2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
);
70 static void lower_barrier(struct r1conf
*conf
);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct pool_info
*pi
= data
;
75 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size
, gfp_flags
);
81 static void r1bio_pool_free(void *r1_bio
, void *data
)
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
94 struct pool_info
*pi
= data
;
100 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j
= pi
->raid_disks
; j
-- ; ) {
108 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
111 r1_bio
->bios
[j
] = bio
;
114 * Allocate RESYNC_PAGES data pages and attach them to
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
124 bio
= r1_bio
->bios
[j
];
125 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
126 page
= alloc_page(gfp_flags
);
130 bio
->bi_io_vec
[i
].bv_page
= page
;
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
136 for (i
=0; i
<RESYNC_PAGES
; i
++)
137 for (j
=1; j
<pi
->raid_disks
; j
++)
138 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
139 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
142 r1_bio
->master_bio
= NULL
;
147 for (j
=0 ; j
< pi
->raid_disks
; j
++)
148 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
149 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
152 while (++j
< pi
->raid_disks
)
153 bio_put(r1_bio
->bios
[j
]);
154 r1bio_pool_free(r1_bio
, data
);
158 static void r1buf_pool_free(void *__r1_bio
, void *data
)
160 struct pool_info
*pi
= data
;
162 struct r1bio
*r1bio
= __r1_bio
;
164 for (i
= 0; i
< RESYNC_PAGES
; i
++)
165 for (j
= pi
->raid_disks
; j
-- ;) {
167 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
168 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
169 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
171 for (i
=0 ; i
< pi
->raid_disks
; i
++)
172 bio_put(r1bio
->bios
[i
]);
174 r1bio_pool_free(r1bio
, data
);
177 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
181 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
182 struct bio
**bio
= r1_bio
->bios
+ i
;
183 if (!BIO_SPECIAL(*bio
))
189 static void free_r1bio(struct r1bio
*r1_bio
)
191 struct r1conf
*conf
= r1_bio
->mddev
->private;
193 put_all_bios(conf
, r1_bio
);
194 mempool_free(r1_bio
, conf
->r1bio_pool
);
197 static void put_buf(struct r1bio
*r1_bio
)
199 struct r1conf
*conf
= r1_bio
->mddev
->private;
202 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
203 struct bio
*bio
= r1_bio
->bios
[i
];
205 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
208 mempool_free(r1_bio
, conf
->r1buf_pool
);
213 static void reschedule_retry(struct r1bio
*r1_bio
)
216 struct mddev
*mddev
= r1_bio
->mddev
;
217 struct r1conf
*conf
= mddev
->private;
219 spin_lock_irqsave(&conf
->device_lock
, flags
);
220 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
222 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
224 wake_up(&conf
->wait_barrier
);
225 md_wakeup_thread(mddev
->thread
);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
233 static void call_bio_endio(struct r1bio
*r1_bio
)
235 struct bio
*bio
= r1_bio
->master_bio
;
237 struct r1conf
*conf
= r1_bio
->mddev
->private;
239 if (bio
->bi_phys_segments
) {
241 spin_lock_irqsave(&conf
->device_lock
, flags
);
242 bio
->bi_phys_segments
--;
243 done
= (bio
->bi_phys_segments
== 0);
244 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
248 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
249 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
253 * Wake up any possible resync thread that waits for the device
260 static void raid_end_bio_io(struct r1bio
*r1_bio
)
262 struct bio
*bio
= r1_bio
->master_bio
;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
268 (unsigned long long) bio
->bi_sector
,
269 (unsigned long long) bio
->bi_sector
+
270 (bio
->bi_size
>> 9) - 1);
272 call_bio_endio(r1_bio
);
278 * Update disk head position estimator based on IRQ completion info.
280 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
282 struct r1conf
*conf
= r1_bio
->mddev
->private;
284 conf
->mirrors
[disk
].head_position
=
285 r1_bio
->sector
+ (r1_bio
->sectors
);
289 * Find the disk number which triggered given bio
291 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
294 struct r1conf
*conf
= r1_bio
->mddev
->private;
295 int raid_disks
= conf
->raid_disks
;
297 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
298 if (r1_bio
->bios
[mirror
] == bio
)
301 BUG_ON(mirror
== raid_disks
* 2);
302 update_head_pos(mirror
, r1_bio
);
307 static void raid1_end_read_request(struct bio
*bio
, int error
)
309 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
310 struct r1bio
*r1_bio
= bio
->bi_private
;
312 struct r1conf
*conf
= r1_bio
->mddev
->private;
314 mirror
= r1_bio
->read_disk
;
316 * this branch is our 'one mirror IO has finished' event handler:
318 update_head_pos(mirror
, r1_bio
);
321 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
328 spin_lock_irqsave(&conf
->device_lock
, flags
);
329 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
330 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
331 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
333 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
337 raid_end_bio_io(r1_bio
);
342 char b
[BDEVNAME_SIZE
];
344 KERN_ERR
"md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
347 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
349 (unsigned long long)r1_bio
->sector
);
350 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
351 reschedule_retry(r1_bio
);
354 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
357 static void close_write(struct r1bio
*r1_bio
)
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
361 /* free extra copy of the data pages */
362 int i
= r1_bio
->behind_page_count
;
364 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
365 kfree(r1_bio
->behind_bvecs
);
366 r1_bio
->behind_bvecs
= NULL
;
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
371 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
372 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
373 md_write_end(r1_bio
->mddev
);
376 static void r1_bio_write_done(struct r1bio
*r1_bio
)
378 if (!atomic_dec_and_test(&r1_bio
->remaining
))
381 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
382 reschedule_retry(r1_bio
);
385 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
386 reschedule_retry(r1_bio
);
388 raid_end_bio_io(r1_bio
);
392 static void raid1_end_write_request(struct bio
*bio
, int error
)
394 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
395 struct r1bio
*r1_bio
= bio
->bi_private
;
396 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
397 struct r1conf
*conf
= r1_bio
->mddev
->private;
398 struct bio
*to_put
= NULL
;
400 mirror
= find_bio_disk(r1_bio
, bio
);
403 * 'one mirror IO has finished' event handler:
406 set_bit(WriteErrorSeen
,
407 &conf
->mirrors
[mirror
].rdev
->flags
);
408 if (!test_and_set_bit(WantReplacement
,
409 &conf
->mirrors
[mirror
].rdev
->flags
))
410 set_bit(MD_RECOVERY_NEEDED
, &
411 conf
->mddev
->recovery
);
413 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
428 r1_bio
->bios
[mirror
] = NULL
;
430 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
434 r1_bio
->sector
, r1_bio
->sectors
,
435 &first_bad
, &bad_sectors
)) {
436 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
437 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
442 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
443 atomic_dec(&r1_bio
->behind_remaining
);
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
452 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
453 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
456 struct bio
*mbio
= r1_bio
->master_bio
;
457 pr_debug("raid1: behind end write sectors"
459 (unsigned long long) mbio
->bi_sector
,
460 (unsigned long long) mbio
->bi_sector
+
461 (mbio
->bi_size
>> 9) - 1);
462 call_bio_endio(r1_bio
);
466 if (r1_bio
->bios
[mirror
] == NULL
)
467 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
471 * Let's see if all mirrored write operations have finished
474 r1_bio_write_done(r1_bio
);
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
493 * The rdev for the device selected will have nr_pending incremented.
495 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
497 const sector_t this_sector
= r1_bio
->sector
;
499 int best_good_sectors
;
500 int best_disk
, best_dist_disk
, best_pending_disk
;
504 unsigned int min_pending
;
505 struct md_rdev
*rdev
;
507 int choose_next_idle
;
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
516 sectors
= r1_bio
->sectors
;
519 best_dist
= MaxSector
;
520 best_pending_disk
= -1;
521 min_pending
= UINT_MAX
;
522 best_good_sectors
= 0;
524 choose_next_idle
= 0;
526 if (conf
->mddev
->recovery_cp
< MaxSector
&&
527 (this_sector
+ sectors
>= conf
->next_resync
))
532 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
536 unsigned int pending
;
539 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
540 if (r1_bio
->bios
[disk
] == IO_BLOCKED
542 || test_bit(Unmerged
, &rdev
->flags
)
543 || test_bit(Faulty
, &rdev
->flags
))
545 if (!test_bit(In_sync
, &rdev
->flags
) &&
546 rdev
->recovery_offset
< this_sector
+ sectors
)
548 if (test_bit(WriteMostly
, &rdev
->flags
)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
552 if (is_badblock(rdev
, this_sector
, sectors
,
553 &first_bad
, &bad_sectors
)) {
554 if (first_bad
< this_sector
)
555 /* Cannot use this */
557 best_good_sectors
= first_bad
- this_sector
;
559 best_good_sectors
= sectors
;
564 /* This is a reasonable device to use. It might
567 if (is_badblock(rdev
, this_sector
, sectors
,
568 &first_bad
, &bad_sectors
)) {
569 if (best_dist
< MaxSector
)
570 /* already have a better device */
572 if (first_bad
<= this_sector
) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
577 bad_sectors
-= (this_sector
- first_bad
);
578 if (choose_first
&& sectors
> bad_sectors
)
579 sectors
= bad_sectors
;
580 if (best_good_sectors
> sectors
)
581 best_good_sectors
= sectors
;
584 sector_t good_sectors
= first_bad
- this_sector
;
585 if (good_sectors
> best_good_sectors
) {
586 best_good_sectors
= good_sectors
;
594 best_good_sectors
= sectors
;
596 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
597 has_nonrot_disk
|= nonrot
;
598 pending
= atomic_read(&rdev
->nr_pending
);
599 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
604 /* Don't change to another disk for sequential reads */
605 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
607 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
608 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
624 if (nonrot
&& opt_iosize
> 0 &&
625 mirror
->seq_start
!= MaxSector
&&
626 mirror
->next_seq_sect
> opt_iosize
&&
627 mirror
->next_seq_sect
- opt_iosize
>=
629 choose_next_idle
= 1;
634 /* If device is idle, use it */
640 if (choose_next_idle
)
643 if (min_pending
> pending
) {
644 min_pending
= pending
;
645 best_pending_disk
= disk
;
648 if (dist
< best_dist
) {
650 best_dist_disk
= disk
;
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
660 if (best_disk
== -1) {
662 best_disk
= best_pending_disk
;
664 best_disk
= best_dist_disk
;
667 if (best_disk
>= 0) {
668 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
671 atomic_inc(&rdev
->nr_pending
);
672 if (test_bit(Faulty
, &rdev
->flags
)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
676 rdev_dec_pending(rdev
, conf
->mddev
);
679 sectors
= best_good_sectors
;
681 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
682 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
684 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
687 *max_sectors
= sectors
;
692 static int raid1_mergeable_bvec(struct request_queue
*q
,
693 struct bvec_merge_data
*bvm
,
694 struct bio_vec
*biovec
)
696 struct mddev
*mddev
= q
->queuedata
;
697 struct r1conf
*conf
= mddev
->private;
698 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
699 int max
= biovec
->bv_len
;
701 if (mddev
->merge_check_needed
) {
704 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
705 struct md_rdev
*rdev
= rcu_dereference(
706 conf
->mirrors
[disk
].rdev
);
707 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
708 struct request_queue
*q
=
709 bdev_get_queue(rdev
->bdev
);
710 if (q
->merge_bvec_fn
) {
711 bvm
->bi_sector
= sector
+
713 bvm
->bi_bdev
= rdev
->bdev
;
714 max
= min(max
, q
->merge_bvec_fn(
725 int md_raid1_congested(struct mddev
*mddev
, int bits
)
727 struct r1conf
*conf
= mddev
->private;
730 if ((bits
& (1 << BDI_async_congested
)) &&
731 conf
->pending_count
>= max_queued_requests
)
735 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
736 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
737 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
738 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
745 if ((bits
& (1<<BDI_async_congested
)) || 1)
746 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
748 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
754 EXPORT_SYMBOL_GPL(md_raid1_congested
);
756 static int raid1_congested(void *data
, int bits
)
758 struct mddev
*mddev
= data
;
760 return mddev_congested(mddev
, bits
) ||
761 md_raid1_congested(mddev
, bits
);
764 static void flush_pending_writes(struct r1conf
*conf
)
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
769 spin_lock_irq(&conf
->device_lock
);
771 if (conf
->pending_bio_list
.head
) {
773 bio
= bio_list_get(&conf
->pending_bio_list
);
774 conf
->pending_count
= 0;
775 spin_unlock_irq(&conf
->device_lock
);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf
->mddev
->bitmap
);
779 wake_up(&conf
->wait_barrier
);
781 while (bio
) { /* submit pending writes */
782 struct bio
*next
= bio
->bi_next
;
784 generic_make_request(bio
);
788 spin_unlock_irq(&conf
->device_lock
);
792 * Sometimes we need to suspend IO while we do something else,
793 * either some resync/recovery, or reconfigure the array.
794 * To do this we raise a 'barrier'.
795 * The 'barrier' is a counter that can be raised multiple times
796 * to count how many activities are happening which preclude
798 * We can only raise the barrier if there is no pending IO.
799 * i.e. if nr_pending == 0.
800 * We choose only to raise the barrier if no-one is waiting for the
801 * barrier to go down. This means that as soon as an IO request
802 * is ready, no other operations which require a barrier will start
803 * until the IO request has had a chance.
805 * So: regular IO calls 'wait_barrier'. When that returns there
806 * is no backgroup IO happening, It must arrange to call
807 * allow_barrier when it has finished its IO.
808 * backgroup IO calls must call raise_barrier. Once that returns
809 * there is no normal IO happeing. It must arrange to call
810 * lower_barrier when the particular background IO completes.
812 #define RESYNC_DEPTH 32
814 static void raise_barrier(struct r1conf
*conf
)
816 spin_lock_irq(&conf
->resync_lock
);
818 /* Wait until no block IO is waiting */
819 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
820 conf
->resync_lock
, );
822 /* block any new IO from starting */
825 /* Now wait for all pending IO to complete */
826 wait_event_lock_irq(conf
->wait_barrier
,
827 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
828 conf
->resync_lock
, );
830 spin_unlock_irq(&conf
->resync_lock
);
833 static void lower_barrier(struct r1conf
*conf
)
836 BUG_ON(conf
->barrier
<= 0);
837 spin_lock_irqsave(&conf
->resync_lock
, flags
);
839 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
840 wake_up(&conf
->wait_barrier
);
843 static void wait_barrier(struct r1conf
*conf
)
845 spin_lock_irq(&conf
->resync_lock
);
848 /* Wait for the barrier to drop.
849 * However if there are already pending
850 * requests (preventing the barrier from
851 * rising completely), and the
852 * pre-process bio queue isn't empty,
853 * then don't wait, as we need to empty
854 * that queue to get the nr_pending
857 wait_event_lock_irq(conf
->wait_barrier
,
861 !bio_list_empty(current
->bio_list
)),
867 spin_unlock_irq(&conf
->resync_lock
);
870 static void allow_barrier(struct r1conf
*conf
)
873 spin_lock_irqsave(&conf
->resync_lock
, flags
);
875 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
876 wake_up(&conf
->wait_barrier
);
879 static void freeze_array(struct r1conf
*conf
)
881 /* stop syncio and normal IO and wait for everything to
883 * We increment barrier and nr_waiting, and then
884 * wait until nr_pending match nr_queued+1
885 * This is called in the context of one normal IO request
886 * that has failed. Thus any sync request that might be pending
887 * will be blocked by nr_pending, and we need to wait for
888 * pending IO requests to complete or be queued for re-try.
889 * Thus the number queued (nr_queued) plus this request (1)
890 * must match the number of pending IOs (nr_pending) before
893 spin_lock_irq(&conf
->resync_lock
);
896 wait_event_lock_irq(conf
->wait_barrier
,
897 conf
->nr_pending
== conf
->nr_queued
+1,
899 flush_pending_writes(conf
));
900 spin_unlock_irq(&conf
->resync_lock
);
902 static void unfreeze_array(struct r1conf
*conf
)
904 /* reverse the effect of the freeze */
905 spin_lock_irq(&conf
->resync_lock
);
908 wake_up(&conf
->wait_barrier
);
909 spin_unlock_irq(&conf
->resync_lock
);
913 /* duplicate the data pages for behind I/O
915 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
918 struct bio_vec
*bvec
;
919 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
921 if (unlikely(!bvecs
))
924 bio_for_each_segment(bvec
, bio
, i
) {
926 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
927 if (unlikely(!bvecs
[i
].bv_page
))
929 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
930 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
931 kunmap(bvecs
[i
].bv_page
);
932 kunmap(bvec
->bv_page
);
934 r1_bio
->behind_bvecs
= bvecs
;
935 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
936 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
940 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
941 if (bvecs
[i
].bv_page
)
942 put_page(bvecs
[i
].bv_page
);
944 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
947 struct raid1_plug_cb
{
948 struct blk_plug_cb cb
;
949 struct bio_list pending
;
953 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
955 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
957 struct mddev
*mddev
= plug
->cb
.data
;
958 struct r1conf
*conf
= mddev
->private;
962 spin_lock_irq(&conf
->device_lock
);
963 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
964 conf
->pending_count
+= plug
->pending_cnt
;
965 spin_unlock_irq(&conf
->device_lock
);
966 md_wakeup_thread(mddev
->thread
);
971 /* we aren't scheduling, so we can do the write-out directly. */
972 bio
= bio_list_get(&plug
->pending
);
973 bitmap_unplug(mddev
->bitmap
);
974 wake_up(&conf
->wait_barrier
);
976 while (bio
) { /* submit pending writes */
977 struct bio
*next
= bio
->bi_next
;
979 generic_make_request(bio
);
985 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
987 struct r1conf
*conf
= mddev
->private;
988 struct raid1_info
*mirror
;
989 struct r1bio
*r1_bio
;
990 struct bio
*read_bio
;
992 struct bitmap
*bitmap
;
994 const int rw
= bio_data_dir(bio
);
995 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
996 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
997 struct md_rdev
*blocked_rdev
;
998 struct blk_plug_cb
*cb
;
999 struct raid1_plug_cb
*plug
= NULL
;
1001 int sectors_handled
;
1005 * Register the new request and wait if the reconstruction
1006 * thread has put up a bar for new requests.
1007 * Continue immediately if no resync is active currently.
1010 md_write_start(mddev
, bio
); /* wait on superblock update early */
1012 if (bio_data_dir(bio
) == WRITE
&&
1013 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
1014 bio
->bi_sector
< mddev
->suspend_hi
) {
1015 /* As the suspend_* range is controlled by
1016 * userspace, we want an interruptible
1021 flush_signals(current
);
1022 prepare_to_wait(&conf
->wait_barrier
,
1023 &w
, TASK_INTERRUPTIBLE
);
1024 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
1025 bio
->bi_sector
>= mddev
->suspend_hi
)
1029 finish_wait(&conf
->wait_barrier
, &w
);
1034 bitmap
= mddev
->bitmap
;
1037 * make_request() can abort the operation when READA is being
1038 * used and no empty request is available.
1041 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1043 r1_bio
->master_bio
= bio
;
1044 r1_bio
->sectors
= bio
->bi_size
>> 9;
1046 r1_bio
->mddev
= mddev
;
1047 r1_bio
->sector
= bio
->bi_sector
;
1049 /* We might need to issue multiple reads to different
1050 * devices if there are bad blocks around, so we keep
1051 * track of the number of reads in bio->bi_phys_segments.
1052 * If this is 0, there is only one r1_bio and no locking
1053 * will be needed when requests complete. If it is
1054 * non-zero, then it is the number of not-completed requests.
1056 bio
->bi_phys_segments
= 0;
1057 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1061 * read balancing logic:
1066 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1069 /* couldn't find anywhere to read from */
1070 raid_end_bio_io(r1_bio
);
1073 mirror
= conf
->mirrors
+ rdisk
;
1075 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1077 /* Reading from a write-mostly device must
1078 * take care not to over-take any writes
1081 wait_event(bitmap
->behind_wait
,
1082 atomic_read(&bitmap
->behind_writes
) == 0);
1084 r1_bio
->read_disk
= rdisk
;
1086 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1087 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
1090 r1_bio
->bios
[rdisk
] = read_bio
;
1092 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
1093 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1094 read_bio
->bi_end_io
= raid1_end_read_request
;
1095 read_bio
->bi_rw
= READ
| do_sync
;
1096 read_bio
->bi_private
= r1_bio
;
1098 if (max_sectors
< r1_bio
->sectors
) {
1099 /* could not read all from this device, so we will
1100 * need another r1_bio.
1103 sectors_handled
= (r1_bio
->sector
+ max_sectors
1105 r1_bio
->sectors
= max_sectors
;
1106 spin_lock_irq(&conf
->device_lock
);
1107 if (bio
->bi_phys_segments
== 0)
1108 bio
->bi_phys_segments
= 2;
1110 bio
->bi_phys_segments
++;
1111 spin_unlock_irq(&conf
->device_lock
);
1112 /* Cannot call generic_make_request directly
1113 * as that will be queued in __make_request
1114 * and subsequent mempool_alloc might block waiting
1115 * for it. So hand bio over to raid1d.
1117 reschedule_retry(r1_bio
);
1119 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1121 r1_bio
->master_bio
= bio
;
1122 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1124 r1_bio
->mddev
= mddev
;
1125 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1128 generic_make_request(read_bio
);
1135 if (conf
->pending_count
>= max_queued_requests
) {
1136 md_wakeup_thread(mddev
->thread
);
1137 wait_event(conf
->wait_barrier
,
1138 conf
->pending_count
< max_queued_requests
);
1140 /* first select target devices under rcu_lock and
1141 * inc refcount on their rdev. Record them by setting
1143 * If there are known/acknowledged bad blocks on any device on
1144 * which we have seen a write error, we want to avoid writing those
1146 * This potentially requires several writes to write around
1147 * the bad blocks. Each set of writes gets it's own r1bio
1148 * with a set of bios attached.
1151 disks
= conf
->raid_disks
* 2;
1153 blocked_rdev
= NULL
;
1155 max_sectors
= r1_bio
->sectors
;
1156 for (i
= 0; i
< disks
; i
++) {
1157 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1158 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1159 atomic_inc(&rdev
->nr_pending
);
1160 blocked_rdev
= rdev
;
1163 r1_bio
->bios
[i
] = NULL
;
1164 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1165 || test_bit(Unmerged
, &rdev
->flags
)) {
1166 if (i
< conf
->raid_disks
)
1167 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1171 atomic_inc(&rdev
->nr_pending
);
1172 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1177 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1179 &first_bad
, &bad_sectors
);
1181 /* mustn't write here until the bad block is
1183 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1184 blocked_rdev
= rdev
;
1187 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1188 /* Cannot write here at all */
1189 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1190 if (bad_sectors
< max_sectors
)
1191 /* mustn't write more than bad_sectors
1192 * to other devices yet
1194 max_sectors
= bad_sectors
;
1195 rdev_dec_pending(rdev
, mddev
);
1196 /* We don't set R1BIO_Degraded as that
1197 * only applies if the disk is
1198 * missing, so it might be re-added,
1199 * and we want to know to recover this
1201 * In this case the device is here,
1202 * and the fact that this chunk is not
1203 * in-sync is recorded in the bad
1209 int good_sectors
= first_bad
- r1_bio
->sector
;
1210 if (good_sectors
< max_sectors
)
1211 max_sectors
= good_sectors
;
1214 r1_bio
->bios
[i
] = bio
;
1218 if (unlikely(blocked_rdev
)) {
1219 /* Wait for this device to become unblocked */
1222 for (j
= 0; j
< i
; j
++)
1223 if (r1_bio
->bios
[j
])
1224 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1226 allow_barrier(conf
);
1227 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1232 if (max_sectors
< r1_bio
->sectors
) {
1233 /* We are splitting this write into multiple parts, so
1234 * we need to prepare for allocating another r1_bio.
1236 r1_bio
->sectors
= max_sectors
;
1237 spin_lock_irq(&conf
->device_lock
);
1238 if (bio
->bi_phys_segments
== 0)
1239 bio
->bi_phys_segments
= 2;
1241 bio
->bi_phys_segments
++;
1242 spin_unlock_irq(&conf
->device_lock
);
1244 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1246 atomic_set(&r1_bio
->remaining
, 1);
1247 atomic_set(&r1_bio
->behind_remaining
, 0);
1250 for (i
= 0; i
< disks
; i
++) {
1252 if (!r1_bio
->bios
[i
])
1255 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1256 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1260 * Not if there are too many, or cannot
1261 * allocate memory, or a reader on WriteMostly
1262 * is waiting for behind writes to flush */
1264 (atomic_read(&bitmap
->behind_writes
)
1265 < mddev
->bitmap_info
.max_write_behind
) &&
1266 !waitqueue_active(&bitmap
->behind_wait
))
1267 alloc_behind_pages(mbio
, r1_bio
);
1269 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1271 test_bit(R1BIO_BehindIO
,
1275 if (r1_bio
->behind_bvecs
) {
1276 struct bio_vec
*bvec
;
1279 /* Yes, I really want the '__' version so that
1280 * we clear any unused pointer in the io_vec, rather
1281 * than leave them unchanged. This is important
1282 * because when we come to free the pages, we won't
1283 * know the original bi_idx, so we just free
1286 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1287 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1288 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1289 atomic_inc(&r1_bio
->behind_remaining
);
1292 r1_bio
->bios
[i
] = mbio
;
1294 mbio
->bi_sector
= (r1_bio
->sector
+
1295 conf
->mirrors
[i
].rdev
->data_offset
);
1296 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1297 mbio
->bi_end_io
= raid1_end_write_request
;
1298 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1299 mbio
->bi_private
= r1_bio
;
1301 atomic_inc(&r1_bio
->remaining
);
1303 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1305 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1308 spin_lock_irqsave(&conf
->device_lock
, flags
);
1310 bio_list_add(&plug
->pending
, mbio
);
1311 plug
->pending_cnt
++;
1313 bio_list_add(&conf
->pending_bio_list
, mbio
);
1314 conf
->pending_count
++;
1316 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1318 md_wakeup_thread(mddev
->thread
);
1320 /* Mustn't call r1_bio_write_done before this next test,
1321 * as it could result in the bio being freed.
1323 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1324 r1_bio_write_done(r1_bio
);
1325 /* We need another r1_bio. It has already been counted
1326 * in bio->bi_phys_segments
1328 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1329 r1_bio
->master_bio
= bio
;
1330 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1332 r1_bio
->mddev
= mddev
;
1333 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1337 r1_bio_write_done(r1_bio
);
1339 /* In case raid1d snuck in to freeze_array */
1340 wake_up(&conf
->wait_barrier
);
1343 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1345 struct r1conf
*conf
= mddev
->private;
1348 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1349 conf
->raid_disks
- mddev
->degraded
);
1351 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1352 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1353 seq_printf(seq
, "%s",
1354 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1357 seq_printf(seq
, "]");
1361 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1363 char b
[BDEVNAME_SIZE
];
1364 struct r1conf
*conf
= mddev
->private;
1367 * If it is not operational, then we have already marked it as dead
1368 * else if it is the last working disks, ignore the error, let the
1369 * next level up know.
1370 * else mark the drive as failed
1372 if (test_bit(In_sync
, &rdev
->flags
)
1373 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1375 * Don't fail the drive, act as though we were just a
1376 * normal single drive.
1377 * However don't try a recovery from this drive as
1378 * it is very likely to fail.
1380 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1383 set_bit(Blocked
, &rdev
->flags
);
1384 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1385 unsigned long flags
;
1386 spin_lock_irqsave(&conf
->device_lock
, flags
);
1388 set_bit(Faulty
, &rdev
->flags
);
1389 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1391 * if recovery is running, make sure it aborts.
1393 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1395 set_bit(Faulty
, &rdev
->flags
);
1396 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1398 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1399 "md/raid1:%s: Operation continuing on %d devices.\n",
1400 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1401 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1404 static void print_conf(struct r1conf
*conf
)
1408 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1410 printk(KERN_DEBUG
"(!conf)\n");
1413 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1417 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1418 char b
[BDEVNAME_SIZE
];
1419 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1421 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1422 i
, !test_bit(In_sync
, &rdev
->flags
),
1423 !test_bit(Faulty
, &rdev
->flags
),
1424 bdevname(rdev
->bdev
,b
));
1429 static void close_sync(struct r1conf
*conf
)
1432 allow_barrier(conf
);
1434 mempool_destroy(conf
->r1buf_pool
);
1435 conf
->r1buf_pool
= NULL
;
1438 static int raid1_spare_active(struct mddev
*mddev
)
1441 struct r1conf
*conf
= mddev
->private;
1443 unsigned long flags
;
1446 * Find all failed disks within the RAID1 configuration
1447 * and mark them readable.
1448 * Called under mddev lock, so rcu protection not needed.
1450 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1451 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1452 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1454 && repl
->recovery_offset
== MaxSector
1455 && !test_bit(Faulty
, &repl
->flags
)
1456 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1457 /* replacement has just become active */
1459 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1462 /* Replaced device not technically
1463 * faulty, but we need to be sure
1464 * it gets removed and never re-added
1466 set_bit(Faulty
, &rdev
->flags
);
1467 sysfs_notify_dirent_safe(
1472 && !test_bit(Faulty
, &rdev
->flags
)
1473 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1475 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1478 spin_lock_irqsave(&conf
->device_lock
, flags
);
1479 mddev
->degraded
-= count
;
1480 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1487 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1489 struct r1conf
*conf
= mddev
->private;
1492 struct raid1_info
*p
;
1494 int last
= conf
->raid_disks
- 1;
1495 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1497 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1500 if (rdev
->raid_disk
>= 0)
1501 first
= last
= rdev
->raid_disk
;
1503 if (q
->merge_bvec_fn
) {
1504 set_bit(Unmerged
, &rdev
->flags
);
1505 mddev
->merge_check_needed
= 1;
1508 for (mirror
= first
; mirror
<= last
; mirror
++) {
1509 p
= conf
->mirrors
+mirror
;
1512 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1513 rdev
->data_offset
<< 9);
1515 p
->head_position
= 0;
1516 rdev
->raid_disk
= mirror
;
1518 /* As all devices are equivalent, we don't need a full recovery
1519 * if this was recently any drive of the array
1521 if (rdev
->saved_raid_disk
< 0)
1523 rcu_assign_pointer(p
->rdev
, rdev
);
1526 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1527 p
[conf
->raid_disks
].rdev
== NULL
) {
1528 /* Add this device as a replacement */
1529 clear_bit(In_sync
, &rdev
->flags
);
1530 set_bit(Replacement
, &rdev
->flags
);
1531 rdev
->raid_disk
= mirror
;
1534 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1538 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1539 /* Some requests might not have seen this new
1540 * merge_bvec_fn. We must wait for them to complete
1541 * before merging the device fully.
1542 * First we make sure any code which has tested
1543 * our function has submitted the request, then
1544 * we wait for all outstanding requests to complete.
1546 synchronize_sched();
1547 raise_barrier(conf
);
1548 lower_barrier(conf
);
1549 clear_bit(Unmerged
, &rdev
->flags
);
1551 md_integrity_add_rdev(rdev
, mddev
);
1556 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1558 struct r1conf
*conf
= mddev
->private;
1560 int number
= rdev
->raid_disk
;
1561 struct raid1_info
*p
= conf
->mirrors
+ number
;
1563 if (rdev
!= p
->rdev
)
1564 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1567 if (rdev
== p
->rdev
) {
1568 if (test_bit(In_sync
, &rdev
->flags
) ||
1569 atomic_read(&rdev
->nr_pending
)) {
1573 /* Only remove non-faulty devices if recovery
1576 if (!test_bit(Faulty
, &rdev
->flags
) &&
1577 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1578 mddev
->degraded
< conf
->raid_disks
) {
1584 if (atomic_read(&rdev
->nr_pending
)) {
1585 /* lost the race, try later */
1589 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1590 /* We just removed a device that is being replaced.
1591 * Move down the replacement. We drain all IO before
1592 * doing this to avoid confusion.
1594 struct md_rdev
*repl
=
1595 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1596 raise_barrier(conf
);
1597 clear_bit(Replacement
, &repl
->flags
);
1599 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1600 lower_barrier(conf
);
1601 clear_bit(WantReplacement
, &rdev
->flags
);
1603 clear_bit(WantReplacement
, &rdev
->flags
);
1604 err
= md_integrity_register(mddev
);
1613 static void end_sync_read(struct bio
*bio
, int error
)
1615 struct r1bio
*r1_bio
= bio
->bi_private
;
1617 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1620 * we have read a block, now it needs to be re-written,
1621 * or re-read if the read failed.
1622 * We don't do much here, just schedule handling by raid1d
1624 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1625 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1627 if (atomic_dec_and_test(&r1_bio
->remaining
))
1628 reschedule_retry(r1_bio
);
1631 static void end_sync_write(struct bio
*bio
, int error
)
1633 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1634 struct r1bio
*r1_bio
= bio
->bi_private
;
1635 struct mddev
*mddev
= r1_bio
->mddev
;
1636 struct r1conf
*conf
= mddev
->private;
1641 mirror
= find_bio_disk(r1_bio
, bio
);
1644 sector_t sync_blocks
= 0;
1645 sector_t s
= r1_bio
->sector
;
1646 long sectors_to_go
= r1_bio
->sectors
;
1647 /* make sure these bits doesn't get cleared. */
1649 bitmap_end_sync(mddev
->bitmap
, s
,
1652 sectors_to_go
-= sync_blocks
;
1653 } while (sectors_to_go
> 0);
1654 set_bit(WriteErrorSeen
,
1655 &conf
->mirrors
[mirror
].rdev
->flags
);
1656 if (!test_and_set_bit(WantReplacement
,
1657 &conf
->mirrors
[mirror
].rdev
->flags
))
1658 set_bit(MD_RECOVERY_NEEDED
, &
1660 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1661 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1664 &first_bad
, &bad_sectors
) &&
1665 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1668 &first_bad
, &bad_sectors
)
1670 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1672 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1673 int s
= r1_bio
->sectors
;
1674 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1675 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1676 reschedule_retry(r1_bio
);
1679 md_done_sync(mddev
, s
, uptodate
);
1684 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1685 int sectors
, struct page
*page
, int rw
)
1687 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1691 set_bit(WriteErrorSeen
, &rdev
->flags
);
1692 if (!test_and_set_bit(WantReplacement
,
1694 set_bit(MD_RECOVERY_NEEDED
, &
1695 rdev
->mddev
->recovery
);
1697 /* need to record an error - either for the block or the device */
1698 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1699 md_error(rdev
->mddev
, rdev
);
1703 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1705 /* Try some synchronous reads of other devices to get
1706 * good data, much like with normal read errors. Only
1707 * read into the pages we already have so we don't
1708 * need to re-issue the read request.
1709 * We don't need to freeze the array, because being in an
1710 * active sync request, there is no normal IO, and
1711 * no overlapping syncs.
1712 * We don't need to check is_badblock() again as we
1713 * made sure that anything with a bad block in range
1714 * will have bi_end_io clear.
1716 struct mddev
*mddev
= r1_bio
->mddev
;
1717 struct r1conf
*conf
= mddev
->private;
1718 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1719 sector_t sect
= r1_bio
->sector
;
1720 int sectors
= r1_bio
->sectors
;
1725 int d
= r1_bio
->read_disk
;
1727 struct md_rdev
*rdev
;
1730 if (s
> (PAGE_SIZE
>>9))
1733 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1734 /* No rcu protection needed here devices
1735 * can only be removed when no resync is
1736 * active, and resync is currently active
1738 rdev
= conf
->mirrors
[d
].rdev
;
1739 if (sync_page_io(rdev
, sect
, s
<<9,
1740 bio
->bi_io_vec
[idx
].bv_page
,
1747 if (d
== conf
->raid_disks
* 2)
1749 } while (!success
&& d
!= r1_bio
->read_disk
);
1752 char b
[BDEVNAME_SIZE
];
1754 /* Cannot read from anywhere, this block is lost.
1755 * Record a bad block on each device. If that doesn't
1756 * work just disable and interrupt the recovery.
1757 * Don't fail devices as that won't really help.
1759 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1760 " for block %llu\n",
1762 bdevname(bio
->bi_bdev
, b
),
1763 (unsigned long long)r1_bio
->sector
);
1764 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1765 rdev
= conf
->mirrors
[d
].rdev
;
1766 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1768 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1772 conf
->recovery_disabled
=
1773 mddev
->recovery_disabled
;
1774 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1775 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1787 /* write it back and re-read */
1788 while (d
!= r1_bio
->read_disk
) {
1790 d
= conf
->raid_disks
* 2;
1792 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1794 rdev
= conf
->mirrors
[d
].rdev
;
1795 if (r1_sync_page_io(rdev
, sect
, s
,
1796 bio
->bi_io_vec
[idx
].bv_page
,
1798 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1799 rdev_dec_pending(rdev
, mddev
);
1803 while (d
!= r1_bio
->read_disk
) {
1805 d
= conf
->raid_disks
* 2;
1807 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1809 rdev
= conf
->mirrors
[d
].rdev
;
1810 if (r1_sync_page_io(rdev
, sect
, s
,
1811 bio
->bi_io_vec
[idx
].bv_page
,
1813 atomic_add(s
, &rdev
->corrected_errors
);
1819 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1820 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1824 static int process_checks(struct r1bio
*r1_bio
)
1826 /* We have read all readable devices. If we haven't
1827 * got the block, then there is no hope left.
1828 * If we have, then we want to do a comparison
1829 * and skip the write if everything is the same.
1830 * If any blocks failed to read, then we need to
1831 * attempt an over-write
1833 struct mddev
*mddev
= r1_bio
->mddev
;
1834 struct r1conf
*conf
= mddev
->private;
1839 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1840 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1841 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1842 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1843 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1846 r1_bio
->read_disk
= primary
;
1847 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1848 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1850 struct bio
*pbio
= r1_bio
->bios
[primary
];
1851 struct bio
*sbio
= r1_bio
->bios
[i
];
1854 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1857 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1858 for (j
= vcnt
; j
-- ; ) {
1860 p
= pbio
->bi_io_vec
[j
].bv_page
;
1861 s
= sbio
->bi_io_vec
[j
].bv_page
;
1862 if (memcmp(page_address(p
),
1864 sbio
->bi_io_vec
[j
].bv_len
))
1870 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1871 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1872 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1873 /* No need to write to this device. */
1874 sbio
->bi_end_io
= NULL
;
1875 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1878 /* fixup the bio for reuse */
1879 sbio
->bi_vcnt
= vcnt
;
1880 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1882 sbio
->bi_phys_segments
= 0;
1883 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1884 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1885 sbio
->bi_next
= NULL
;
1886 sbio
->bi_sector
= r1_bio
->sector
+
1887 conf
->mirrors
[i
].rdev
->data_offset
;
1888 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1889 size
= sbio
->bi_size
;
1890 for (j
= 0; j
< vcnt
; j
++) {
1892 bi
= &sbio
->bi_io_vec
[j
];
1894 if (size
> PAGE_SIZE
)
1895 bi
->bv_len
= PAGE_SIZE
;
1899 memcpy(page_address(bi
->bv_page
),
1900 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1907 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1909 struct r1conf
*conf
= mddev
->private;
1911 int disks
= conf
->raid_disks
* 2;
1912 struct bio
*bio
, *wbio
;
1914 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1916 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1917 /* ouch - failed to read all of that. */
1918 if (!fix_sync_read_error(r1_bio
))
1921 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1922 if (process_checks(r1_bio
) < 0)
1927 atomic_set(&r1_bio
->remaining
, 1);
1928 for (i
= 0; i
< disks
; i
++) {
1929 wbio
= r1_bio
->bios
[i
];
1930 if (wbio
->bi_end_io
== NULL
||
1931 (wbio
->bi_end_io
== end_sync_read
&&
1932 (i
== r1_bio
->read_disk
||
1933 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1936 wbio
->bi_rw
= WRITE
;
1937 wbio
->bi_end_io
= end_sync_write
;
1938 atomic_inc(&r1_bio
->remaining
);
1939 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1941 generic_make_request(wbio
);
1944 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1945 /* if we're here, all write(s) have completed, so clean up */
1946 int s
= r1_bio
->sectors
;
1947 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1948 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1949 reschedule_retry(r1_bio
);
1952 md_done_sync(mddev
, s
, 1);
1958 * This is a kernel thread which:
1960 * 1. Retries failed read operations on working mirrors.
1961 * 2. Updates the raid superblock when problems encounter.
1962 * 3. Performs writes following reads for array synchronising.
1965 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
1966 sector_t sect
, int sectors
)
1968 struct mddev
*mddev
= conf
->mddev
;
1974 struct md_rdev
*rdev
;
1976 if (s
> (PAGE_SIZE
>>9))
1980 /* Note: no rcu protection needed here
1981 * as this is synchronous in the raid1d thread
1982 * which is the thread that might remove
1983 * a device. If raid1d ever becomes multi-threaded....
1988 rdev
= conf
->mirrors
[d
].rdev
;
1990 (test_bit(In_sync
, &rdev
->flags
) ||
1991 (!test_bit(Faulty
, &rdev
->flags
) &&
1992 rdev
->recovery_offset
>= sect
+ s
)) &&
1993 is_badblock(rdev
, sect
, s
,
1994 &first_bad
, &bad_sectors
) == 0 &&
1995 sync_page_io(rdev
, sect
, s
<<9,
1996 conf
->tmppage
, READ
, false))
2000 if (d
== conf
->raid_disks
* 2)
2003 } while (!success
&& d
!= read_disk
);
2006 /* Cannot read from anywhere - mark it bad */
2007 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2008 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2009 md_error(mddev
, rdev
);
2012 /* write it back and re-read */
2014 while (d
!= read_disk
) {
2016 d
= conf
->raid_disks
* 2;
2018 rdev
= conf
->mirrors
[d
].rdev
;
2020 test_bit(In_sync
, &rdev
->flags
))
2021 r1_sync_page_io(rdev
, sect
, s
,
2022 conf
->tmppage
, WRITE
);
2025 while (d
!= read_disk
) {
2026 char b
[BDEVNAME_SIZE
];
2028 d
= conf
->raid_disks
* 2;
2030 rdev
= conf
->mirrors
[d
].rdev
;
2032 test_bit(In_sync
, &rdev
->flags
)) {
2033 if (r1_sync_page_io(rdev
, sect
, s
,
2034 conf
->tmppage
, READ
)) {
2035 atomic_add(s
, &rdev
->corrected_errors
);
2037 "md/raid1:%s: read error corrected "
2038 "(%d sectors at %llu on %s)\n",
2040 (unsigned long long)(sect
+
2042 bdevname(rdev
->bdev
, b
));
2051 static void bi_complete(struct bio
*bio
, int error
)
2053 complete((struct completion
*)bio
->bi_private
);
2056 static int submit_bio_wait(int rw
, struct bio
*bio
)
2058 struct completion event
;
2061 init_completion(&event
);
2062 bio
->bi_private
= &event
;
2063 bio
->bi_end_io
= bi_complete
;
2064 submit_bio(rw
, bio
);
2065 wait_for_completion(&event
);
2067 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2070 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2072 struct mddev
*mddev
= r1_bio
->mddev
;
2073 struct r1conf
*conf
= mddev
->private;
2074 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2076 struct bio_vec
*vec
;
2078 /* bio has the data to be written to device 'i' where
2079 * we just recently had a write error.
2080 * We repeatedly clone the bio and trim down to one block,
2081 * then try the write. Where the write fails we record
2083 * It is conceivable that the bio doesn't exactly align with
2084 * blocks. We must handle this somehow.
2086 * We currently own a reference on the rdev.
2092 int sect_to_write
= r1_bio
->sectors
;
2095 if (rdev
->badblocks
.shift
< 0)
2098 block_sectors
= 1 << rdev
->badblocks
.shift
;
2099 sector
= r1_bio
->sector
;
2100 sectors
= ((sector
+ block_sectors
)
2101 & ~(sector_t
)(block_sectors
- 1))
2104 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2105 vcnt
= r1_bio
->behind_page_count
;
2106 vec
= r1_bio
->behind_bvecs
;
2108 while (vec
[idx
].bv_page
== NULL
)
2111 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
2112 vec
= r1_bio
->master_bio
->bi_io_vec
;
2113 idx
= r1_bio
->master_bio
->bi_idx
;
2115 while (sect_to_write
) {
2117 if (sectors
> sect_to_write
)
2118 sectors
= sect_to_write
;
2119 /* Write at 'sector' for 'sectors'*/
2121 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2122 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2123 wbio
->bi_sector
= r1_bio
->sector
;
2124 wbio
->bi_rw
= WRITE
;
2125 wbio
->bi_vcnt
= vcnt
;
2126 wbio
->bi_size
= r1_bio
->sectors
<< 9;
2129 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
2130 wbio
->bi_sector
+= rdev
->data_offset
;
2131 wbio
->bi_bdev
= rdev
->bdev
;
2132 if (submit_bio_wait(WRITE
, wbio
) == 0)
2134 ok
= rdev_set_badblocks(rdev
, sector
,
2139 sect_to_write
-= sectors
;
2141 sectors
= block_sectors
;
2146 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2149 int s
= r1_bio
->sectors
;
2150 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2151 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2152 struct bio
*bio
= r1_bio
->bios
[m
];
2153 if (bio
->bi_end_io
== NULL
)
2155 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2156 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2157 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2159 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2160 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2161 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2162 md_error(conf
->mddev
, rdev
);
2166 md_done_sync(conf
->mddev
, s
, 1);
2169 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2172 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2173 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2174 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2175 rdev_clear_badblocks(rdev
,
2177 r1_bio
->sectors
, 0);
2178 rdev_dec_pending(rdev
, conf
->mddev
);
2179 } else if (r1_bio
->bios
[m
] != NULL
) {
2180 /* This drive got a write error. We need to
2181 * narrow down and record precise write
2184 if (!narrow_write_error(r1_bio
, m
)) {
2185 md_error(conf
->mddev
,
2186 conf
->mirrors
[m
].rdev
);
2187 /* an I/O failed, we can't clear the bitmap */
2188 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2190 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2193 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2194 close_write(r1_bio
);
2195 raid_end_bio_io(r1_bio
);
2198 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2202 struct mddev
*mddev
= conf
->mddev
;
2204 char b
[BDEVNAME_SIZE
];
2205 struct md_rdev
*rdev
;
2207 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2208 /* we got a read error. Maybe the drive is bad. Maybe just
2209 * the block and we can fix it.
2210 * We freeze all other IO, and try reading the block from
2211 * other devices. When we find one, we re-write
2212 * and check it that fixes the read error.
2213 * This is all done synchronously while the array is
2216 if (mddev
->ro
== 0) {
2218 fix_read_error(conf
, r1_bio
->read_disk
,
2219 r1_bio
->sector
, r1_bio
->sectors
);
2220 unfreeze_array(conf
);
2222 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2224 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2225 bdevname(bio
->bi_bdev
, b
);
2227 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2229 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2230 " read error for block %llu\n",
2231 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2232 raid_end_bio_io(r1_bio
);
2234 const unsigned long do_sync
2235 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2237 r1_bio
->bios
[r1_bio
->read_disk
] =
2238 mddev
->ro
? IO_BLOCKED
: NULL
;
2241 r1_bio
->read_disk
= disk
;
2242 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2243 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
2244 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2245 rdev
= conf
->mirrors
[disk
].rdev
;
2246 printk_ratelimited(KERN_ERR
2247 "md/raid1:%s: redirecting sector %llu"
2248 " to other mirror: %s\n",
2250 (unsigned long long)r1_bio
->sector
,
2251 bdevname(rdev
->bdev
, b
));
2252 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2253 bio
->bi_bdev
= rdev
->bdev
;
2254 bio
->bi_end_io
= raid1_end_read_request
;
2255 bio
->bi_rw
= READ
| do_sync
;
2256 bio
->bi_private
= r1_bio
;
2257 if (max_sectors
< r1_bio
->sectors
) {
2258 /* Drat - have to split this up more */
2259 struct bio
*mbio
= r1_bio
->master_bio
;
2260 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2262 r1_bio
->sectors
= max_sectors
;
2263 spin_lock_irq(&conf
->device_lock
);
2264 if (mbio
->bi_phys_segments
== 0)
2265 mbio
->bi_phys_segments
= 2;
2267 mbio
->bi_phys_segments
++;
2268 spin_unlock_irq(&conf
->device_lock
);
2269 generic_make_request(bio
);
2272 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2274 r1_bio
->master_bio
= mbio
;
2275 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2278 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2279 r1_bio
->mddev
= mddev
;
2280 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2284 generic_make_request(bio
);
2288 static void raid1d(struct mddev
*mddev
)
2290 struct r1bio
*r1_bio
;
2291 unsigned long flags
;
2292 struct r1conf
*conf
= mddev
->private;
2293 struct list_head
*head
= &conf
->retry_list
;
2294 struct blk_plug plug
;
2296 md_check_recovery(mddev
);
2298 blk_start_plug(&plug
);
2301 flush_pending_writes(conf
);
2303 spin_lock_irqsave(&conf
->device_lock
, flags
);
2304 if (list_empty(head
)) {
2305 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2308 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2309 list_del(head
->prev
);
2311 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2313 mddev
= r1_bio
->mddev
;
2314 conf
= mddev
->private;
2315 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2316 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2317 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2318 handle_sync_write_finished(conf
, r1_bio
);
2320 sync_request_write(mddev
, r1_bio
);
2321 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2322 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2323 handle_write_finished(conf
, r1_bio
);
2324 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2325 handle_read_error(conf
, r1_bio
);
2327 /* just a partial read to be scheduled from separate
2330 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2333 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2334 md_check_recovery(mddev
);
2336 blk_finish_plug(&plug
);
2340 static int init_resync(struct r1conf
*conf
)
2344 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2345 BUG_ON(conf
->r1buf_pool
);
2346 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2348 if (!conf
->r1buf_pool
)
2350 conf
->next_resync
= 0;
2355 * perform a "sync" on one "block"
2357 * We need to make sure that no normal I/O request - particularly write
2358 * requests - conflict with active sync requests.
2360 * This is achieved by tracking pending requests and a 'barrier' concept
2361 * that can be installed to exclude normal IO requests.
2364 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2366 struct r1conf
*conf
= mddev
->private;
2367 struct r1bio
*r1_bio
;
2369 sector_t max_sector
, nr_sectors
;
2373 int write_targets
= 0, read_targets
= 0;
2374 sector_t sync_blocks
;
2375 int still_degraded
= 0;
2376 int good_sectors
= RESYNC_SECTORS
;
2377 int min_bad
= 0; /* number of sectors that are bad in all devices */
2379 if (!conf
->r1buf_pool
)
2380 if (init_resync(conf
))
2383 max_sector
= mddev
->dev_sectors
;
2384 if (sector_nr
>= max_sector
) {
2385 /* If we aborted, we need to abort the
2386 * sync on the 'current' bitmap chunk (there will
2387 * only be one in raid1 resync.
2388 * We can find the current addess in mddev->curr_resync
2390 if (mddev
->curr_resync
< max_sector
) /* aborted */
2391 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2393 else /* completed sync */
2396 bitmap_close_sync(mddev
->bitmap
);
2401 if (mddev
->bitmap
== NULL
&&
2402 mddev
->recovery_cp
== MaxSector
&&
2403 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2404 conf
->fullsync
== 0) {
2406 return max_sector
- sector_nr
;
2408 /* before building a request, check if we can skip these blocks..
2409 * This call the bitmap_start_sync doesn't actually record anything
2411 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2412 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2413 /* We can skip this block, and probably several more */
2418 * If there is non-resync activity waiting for a turn,
2419 * and resync is going fast enough,
2420 * then let it though before starting on this new sync request.
2422 if (!go_faster
&& conf
->nr_waiting
)
2423 msleep_interruptible(1000);
2425 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2426 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2427 raise_barrier(conf
);
2429 conf
->next_resync
= sector_nr
;
2433 * If we get a correctably read error during resync or recovery,
2434 * we might want to read from a different device. So we
2435 * flag all drives that could conceivably be read from for READ,
2436 * and any others (which will be non-In_sync devices) for WRITE.
2437 * If a read fails, we try reading from something else for which READ
2441 r1_bio
->mddev
= mddev
;
2442 r1_bio
->sector
= sector_nr
;
2444 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2446 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2447 struct md_rdev
*rdev
;
2448 bio
= r1_bio
->bios
[i
];
2450 /* take from bio_init */
2451 bio
->bi_next
= NULL
;
2452 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2453 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2457 bio
->bi_phys_segments
= 0;
2459 bio
->bi_end_io
= NULL
;
2460 bio
->bi_private
= NULL
;
2462 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2464 test_bit(Faulty
, &rdev
->flags
)) {
2465 if (i
< conf
->raid_disks
)
2467 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2469 bio
->bi_end_io
= end_sync_write
;
2472 /* may need to read from here */
2473 sector_t first_bad
= MaxSector
;
2476 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2477 &first_bad
, &bad_sectors
)) {
2478 if (first_bad
> sector_nr
)
2479 good_sectors
= first_bad
- sector_nr
;
2481 bad_sectors
-= (sector_nr
- first_bad
);
2483 min_bad
> bad_sectors
)
2484 min_bad
= bad_sectors
;
2487 if (sector_nr
< first_bad
) {
2488 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2496 bio
->bi_end_io
= end_sync_read
;
2498 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2499 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2500 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2502 * The device is suitable for reading (InSync),
2503 * but has bad block(s) here. Let's try to correct them,
2504 * if we are doing resync or repair. Otherwise, leave
2505 * this device alone for this sync request.
2508 bio
->bi_end_io
= end_sync_write
;
2512 if (bio
->bi_end_io
) {
2513 atomic_inc(&rdev
->nr_pending
);
2514 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2515 bio
->bi_bdev
= rdev
->bdev
;
2516 bio
->bi_private
= r1_bio
;
2522 r1_bio
->read_disk
= disk
;
2524 if (read_targets
== 0 && min_bad
> 0) {
2525 /* These sectors are bad on all InSync devices, so we
2526 * need to mark them bad on all write targets
2529 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2530 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2531 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2532 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2536 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2541 /* Cannot record the badblocks, so need to
2543 * If there are multiple read targets, could just
2544 * fail the really bad ones ???
2546 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2547 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2553 if (min_bad
> 0 && min_bad
< good_sectors
) {
2554 /* only resync enough to reach the next bad->good
2556 good_sectors
= min_bad
;
2559 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2560 /* extra read targets are also write targets */
2561 write_targets
+= read_targets
-1;
2563 if (write_targets
== 0 || read_targets
== 0) {
2564 /* There is nowhere to write, so all non-sync
2565 * drives must be failed - so we are finished
2569 max_sector
= sector_nr
+ min_bad
;
2570 rv
= max_sector
- sector_nr
;
2576 if (max_sector
> mddev
->resync_max
)
2577 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2578 if (max_sector
> sector_nr
+ good_sectors
)
2579 max_sector
= sector_nr
+ good_sectors
;
2584 int len
= PAGE_SIZE
;
2585 if (sector_nr
+ (len
>>9) > max_sector
)
2586 len
= (max_sector
- sector_nr
) << 9;
2589 if (sync_blocks
== 0) {
2590 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2591 &sync_blocks
, still_degraded
) &&
2593 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2595 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2596 if ((len
>> 9) > sync_blocks
)
2597 len
= sync_blocks
<<9;
2600 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2601 bio
= r1_bio
->bios
[i
];
2602 if (bio
->bi_end_io
) {
2603 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2604 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2606 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2609 bio
= r1_bio
->bios
[i
];
2610 if (bio
->bi_end_io
==NULL
)
2612 /* remove last page from this bio */
2614 bio
->bi_size
-= len
;
2615 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2621 nr_sectors
+= len
>>9;
2622 sector_nr
+= len
>>9;
2623 sync_blocks
-= (len
>>9);
2624 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2626 r1_bio
->sectors
= nr_sectors
;
2628 /* For a user-requested sync, we read all readable devices and do a
2631 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2632 atomic_set(&r1_bio
->remaining
, read_targets
);
2633 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2634 bio
= r1_bio
->bios
[i
];
2635 if (bio
->bi_end_io
== end_sync_read
) {
2637 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2638 generic_make_request(bio
);
2642 atomic_set(&r1_bio
->remaining
, 1);
2643 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2644 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2645 generic_make_request(bio
);
2651 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2656 return mddev
->dev_sectors
;
2659 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2661 struct r1conf
*conf
;
2663 struct raid1_info
*disk
;
2664 struct md_rdev
*rdev
;
2667 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2671 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2672 * mddev
->raid_disks
* 2,
2677 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2681 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2682 if (!conf
->poolinfo
)
2684 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2685 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2688 if (!conf
->r1bio_pool
)
2691 conf
->poolinfo
->mddev
= mddev
;
2694 spin_lock_init(&conf
->device_lock
);
2695 rdev_for_each(rdev
, mddev
) {
2696 struct request_queue
*q
;
2697 int disk_idx
= rdev
->raid_disk
;
2698 if (disk_idx
>= mddev
->raid_disks
2701 if (test_bit(Replacement
, &rdev
->flags
))
2702 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2704 disk
= conf
->mirrors
+ disk_idx
;
2709 q
= bdev_get_queue(rdev
->bdev
);
2710 if (q
->merge_bvec_fn
)
2711 mddev
->merge_check_needed
= 1;
2713 disk
->head_position
= 0;
2714 disk
->seq_start
= MaxSector
;
2716 conf
->raid_disks
= mddev
->raid_disks
;
2717 conf
->mddev
= mddev
;
2718 INIT_LIST_HEAD(&conf
->retry_list
);
2720 spin_lock_init(&conf
->resync_lock
);
2721 init_waitqueue_head(&conf
->wait_barrier
);
2723 bio_list_init(&conf
->pending_bio_list
);
2724 conf
->pending_count
= 0;
2725 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2728 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2730 disk
= conf
->mirrors
+ i
;
2732 if (i
< conf
->raid_disks
&&
2733 disk
[conf
->raid_disks
].rdev
) {
2734 /* This slot has a replacement. */
2736 /* No original, just make the replacement
2737 * a recovering spare
2740 disk
[conf
->raid_disks
].rdev
;
2741 disk
[conf
->raid_disks
].rdev
= NULL
;
2742 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2743 /* Original is not in_sync - bad */
2748 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2749 disk
->head_position
= 0;
2751 (disk
->rdev
->saved_raid_disk
< 0))
2757 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2758 if (!conf
->thread
) {
2760 "md/raid1:%s: couldn't allocate thread\n",
2769 if (conf
->r1bio_pool
)
2770 mempool_destroy(conf
->r1bio_pool
);
2771 kfree(conf
->mirrors
);
2772 safe_put_page(conf
->tmppage
);
2773 kfree(conf
->poolinfo
);
2776 return ERR_PTR(err
);
2779 static int stop(struct mddev
*mddev
);
2780 static int run(struct mddev
*mddev
)
2782 struct r1conf
*conf
;
2784 struct md_rdev
*rdev
;
2787 if (mddev
->level
!= 1) {
2788 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2789 mdname(mddev
), mddev
->level
);
2792 if (mddev
->reshape_position
!= MaxSector
) {
2793 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2798 * copy the already verified devices into our private RAID1
2799 * bookkeeping area. [whatever we allocate in run(),
2800 * should be freed in stop()]
2802 if (mddev
->private == NULL
)
2803 conf
= setup_conf(mddev
);
2805 conf
= mddev
->private;
2808 return PTR_ERR(conf
);
2810 rdev_for_each(rdev
, mddev
) {
2811 if (!mddev
->gendisk
)
2813 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2814 rdev
->data_offset
<< 9);
2817 mddev
->degraded
= 0;
2818 for (i
=0; i
< conf
->raid_disks
; i
++)
2819 if (conf
->mirrors
[i
].rdev
== NULL
||
2820 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2821 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2824 if (conf
->raid_disks
- mddev
->degraded
== 1)
2825 mddev
->recovery_cp
= MaxSector
;
2827 if (mddev
->recovery_cp
!= MaxSector
)
2828 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2829 " -- starting background reconstruction\n",
2832 "md/raid1:%s: active with %d out of %d mirrors\n",
2833 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2837 * Ok, everything is just fine now
2839 mddev
->thread
= conf
->thread
;
2840 conf
->thread
= NULL
;
2841 mddev
->private = conf
;
2843 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2846 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2847 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2848 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2851 ret
= md_integrity_register(mddev
);
2857 static int stop(struct mddev
*mddev
)
2859 struct r1conf
*conf
= mddev
->private;
2860 struct bitmap
*bitmap
= mddev
->bitmap
;
2862 /* wait for behind writes to complete */
2863 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2864 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2866 /* need to kick something here to make sure I/O goes? */
2867 wait_event(bitmap
->behind_wait
,
2868 atomic_read(&bitmap
->behind_writes
) == 0);
2871 raise_barrier(conf
);
2872 lower_barrier(conf
);
2874 md_unregister_thread(&mddev
->thread
);
2875 if (conf
->r1bio_pool
)
2876 mempool_destroy(conf
->r1bio_pool
);
2877 kfree(conf
->mirrors
);
2878 kfree(conf
->poolinfo
);
2880 mddev
->private = NULL
;
2884 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2886 /* no resync is happening, and there is enough space
2887 * on all devices, so we can resize.
2888 * We need to make sure resync covers any new space.
2889 * If the array is shrinking we should possibly wait until
2890 * any io in the removed space completes, but it hardly seems
2893 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
2894 if (mddev
->external_size
&&
2895 mddev
->array_sectors
> newsize
)
2897 if (mddev
->bitmap
) {
2898 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
2902 md_set_array_sectors(mddev
, newsize
);
2903 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2904 revalidate_disk(mddev
->gendisk
);
2905 if (sectors
> mddev
->dev_sectors
&&
2906 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2907 mddev
->recovery_cp
= mddev
->dev_sectors
;
2908 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2910 mddev
->dev_sectors
= sectors
;
2911 mddev
->resync_max_sectors
= sectors
;
2915 static int raid1_reshape(struct mddev
*mddev
)
2918 * 1/ resize the r1bio_pool
2919 * 2/ resize conf->mirrors
2921 * We allocate a new r1bio_pool if we can.
2922 * Then raise a device barrier and wait until all IO stops.
2923 * Then resize conf->mirrors and swap in the new r1bio pool.
2925 * At the same time, we "pack" the devices so that all the missing
2926 * devices have the higher raid_disk numbers.
2928 mempool_t
*newpool
, *oldpool
;
2929 struct pool_info
*newpoolinfo
;
2930 struct raid1_info
*newmirrors
;
2931 struct r1conf
*conf
= mddev
->private;
2932 int cnt
, raid_disks
;
2933 unsigned long flags
;
2936 /* Cannot change chunk_size, layout, or level */
2937 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2938 mddev
->layout
!= mddev
->new_layout
||
2939 mddev
->level
!= mddev
->new_level
) {
2940 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2941 mddev
->new_layout
= mddev
->layout
;
2942 mddev
->new_level
= mddev
->level
;
2946 err
= md_allow_write(mddev
);
2950 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2952 if (raid_disks
< conf
->raid_disks
) {
2954 for (d
= 0; d
< conf
->raid_disks
; d
++)
2955 if (conf
->mirrors
[d
].rdev
)
2957 if (cnt
> raid_disks
)
2961 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2964 newpoolinfo
->mddev
= mddev
;
2965 newpoolinfo
->raid_disks
= raid_disks
* 2;
2967 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2968 r1bio_pool_free
, newpoolinfo
);
2973 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
2977 mempool_destroy(newpool
);
2981 raise_barrier(conf
);
2983 /* ok, everything is stopped */
2984 oldpool
= conf
->r1bio_pool
;
2985 conf
->r1bio_pool
= newpool
;
2987 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2988 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
2989 if (rdev
&& rdev
->raid_disk
!= d2
) {
2990 sysfs_unlink_rdev(mddev
, rdev
);
2991 rdev
->raid_disk
= d2
;
2992 sysfs_unlink_rdev(mddev
, rdev
);
2993 if (sysfs_link_rdev(mddev
, rdev
))
2995 "md/raid1:%s: cannot register rd%d\n",
2996 mdname(mddev
), rdev
->raid_disk
);
2999 newmirrors
[d2
++].rdev
= rdev
;
3001 kfree(conf
->mirrors
);
3002 conf
->mirrors
= newmirrors
;
3003 kfree(conf
->poolinfo
);
3004 conf
->poolinfo
= newpoolinfo
;
3006 spin_lock_irqsave(&conf
->device_lock
, flags
);
3007 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3008 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3009 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3010 mddev
->delta_disks
= 0;
3012 lower_barrier(conf
);
3014 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3015 md_wakeup_thread(mddev
->thread
);
3017 mempool_destroy(oldpool
);
3021 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3023 struct r1conf
*conf
= mddev
->private;
3026 case 2: /* wake for suspend */
3027 wake_up(&conf
->wait_barrier
);
3030 raise_barrier(conf
);
3033 lower_barrier(conf
);
3038 static void *raid1_takeover(struct mddev
*mddev
)
3040 /* raid1 can take over:
3041 * raid5 with 2 devices, any layout or chunk size
3043 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3044 struct r1conf
*conf
;
3045 mddev
->new_level
= 1;
3046 mddev
->new_layout
= 0;
3047 mddev
->new_chunk_sectors
= 0;
3048 conf
= setup_conf(mddev
);
3053 return ERR_PTR(-EINVAL
);
3056 static struct md_personality raid1_personality
=
3060 .owner
= THIS_MODULE
,
3061 .make_request
= make_request
,
3065 .error_handler
= error
,
3066 .hot_add_disk
= raid1_add_disk
,
3067 .hot_remove_disk
= raid1_remove_disk
,
3068 .spare_active
= raid1_spare_active
,
3069 .sync_request
= sync_request
,
3070 .resize
= raid1_resize
,
3072 .check_reshape
= raid1_reshape
,
3073 .quiesce
= raid1_quiesce
,
3074 .takeover
= raid1_takeover
,
3077 static int __init
raid_init(void)
3079 return register_md_personality(&raid1_personality
);
3082 static void raid_exit(void)
3084 unregister_md_personality(&raid1_personality
);
3087 module_init(raid_init
);
3088 module_exit(raid_exit
);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3091 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3092 MODULE_ALIAS("md-raid1");
3093 MODULE_ALIAS("md-level-1");
3095 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);