdev->mddev, rdev);
1700 return 0;
1703 static int fix_sync_read_error(struct r1bio *r1_bio)
1705 /* Try some synchronous reads of other devices to get
1706 * good data, much like with normal read errors. Only
1707 * read into the pages we already have so we don't
1708 * need to re-issue the read request.
1709 * We don't need to freeze the array, because being in an
1710 * active sync request, there is no normal IO, and
1711 * no overlapping syncs.
1712 * We don't need to check is_badblock() again as we
1713 * made sure that anything with a bad block in range
1714 * will have bi_end_io clear.
1716 struct mddev *mddev = r1_bio->mddev;
1717 struct r1conf *conf = mddev->private;
1718 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1719 sector_t sect = r1_bio->sector;
1720 int sectors = r1_bio->sectors;
1721 int idx = 0;
1723 while(sectors) {
1724 int s = sectors;
1725 int d = r1_bio->read_disk;
1726 int success = 0;
1727 struct md_rdev *rdev;
1728 int start;
1730 if (s > (PAGE_SIZE>>9))
1731 s = PAGE_SIZE >> 9;
1732 do {
1733 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1734 /* No rcu protection needed here devices
1735 * can only be removed when no resync is
1736 * active, and resync is currently active
1738 rdev = conf->mirrors[d].rdev;
1739 if (sync_page_io(rdev, sect, s<<9,
1740 bio->bi_io_vec[idx].bv_page,
1741 READ, false)) {
1742 success = 1;
1743 break;
1746 d++;
1747 if (d == conf->raid_disks * 2)
1748 d = 0;
1749 } while (!success && d != r1_bio->read_disk);
1751 if (!success) {
1752 char b[BDEVNAME_SIZE];
1753 int abort = 0;
1754 /* Cannot read from anywhere, this block is lost.
1755 * Record a bad block on each device. If that doesn't
1756 * work just disable and interrupt the recovery.
1757 * Don't fail devices as that won't really help.
1759 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1760 " for block %llu\n",
1761 mdname(mddev),
1762 bdevname(bio->bi_bdev, b),
1763 (unsigned long long)r1_bio->sector);
1764 for (d = 0; d < conf->raid_disks * 2; d++) {
1765 rdev = conf->mirrors[d].rdev;
1766 if (!rdev || test_bit(Faulty, &rdev->flags))
1767 continue;
1768 if (!rdev_set_badblocks(rdev, sect, s, 0))
1769 abort = 1;
1771 if (abort) {
1772 conf->recovery_disabled =
1773 mddev->recovery_disabled;
1774 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1775 md_done_sync(mddev, r1_bio->sectors, 0);
1776 put_buf(r1_bio);
1777 return 0;
1779 /* Try next page */
1780 sectors -= s;
1781 sect += s;
1782 idx++;
1783 continue;
1786 start = d;
1787 /* write it back and re-read */
1788 while (d != r1_bio->read_disk) {
1789 if (d == 0)
1790 d = conf->raid_disks * 2;
1791 d--;
1792 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1793 continue;
1794 rdev = conf->mirrors[d].rdev;
1795 if (r1_sync_page_io(rdev, sect, s,
1796 bio->bi_io_vec[idx].bv_page,
1797 WRITE) == 0) {
1798 r1_bio->bios[d]->bi_end_io = NULL;
1799 rdev_dec_pending(rdev, mddev);
1802 d = start;
1803 while (d != r1_bio->read_disk) {
1804 if (d == 0)
1805 d = conf->raid_disks * 2;
1806 d--;
1807 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1808 continue;
1809 rdev = conf->mirrors[d].rdev;
1810 if (r1_sync_page_io(rdev, sect, s,
1811 bio->bi_io_vec[idx].bv_page,
1812 READ) != 0)
1813 atomic_add(s, &rdev->corrected_errors);
1815 sectors -= s;
1816 sect += s;
1817 idx ++;
1819 set_bit(R1BIO_Uptodate, &r1_bio->state);
1820 set_bit(BIO_UPTODATE, &bio->bi_flags);
1821 return 1;
1824 static int process_checks(struct r1bio *r1_bio)
1826 /* We have read all readable devices. If we haven't
1827 * got the block, then there is no hope left.
1828 * If we have, then we want to do a comparison
1829 * and skip the write if everything is the same.
1830 * If any blocks failed to read, then we need to
1831 * attempt an over-write
1833 struct mddev *mddev = r1_bio->mddev;
1834 struct r1conf *conf = mddev->private;
1835 int primary;
1836 int i;
1837 int vcnt;
1839 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1840 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1841 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1842 r1_bio->bios[primary]->bi_end_io = NULL;
1843 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1844 break;
1846 r1_bio->read_disk = primary;
1847 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1848 for (i = 0; i < conf->raid_disks * 2; i++) {
1849 int j;
1850 struct bio *pbio = r1_bio->bios[primary];
1851 struct bio *sbio = r1_bio->bios[i];
1852 int size;
1854 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1855 continue;
1857 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1858 for (j = vcnt; j-- ; ) {
1859 struct page *p, *s;
1860 p = pbio->bi_io_vec[j].bv_page;
1861 s = sbio->bi_io_vec[j].bv_page;
1862 if (memcmp(page_address(p),
1863 page_address(s),
1864 sbio->bi_io_vec[j].bv_len))
1865 break;
1867 } else
1868 j = 0;
1869 if (j >= 0)
1870 mddev->resync_mismatches += r1_bio->sectors;
1871 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1872 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1873 /* No need to write to this device. */
1874 sbio->bi_end_io = NULL;
1875 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1876 continue;
1878 /* fixup the bio for reuse */
1879 sbio->bi_vcnt = vcnt;
1880 sbio->bi_size = r1_bio->sectors << 9;
1881 sbio->bi_idx = 0;
1882 sbio->bi_phys_segments = 0;
1883 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1884 sbio->bi_flags |= 1 << BIO_UPTODATE;
1885 sbio->bi_next = NULL;
1886 sbio->bi_sector = r1_bio->sector +
1887 conf->mirrors[i].rdev->data_offset;
1888 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1889 size = sbio->bi_size;
1890 for (j = 0; j < vcnt ; j++) {
1891 struct bio_vec *bi;
1892 bi = &sbio->bi_io_vec[j];
1893 bi->bv_offset = 0;
1894 if (size > PAGE_SIZE)
1895 bi->bv_len = PAGE_SIZE;
1896 else
1897 bi->bv_len = size;
1898 size -= PAGE_SIZE;
1899 memcpy(page_address(bi->bv_page),
1900 page_address(pbio->bi_io_vec[j].bv_page),
1901 PAGE_SIZE);
1904 return 0;
1907 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1909 struct r1conf *conf = mddev->private;
1910 int i;
1911 int disks = conf->raid_disks * 2;
1912 struct bio *bio, *wbio;
1914 bio = r1_bio->bios[r1_bio->read_disk];
1916 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1917 /* ouch - failed to read all of that. */
1918 if (!fix_sync_read_error(r1_bio))
1919 return;
1921 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1922 if (process_checks(r1_bio) < 0)
1923 return;
1925 * schedule writes
1927 atomic_set(&r1_bio->remaining, 1);
1928 for (i = 0; i < disks ; i++) {
1929 wbio = r1_bio->bios[i];
1930 if (wbio->bi_end_io == NULL ||
1931 (wbio->bi_end_io == end_sync_read &&
1932 (i == r1_bio->read_disk ||
1933 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1934 continue;
1936 wbio->bi_rw = WRITE;
1937 wbio->bi_end_io = end_sync_write;
1938 atomic_inc(&r1_bio->remaining);
1939 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1941 generic_make_request(wbio);
1944 if (atomic_dec_and_test(&r1_bio->remaining)) {
1945 /* if we're here, all write(s) have completed, so clean up */
1946 int s = r1_bio->sectors;
1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1948 test_bit(R1BIO_WriteError, &r1_bio->state))
1949 reschedule_retry(r1_bio);
1950 else {
1951 put_buf(r1_bio);
1952 md_done_sync(mddev, s, 1);
1958 * This is a kernel thread which:
1960 * 1. Retries failed read operations on working mirrors.
1961 * 2. Updates the raid superblock when problems encounter.
1962 * 3. Performs writes following reads for array synchronising.
1965 static void fix_read_error(struct r1conf *conf, int read_disk,
1966 sector_t sect, int sectors)
1968 struct mddev *mddev = conf->mddev;
1969 while(sectors) {
1970 int s = sectors;
1971 int d = read_disk;
1972 int success = 0;
1973 int start;
1974 struct md_rdev *rdev;
1976 if (s > (PAGE_SIZE>>9))
1977 s = PAGE_SIZE >> 9;
1979 do {
1980 /* Note: no rcu protection needed here
1981 * as this is synchronous in the raid1d thread
1982 * which is the thread that might remove
1983 * a device. If raid1d ever becomes multi-threaded....
1985 sector_t first_bad;
1986 int bad_sectors;
1988 rdev = conf->mirrors[d].rdev;
1989 if (rdev &&
1990 (test_bit(In_sync, &rdev->flags) ||
1991 (!test_bit(Faulty, &rdev->flags) &&
1992 rdev->recovery_offset >= sect + s)) &&
1993 is_badblock(rdev, sect, s,
1994 &first_bad, &bad_sectors) == 0 &&
1995 sync_page_io(rdev, sect, s<<9,
1996 conf->tmppage, READ, false))
1997 success = 1;
1998 else {
1999 d++;
2000 if (d == conf->raid_disks * 2)
2001 d = 0;
2003 } while (!success && d != read_disk);
2005 if (!success) {
2006 /* Cannot read from anywhere - mark it bad */
2007 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2008 if (!rdev_set_badblocks(rdev, sect, s, 0))
2009 md_error(mddev, rdev);
2010 break;
2012 /* write it back and re-read */
2013 start = d;
2014 while (d != read_disk) {
2015 if (d==0)
2016 d = conf->raid_disks * 2;
2017 d--;
2018 rdev = conf->mirrors[d].rdev;
2019 if (rdev &&
2020 test_bit(In_sync, &rdev->flags))
2021 r1_sync_page_io(rdev, sect, s,
2022 conf->tmppage, WRITE);
2024 d = start;
2025 while (d != read_disk) {
2026 char b[BDEVNAME_SIZE];
2027 if (d==0)
2028 d = conf->raid_disks * 2;
2029 d--;
2030 rdev = conf->mirrors[d].rdev;
2031 if (rdev &&
2032 test_bit(In_sync, &rdev->flags)) {
2033 if (r1_sync_page_io(rdev, sect, s,
2034 conf->tmppage, READ)) {
2035 atomic_add(s, &rdev->corrected_errors);
2036 printk(KERN_INFO
2037 "md/raid1:%s: read error corrected "
2038 "(%d sectors at %llu on %s)\n",
2039 mdname(mddev), s,
2040 (unsigned long long)(sect +
2041 rdev->data_offset),
2042 bdevname(rdev->bdev, b));
2046 sectors -= s;
2047 sect += s;
2051 static void bi_complete(struct bio *bio, int error)
2053 complete((struct completion *)bio->bi_private);
2056 static int submit_bio_wait(int rw, struct bio *bio)
2058 struct completion event;
2059 rw |= REQ_SYNC;
2061 init_completion(&event);
2062 bio->bi_private = &event;
2063 bio->bi_end_io = bi_complete;
2064 submit_bio(rw, bio);
2065 wait_for_completion(&event);
2067 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2070 static int narrow_write_error(struct r1bio *r1_bio, int i)
2072 struct mddev *mddev = r1_bio->mddev;
2073 struct r1conf *conf = mddev->private;
2074 struct md_rdev *rdev = conf->mirrors[i].rdev;
2075 int vcnt, idx;
2076 struct bio_vec *vec;
2078 /* bio has the data to be written to device 'i' where
2079 * we just recently had a write error.
2080 * We repeatedly clone the bio and trim down to one block,
2081 * then try the write. Where the write fails we record
2082 * a bad block.
2083 * It is conceivable that the bio doesn't exactly align with
2084 * blocks. We must handle this somehow.
2086 * We currently own a reference on the rdev.
2089 int block_sectors;
2090 sector_t sector;
2091 int sectors;
2092 int sect_to_write = r1_bio->sectors;
2093 int ok = 1;
2095 if (rdev->badblocks.shift < 0)
2096 return 0;
2098 block_sectors = 1 << rdev->badblocks.shift;
2099 sector = r1_bio->sector;
2100 sectors = ((sector + block_sectors)
2101 & ~(sector_t)(block_sectors - 1))
2102 - sector;
2104 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2105 vcnt = r1_bio->behind_page_count;
2106 vec = r1_bio->behind_bvecs;
2107 idx = 0;
2108 while (vec[idx].bv_page == NULL)
2109 idx++;
2110 } else {
2111 vcnt = r1_bio->master_bio->bi_vcnt;
2112 vec = r1_bio->master_bio->bi_io_vec;
2113 idx = r1_bio->master_bio->bi_idx;
2115 while (sect_to_write) {
2116 struct bio *wbio;
2117 if (sectors > sect_to_write)
2118 sectors = sect_to_write;
2119 /* Write at 'sector' for 'sectors'*/
2121 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2122 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2123 wbio->bi_sector = r1_bio->sector;
2124 wbio->bi_rw = WRITE;
2125 wbio->bi_vcnt = vcnt;
2126 wbio->bi_size = r1_bio->sectors << 9;
2127 wbio->bi_idx = idx;
2129 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2130 wbio->bi_sector += rdev->data_offset;
2131 wbio->bi_bdev = rdev->bdev;
2132 if (submit_bio_wait(WRITE, wbio) == 0)
2133 /* failure! */
2134 ok = rdev_set_badblocks(rdev, sector,
2135 sectors, 0)
2136 && ok;
2138 bio_put(wbio);
2139 sect_to_write -= sectors;
2140 sector += sectors;
2141 sectors = block_sectors;
2143 return ok;
2146 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2148 int m;
2149 int s = r1_bio->sectors;
2150 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2151 struct md_rdev *rdev = conf->mirrors[m].rdev;
2152 struct bio *bio = r1_bio->bios[m];
2153 if (bio->bi_end_io == NULL)
2154 continue;
2155 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2156 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2157 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2159 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2160 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2161 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2162 md_error(conf->mddev, rdev);
2165 put_buf(r1_bio);
2166 md_done_sync(conf->mddev, s, 1);
2169 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2171 int m;
2172 for (m = 0; m < conf->raid_disks * 2 ; m++)
2173 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2174 struct md_rdev *rdev = conf->mirrors[m].rdev;
2175 rdev_clear_badblocks(rdev,
2176 r1_bio->sector,
2177 r1_bio->sectors, 0);
2178 rdev_dec_pending(rdev, conf->mddev);
2179 } else if (r1_bio->bios[m] != NULL) {
2180 /* This drive got a write error. We need to
2181 * narrow down and record precise write
2182 * errors.
2184 if (!narrow_write_error(r1_bio, m)) {
2185 md_error(conf->mddev,
2186 conf->mirrors[m].rdev);
2187 /* an I/O failed, we can't clear the bitmap */
2188 set_bit(R1BIO_Degraded, &r1_bio->state);
2190 rdev_dec_pending(conf->mirrors[m].rdev,
2191 conf->mddev);
2193 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2194 close_write(r1_bio);
2195 raid_end_bio_io(r1_bio);
2198 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2200 int disk;
2201 int max_sectors;
2202 struct mddev *mddev = conf->mddev;
2203 struct bio *bio;
2204 char b[BDEVNAME_SIZE];
2205 struct md_rdev *rdev;
2207 clear_bit(R1BIO_ReadError, &r1_bio->state);
2208 /* we got a read error. Maybe the drive is bad. Maybe just
2209 * the block and we can fix it.
2210 * We freeze all other IO, and try reading the block from
2211 * other devices. When we find one, we re-write
2212 * and check it that fixes the read error.
2213 * This is all done synchronously while the array is
2214 * frozen
2216 if (mddev->ro == 0) {
2217 freeze_array(conf);
2218 fix_read_error(conf, r1_bio->read_disk,
2219 r1_bio->sector, r1_bio->sectors);
2220 unfreeze_array(conf);
2221 } else
2222 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2224 bio = r1_bio->bios[r1_bio->read_disk];
2225 bdevname(bio->bi_bdev, b);
2226 read_more:
2227 disk = read_balance(conf, r1_bio, &max_sectors);
2228 if (disk == -1) {
2229 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2230 " read error for block %llu\n",
2231 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2232 raid_end_bio_io(r1_bio);
2233 } else {
2234 const unsigned long do_sync
2235 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2236 if (bio) {
2237 r1_bio->bios[r1_bio->read_disk] =
2238 mddev->ro ? IO_BLOCKED : NULL;
2239 bio_put(bio);
2241 r1_bio->read_disk = disk;
2242 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2244 r1_bio->bios[r1_bio->read_disk] = bio;
2245 rdev = conf->mirrors[disk].rdev;
2246 printk_ratelimited(KERN_ERR
2247 "md/raid1:%s: redirecting sector %llu"
2248 " to other mirror: %s\n",
2249 mdname(mddev),
2250 (unsigned long long)r1_bio->sector,
2251 bdevname(rdev->bdev, b));
2252 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2253 bio->bi_bdev = rdev->bdev;
2254 bio->bi_end_io = raid1_end_read_request;
2255 bio->bi_rw = READ | do_sync;
2256 bio->bi_private = r1_bio;
2257 if (max_sectors < r1_bio->sectors) {
2258 /* Drat - have to split this up more */
2259 struct bio *mbio = r1_bio->master_bio;
2260 int sectors_handled = (r1_bio->sector + max_sectors
2261 - mbio->bi_sector);
2262 r1_bio->sectors = max_sectors;
2263 spin_lock_irq(&conf->device_lock);
2264 if (mbio->bi_phys_segments == 0)
2265 mbio->bi_phys_segments = 2;
2266 else
2267 mbio->bi_phys_segments++;
2268 spin_unlock_irq(&conf->device_lock);
2269 generic_make_request(bio);
2270 bio = NULL;
2272 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2274 r1_bio->master_bio = mbio;
2275 r1_bio->sectors = (mbio->bi_size >> 9)
2276 - sectors_handled;
2277 r1_bio->state = 0;
2278 set_bit(R1BIO_ReadError, &r1_bio->state);
2279 r1_bio->mddev = mddev;
2280 r1_bio->sector = mbio->bi_sector + sectors_handled;
2282 goto read_more;
2283 } else
2284 generic_make_request(bio);
2288 static void raid1d(struct mddev *mddev)
2290 struct r1bio *r1_bio;
2291 unsigned long flags;
2292 struct r1conf *conf = mddev->private;
2293 struct list_head *head = &conf->retry_list;
2294 struct blk_plug plug;
2296 md_check_recovery(mddev);
2298 blk_start_plug(&plug);
2299 for (;;) {
2301 flush_pending_writes(conf);
2303 spin_lock_irqsave(&conf->device_lock, flags);
2304 if (list_empty(head)) {
2305 spin_unlock_irqrestore(&conf->device_lock, flags);
2306 break;
2308 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2309 list_del(head->prev);
2310 conf->nr_queued--;
2311 spin_unlock_irqrestore(&conf->device_lock, flags);
2313 mddev = r1_bio->mddev;
2314 conf = mddev->private;
2315 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2316 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2317 test_bit(R1BIO_WriteError, &r1_bio->state))
2318 handle_sync_write_finished(conf, r1_bio);
2319 else
2320 sync_request_write(mddev, r1_bio);
2321 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2322 test_bit(R1BIO_WriteError, &r1_bio->state))
2323 handle_write_finished(conf, r1_bio);
2324 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2325 handle_read_error(conf, r1_bio);
2326 else
2327 /* just a partial read to be scheduled from separate
2328 * context
2330 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2332 cond_resched();
2333 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2334 md_check_recovery(mddev);
2336 blk_finish_plug(&plug);
2340 static int init_resync(struct r1conf *conf)
2342 int buffs;
2344 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2345 BUG_ON(conf->r1buf_pool);
2346 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2347 conf->poolinfo);
2348 if (!conf->r1buf_pool)
2349 return -ENOMEM;
2350 conf->next_resync = 0;
2351 return 0;
2355 * perform a "sync" on one "block"
2357 * We need to make sure that no normal I/O request - particularly write
2358 * requests - conflict with active sync requests.
2360 * This is achieved by tracking pending requests and a 'barrier' concept
2361 * that can be installed to exclude normal IO requests.
2364 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2366 struct r1conf *conf = mddev->private;
2367 struct r1bio *r1_bio;
2368 struct bio *bio;
2369 sector_t max_sector, nr_sectors;
2370 int disk = -1;
2371 int i;
2372 int wonly = -1;
2373 int write_targets = 0, read_targets = 0;
2374 sector_t sync_blocks;
2375 int still_degraded = 0;
2376 int good_sectors = RESYNC_SECTORS;
2377 int min_bad = 0; /* number of sectors that are bad in all devices */
2379 if (!conf->r1buf_pool)
2380 if (init_resync(conf))
2381 return 0;
2383 max_sector = mddev->dev_sectors;
2384 if (sector_nr >= max_sector) {
2385 /* If we aborted, we need to abort the
2386 * sync on the 'current' bitmap chunk (there will
2387 * only be one in raid1 resync.
2388 * We can find the current addess in mddev->curr_resync
2390 if (mddev->curr_resync < max_sector) /* aborted */
2391 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2392 &sync_blocks, 1);
2393 else /* completed sync */
2394 conf->fullsync = 0;
2396 bitmap_close_sync(mddev->bitmap);
2397 close_sync(conf);
2398 return 0;
2401 if (mddev->bitmap == NULL &&
2402 mddev->recovery_cp == MaxSector &&
2403 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2404 conf->fullsync == 0) {
2405 *skipped = 1;
2406 return max_sector - sector_nr;
2408 /* before building a request, check if we can skip these blocks..
2409 * This call the bitmap_start_sync doesn't actually record anything
2411 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2412 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2413 /* We can skip this block, and probably several more */
2414 *skipped = 1;
2415 return sync_blocks;
2418 * If there is non-resync activity waiting for a turn,
2419 * and resync is going fast enough,
2420 * then let it though before starting on this new sync request.
2422 if (!go_faster && conf->nr_waiting)
2423 msleep_interruptible(1000);
2425 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2426 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2427 raise_barrier(conf);
2429 conf->next_resync = sector_nr;
2431 rcu_read_lock();
2433 * If we get a correctably read error during resync or recovery,
2434 * we might want to read from a different device. So we
2435 * flag all drives that could conceivably be read from for READ,
2436 * and any others (which will be non-In_sync devices) for WRITE.
2437 * If a read fails, we try reading from something else for which READ
2438 * is OK.
2441 r1_bio->mddev = mddev;
2442 r1_bio->sector = sector_nr;
2443 r1_bio->state = 0;
2444 set_bit(R1BIO_IsSync, &r1_bio->state);
2446 for (i = 0; i < conf->raid_disks * 2; i++) {
2447 struct md_rdev *rdev;
2448 bio = r1_bio->bios[i];
2450 /* take from bio_init */
2451 bio->bi_next = NULL;
2452 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2453 bio->bi_flags |= 1 << BIO_UPTODATE;
2454 bio->bi_rw = READ;
2455 bio->bi_vcnt = 0;
2456 bio->bi_idx = 0;
2457 bio->bi_phys_segments = 0;
2458 bio->bi_size = 0;
2459 bio->bi_end_io = NULL;
2460 bio->bi_private = NULL;
2462 rdev = rcu_dereference(conf->mirrors[i].rdev);
2463 if (rdev == NULL ||
2464 test_bit(Faulty, &rdev->flags)) {
2465 if (i < conf->raid_disks)
2466 still_degraded = 1;
2467 } else if (!test_bit(In_sync, &rdev->flags)) {
2468 bio->bi_rw = WRITE;
2469 bio->bi_end_io = end_sync_write;
2470 write_targets ++;
2471 } else {
2472 /* may need to read from here */
2473 sector_t first_bad = MaxSector;
2474 int bad_sectors;
2476 if (is_badblock(rdev, sector_nr, good_sectors,
2477 &first_bad, &bad_sectors)) {
2478 if (first_bad > sector_nr)
2479 good_sectors = first_bad - sector_nr;
2480 else {
2481 bad_sectors -= (sector_nr - first_bad);
2482 if (min_bad == 0 ||
2483 min_bad > bad_sectors)
2484 min_bad = bad_sectors;
2487 if (sector_nr < first_bad) {
2488 if (test_bit(WriteMostly, &rdev->flags)) {
2489 if (wonly < 0)
2490 wonly = i;
2491 } else {
2492 if (disk < 0)
2493 disk = i;
2495 bio->bi_rw = READ;
2496 bio->bi_end_io = end_sync_read;
2497 read_targets++;
2498 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2499 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2500 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2502 * The device is suitable for reading (InSync),
2503 * but has bad block(s) here. Let's try to correct them,
2504 * if we are doing resync or repair. Otherwise, leave
2505 * this device alone for this sync request.
2507 bio->bi_rw = WRITE;
2508 bio->bi_end_io = end_sync_write;
2509 write_targets++;
2512 if (bio->bi_end_io) {
2513 atomic_inc(&rdev->nr_pending);
2514 bio->bi_sector = sector_nr + rdev->data_offset;
2515 bio->bi_bdev = rdev->bdev;
2516 bio->bi_private = r1_bio;
2519 rcu_read_unlock();
2520 if (disk < 0)
2521 disk = wonly;
2522 r1_bio->read_disk = disk;
2524 if (read_targets == 0 && min_bad > 0) {
2525 /* These sectors are bad on all InSync devices, so we
2526 * need to mark them bad on all write targets
2528 int ok = 1;
2529 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2530 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2531 struct md_rdev *rdev = conf->mirrors[i].rdev;
2532 ok = rdev_set_badblocks(rdev, sector_nr,
2533 min_bad, 0
2534 ) && ok;
2536 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2537 *skipped = 1;
2538 put_buf(r1_bio);
2540 if (!ok) {
2541 /* Cannot record the badblocks, so need to
2542 * abort the resync.
2543 * If there are multiple read targets, could just
2544 * fail the really bad ones ???
2546 conf->recovery_disabled = mddev->recovery_disabled;
2547 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2548 return 0;
2549 } else
2550 return min_bad;
2553 if (min_bad > 0 && min_bad < good_sectors) {
2554 /* only resync enough to reach the next bad->good
2555 * transition */
2556 good_sectors = min_bad;
2559 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2560 /* extra read targets are also write targets */
2561 write_targets += read_targets-1;
2563 if (write_targets == 0 || read_targets == 0) {
2564 /* There is nowhere to write, so all non-sync
2565 * drives must be failed - so we are finished
2567 sector_t rv;
2568 if (min_bad > 0)
2569 max_sector = sector_nr + min_bad;
2570 rv = max_sector - sector_nr;
2571 *skipped = 1;
2572 put_buf(r1_bio);
2573 return rv;
2576 if (max_sector > mddev->resync_max)
2577 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2578 if (max_sector > sector_nr + good_sectors)
2579 max_sector = sector_nr + good_sectors;
2580 nr_sectors = 0;
2581 sync_blocks = 0;
2582 do {
2583 struct page *page;
2584 int len = PAGE_SIZE;
2585 if (sector_nr + (len>>9) > max_sector)
2586 len = (max_sector - sector_nr) << 9;
2587 if (len == 0)
2588 break;
2589 if (sync_blocks == 0) {
2590 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2591 &sync_blocks, still_degraded) &&
2592 !conf->fullsync &&
2593 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2594 break;
2595 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2596 if ((len >> 9) > sync_blocks)
2597 len = sync_blocks<<9;
2600 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2601 bio = r1_bio->bios[i];
2602 if (bio->bi_end_io) {
2603 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2604 if (bio_add_page(bio, page, len, 0) == 0) {
2605 /* stop here */
2606 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2607 while (i > 0) {
2608 i--;
2609 bio = r1_bio->bios[i];
2610 if (bio->bi_end_io==NULL)
2611 continue;
2612 /* remove last page from this bio */
2613 bio->bi_vcnt--;
2614 bio->bi_size -= len;
2615 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2617 goto bio_full;
2621 nr_sectors += len>>9;
2622 sector_nr += len>>9;
2623 sync_blocks -= (len>>9);
2624 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2625 bio_full:
2626 r1_bio->sectors = nr_sectors;
2628 /* For a user-requested sync, we read all readable devices and do a
2629 * compare
2631 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2632 atomic_set(&r1_bio->remaining, read_targets);
2633 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2634 bio = r1_bio->bios[i];
2635 if (bio->bi_end_io == end_sync_read) {
2636 read_targets--;
2637 md_sync_acct(bio->bi_bdev, nr_sectors);
2638 generic_make_request(bio);
2641 } else {
2642 atomic_set(&r1_bio->remaining, 1);
2643 bio = r1_bio->bios[r1_bio->read_disk];
2644 md_sync_acct(bio->bi_bdev, nr_sectors);
2645 generic_make_request(bio);
2648 return nr_sectors;
2651 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2653 if (sectors)
2654 return sectors;
2656 return mddev->dev_sectors;
2659 static struct r1conf *setup_conf(struct mddev *mddev)
2661 struct r1conf *conf;
2662 int i;
2663 struct raid1_info *disk;
2664 struct md_rdev *rdev;
2665 int err = -ENOMEM;
2667 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2668 if (!conf)
2669 goto abort;
2671 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2672 * mddev->raid_disks * 2,
2673 GFP_KERNEL);
2674 if (!conf->mirrors)
2675 goto abort;
2677 conf->tmppage = alloc_page(GFP_KERNEL);
2678 if (!conf->tmppage)
2679 goto abort;
2681 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2682 if (!conf->poolinfo)
2683 goto abort;
2684 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2685 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2686 r1bio_pool_free,
2687 conf->poolinfo);
2688 if (!conf->r1bio_pool)
2689 goto abort;
2691 conf->poolinfo->mddev = mddev;
2693 err = -EINVAL;
2694 spin_lock_init(&conf->device_lock);
2695 rdev_for_each(rdev, mddev) {
2696 struct request_queue *q;
2697 int disk_idx = rdev->raid_disk;
2698 if (disk_idx >= mddev->raid_disks
2699 || disk_idx < 0)
2700 continue;
2701 if (test_bit(Replacement, &rdev->flags))
2702 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2703 else
2704 disk = conf->mirrors + disk_idx;
2706 if (disk->rdev)
2707 goto abort;
2708 disk->rdev = rdev;
2709 q = bdev_get_queue(rdev->bdev);
2710 if (q->merge_bvec_fn)
2711 mddev->merge_check_needed = 1;
2713 disk->head_position = 0;
2714 disk->seq_start = MaxSector;
2716 conf->raid_disks = mddev->raid_disks;
2717 conf->mddev = mddev;
2718 INIT_LIST_HEAD(&conf->retry_list);
2720 spin_lock_init(&conf->resync_lock);
2721 init_waitqueue_head(&conf->wait_barrier);
2723 bio_list_init(&conf->pending_bio_list);
2724 conf->pending_count = 0;
2725 conf->recovery_disabled = mddev->recovery_disabled - 1;
2727 err = -EIO;
2728 for (i = 0; i < conf->raid_disks * 2; i++) {
2730 disk = conf->mirrors + i;
2732 if (i < conf->raid_disks &&
2733 disk[conf->raid_disks].rdev) {
2734 /* This slot has a replacement. */
2735 if (!disk->rdev) {
2736 /* No original, just make the replacement
2737 * a recovering spare
2739 disk->rdev =
2740 disk[conf->raid_disks].rdev;
2741 disk[conf->raid_disks].rdev = NULL;
2742 } else if (!test_bit(In_sync, &disk->rdev->flags))
2743 /* Original is not in_sync - bad */
2744 goto abort;
2747 if (!disk->rdev ||
2748 !test_bit(In_sync, &disk->rdev->flags)) {
2749 disk->head_position = 0;
2750 if (disk->rdev &&
2751 (disk->rdev->saved_raid_disk < 0))
2752 conf->fullsync = 1;
2756 err = -ENOMEM;
2757 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2758 if (!conf->thread) {
2759 printk(KERN_ERR
2760 "md/raid1:%s: couldn't allocate thread\n",
2761 mdname(mddev));
2762 goto abort;
2765 return conf;
2767 abort:
2768 if (conf) {
2769 if (conf->r1bio_pool)
2770 mempool_destroy(conf->r1bio_pool);
2771 kfree(conf->mirrors);
2772 safe_put_page(conf->tmppage);
2773 kfree(conf->poolinfo);
2774 kfree(conf);
2776 return ERR_PTR(err);
2779 static int stop(struct mddev *mddev);
2780 static int run(struct mddev *mddev)
2782 struct r1conf *conf;
2783 int i;
2784 struct md_rdev *rdev;
2785 int ret;
2787 if (mddev->level != 1) {
2788 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2789 mdname(mddev), mddev->level);
2790 return -EIO;
2792 if (mddev->reshape_position != MaxSector) {
2793 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2794 mdname(mddev));
2795 return -EIO;
2798 * copy the already verified devices into our private RAID1
2799 * bookkeeping area. [whatever we allocate in run(),
2800 * should be freed in stop()]
2802 if (mddev->private == NULL)
2803 conf = setup_conf(mddev);
2804 else
2805 conf = mddev->private;
2807 if (IS_ERR(conf))
2808 return PTR_ERR(conf);
2810 rdev_for_each(rdev, mddev) {
2811 if (!mddev->gendisk)
2812 continue;
2813 disk_stack_limits(mddev->gendisk, rdev->bdev,
2814 rdev->data_offset << 9);
2817 mddev->degraded = 0;
2818 for (i=0; i < conf->raid_disks; i++)
2819 if (conf->mirrors[i].rdev == NULL ||
2820 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2821 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2822 mddev->degraded++;
2824 if (conf->raid_disks - mddev->degraded == 1)
2825 mddev->recovery_cp = MaxSector;
2827 if (mddev->recovery_cp != MaxSector)
2828 printk(KERN_NOTICE "md/raid1:%s: not clean"
2829 " -- starting background reconstruction\n",
2830 mdname(mddev));
2831 printk(KERN_INFO
2832 "md/raid1:%s: active with %d out of %d mirrors\n",
2833 mdname(mddev), mddev->raid_disks - mddev->degraded,
2834 mddev->raid_disks);
2837 * Ok, everything is just fine now
2839 mddev->thread = conf->thread;
2840 conf->thread = NULL;
2841 mddev->private = conf;
2843 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2845 if (mddev->queue) {
2846 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2847 mddev->queue->backing_dev_info.congested_data = mddev;
2848 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2851 ret = md_integrity_register(mddev);
2852 if (ret)
2853 stop(mddev);
2854 return ret;
2857 static int stop(struct mddev *mddev)
2859 struct r1conf *conf = mddev->private;
2860 struct bitmap *bitmap = mddev->bitmap;
2862 /* wait for behind writes to complete */
2863 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2864 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2865 mdname(mddev));
2866 /* need to kick something here to make sure I/O goes? */
2867 wait_event(bitmap->behind_wait,
2868 atomic_read(&bitmap->behind_writes) == 0);
2871 raise_barrier(conf);
2872 lower_barrier(conf);
2874 md_unregister_thread(&mddev->thread);
2875 if (conf->r1bio_pool)
2876 mempool_destroy(conf->r1bio_pool);
2877 kfree(conf->mirrors);
2878 kfree(conf->poolinfo);
2879 kfree(conf);
2880 mddev->private = NULL;
2881 return 0;
2884 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2886 /* no resync is happening, and there is enough space
2887 * on all devices, so we can resize.
2888 * We need to make sure resync covers any new space.
2889 * If the array is shrinking we should possibly wait until
2890 * any io in the removed space completes, but it hardly seems
2891 * worth it.
2893 sector_t newsize = raid1_size(mddev, sectors, 0);
2894 if (mddev->external_size &&
2895 mddev->array_sectors > newsize)
2896 return -EINVAL;
2897 if (mddev->bitmap) {
2898 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2899 if (ret)
2900 return ret;
2902 md_set_array_sectors(mddev, newsize);
2903 set_capacity(mddev->gendisk, mddev->array_sectors);
2904 revalidate_disk(mddev->gendisk);
2905 if (sectors > mddev->dev_sectors &&
2906 mddev->recovery_cp > mddev->dev_sectors) {
2907 mddev->recovery_cp = mddev->dev_sectors;
2908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2910 mddev->dev_sectors = sectors;
2911 mddev->resync_max_sectors = sectors;
2912 return 0;
2915 static int raid1_reshape(struct mddev *mddev)
2917 /* We need to:
2918 * 1/ resize the r1bio_pool
2919 * 2/ resize conf->mirrors
2921 * We allocate a new r1bio_pool if we can.
2922 * Then raise a device barrier and wait until all IO stops.
2923 * Then resize conf->mirrors and swap in the new r1bio pool.
2925 * At the same time, we "pack" the devices so that all the missing
2926 * devices have the higher raid_disk numbers.
2928 mempool_t *newpool, *oldpool;
2929 struct pool_info *newpoolinfo;
2930 struct raid1_info *newmirrors;
2931 struct r1conf *conf = mddev->private;
2932 int cnt, raid_disks;
2933 unsigned long flags;
2934 int d, d2, err;
2936 /* Cannot change chunk_size, layout, or level */
2937 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2938 mddev->layout != mddev->new_layout ||
2939 mddev->level != mddev->new_level) {
2940 mddev->new_chunk_sectors = mddev->chunk_sectors;
2941 mddev->new_layout = mddev->layout;
2942 mddev->new_level = mddev->level;
2943 return -EINVAL;
2946 err = md_allow_write(mddev);
2947 if (err)
2948 return err;
2950 raid_disks = mddev->raid_disks + mddev->delta_disks;
2952 if (raid_disks < conf->raid_disks) {
2953 cnt=0;
2954 for (d= 0; d < conf->raid_disks; d++)
2955 if (conf->mirrors[d].rdev)
2956 cnt++;
2957 if (cnt > raid_disks)
2958 return -EBUSY;
2961 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2962 if (!newpoolinfo)
2963 return -ENOMEM;
2964 newpoolinfo->mddev = mddev;
2965 newpoolinfo->raid_disks = raid_disks * 2;
2967 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2968 r1bio_pool_free, newpoolinfo);
2969 if (!newpool) {
2970 kfree(newpoolinfo);
2971 return -ENOMEM;
2973 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2974 GFP_KERNEL);
2975 if (!newmirrors) {
2976 kfree(newpoolinfo);
2977 mempool_destroy(newpool);
2978 return -ENOMEM;
2981 raise_barrier(conf);
2983 /* ok, everything is stopped */
2984 oldpool = conf->r1bio_pool;
2985 conf->r1bio_pool = newpool;
2987 for (d = d2 = 0; d < conf->raid_disks; d++) {
2988 struct md_rdev *rdev = conf->mirrors[d].rdev;
2989 if (rdev && rdev->raid_disk != d2) {
2990 sysfs_unlink_rdev(mddev, rdev);
2991 rdev->raid_disk = d2;
2992 sysfs_unlink_rdev(mddev, rdev);
2993 if (sysfs_link_rdev(mddev, rdev))
2994 printk(KERN_WARNING
2995 "md/raid1:%s: cannot register rd%d\n",
2996 mdname(mddev), rdev->raid_disk);
2998 if (rdev)
2999 newmirrors[d2++].rdev = rdev;
3001 kfree(conf->mirrors);
3002 conf->mirrors = newmirrors;
3003 kfree(conf->poolinfo);
3004 conf->poolinfo = newpoolinfo;
3006 spin_lock_irqsave(&conf->device_lock, flags);
3007 mddev->degraded += (raid_disks - conf->raid_disks);
3008 spin_unlock_irqrestore(&conf->device_lock, flags);
3009 conf->raid_disks = mddev->raid_disks = raid_disks;
3010 mddev->delta_disks = 0;
3012 lower_barrier(conf);
3014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 md_wakeup_thread(mddev->thread);
3017 mempool_destroy(oldpool);
3018 return 0;
3021 static void raid1_quiesce(struct mddev *mddev, int state)
3023 struct r1conf *conf = mddev->private;
3025 switch(state) {
3026 case 2: /* wake for suspend */
3027 wake_up(&conf->wait_barrier);
3028 break;
3029 case 1:
3030 raise_barrier(conf);
3031 break;
3032 case 0:
3033 lower_barrier(conf);
3034 break;
3038 static void *raid1_takeover(struct mddev *mddev)
3040 /* raid1 can take over:
3041 * raid5 with 2 devices, any layout or chunk size
3043 if (mddev->level == 5 && mddev->raid_disks == 2) {
3044 struct r1conf *conf;
3045 mddev->new_level = 1;
3046 mddev->new_layout = 0;
3047 mddev->new_chunk_sectors = 0;
3048 conf = setup_conf(mddev);
3049 if (!IS_ERR(conf))
3050 conf->barrier = 1;
3051 return conf;
3053 return ERR_PTR(-EINVAL);
3056 static struct md_personality raid1_personality =
3058 .name = "raid1",
3059 .level = 1,
3060 .owner = THIS_MODULE,
3061 .make_request = make_request,
3062 .run = run,
3063 .stop = stop,
3064 .status = status,
3065 .error_handler = error,
3066 .hot_add_disk = raid1_add_disk,
3067 .hot_remove_disk= raid1_remove_disk,
3068 .spare_active = raid1_spare_active,
3069 .sync_request = sync_request,
3070 .resize = raid1_resize,
3071 .size = raid1_size,
3072 .check_reshape = raid1_reshape,
3073 .quiesce = raid1_quiesce,
3074 .takeover = raid1_takeover,
3077 static int __init raid_init(void)
3079 return register_md_personality(&raid1_personality);
3082 static void raid_exit(void)
3084 unregister_md_personality(&raid1_personality);
3087 module_init(raid_init);
3088 module_exit(raid_exit);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3091 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3092 MODULE_ALIAS("md-raid1");
3093 MODULE_ALIAS("md-level-1");
3095 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);