2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
50 * near_copies and far_copies must be at least one, and their product is at most
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
59 * Number of guaranteed r10bios in case of extreme VM load:
61 #define NR_RAID10_BIOS 256
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
73 #define IO_MADE_GOOD ((struct bio *)2)
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
81 static int max_queued_requests
= 1024;
83 static void allow_barrier(struct r10conf
*conf
);
84 static void lower_barrier(struct r10conf
*conf
);
85 static int enough(struct r10conf
*conf
, int ignore
);
86 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
88 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
89 static void end_reshape_write(struct bio
*bio
, int error
);
90 static void end_reshape(struct r10conf
*conf
);
92 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
94 struct r10conf
*conf
= data
;
95 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
97 /* allocate a r10bio with room for raid_disks entries in the
99 return kzalloc(size
, gfp_flags
);
102 static void r10bio_pool_free(void *r10_bio
, void *data
)
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
122 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
124 struct r10conf
*conf
= data
;
126 struct r10bio
*r10_bio
;
131 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
135 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
136 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
137 nalloc
= conf
->copies
; /* resync */
139 nalloc
= 2; /* recovery */
144 for (j
= nalloc
; j
-- ; ) {
145 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
148 r10_bio
->devs
[j
].bio
= bio
;
149 if (!conf
->have_replacement
)
151 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
154 r10_bio
->devs
[j
].repl_bio
= bio
;
157 * Allocate RESYNC_PAGES data pages and attach them
160 for (j
= 0 ; j
< nalloc
; j
++) {
161 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
162 bio
= r10_bio
->devs
[j
].bio
;
163 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
164 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
165 &conf
->mddev
->recovery
)) {
166 /* we can share bv_page's during recovery
168 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
169 page
= rbio
->bi_io_vec
[i
].bv_page
;
172 page
= alloc_page(gfp_flags
);
176 bio
->bi_io_vec
[i
].bv_page
= page
;
178 rbio
->bi_io_vec
[i
].bv_page
= page
;
186 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
188 for (i
= 0; i
< RESYNC_PAGES
; i
++)
189 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
192 for ( ; j
< nalloc
; j
++) {
193 if (r10_bio
->devs
[j
].bio
)
194 bio_put(r10_bio
->devs
[j
].bio
);
195 if (r10_bio
->devs
[j
].repl_bio
)
196 bio_put(r10_bio
->devs
[j
].repl_bio
);
198 r10bio_pool_free(r10_bio
, conf
);
202 static void r10buf_pool_free(void *__r10_bio
, void *data
)
205 struct r10conf
*conf
= data
;
206 struct r10bio
*r10bio
= __r10_bio
;
209 for (j
=0; j
< conf
->copies
; j
++) {
210 struct bio
*bio
= r10bio
->devs
[j
].bio
;
212 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
213 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
214 bio
->bi_io_vec
[i
].bv_page
= NULL
;
218 bio
= r10bio
->devs
[j
].repl_bio
;
222 r10bio_pool_free(r10bio
, conf
);
225 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
229 for (i
= 0; i
< conf
->copies
; i
++) {
230 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
231 if (!BIO_SPECIAL(*bio
))
234 bio
= &r10_bio
->devs
[i
].repl_bio
;
235 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
241 static void free_r10bio(struct r10bio
*r10_bio
)
243 struct r10conf
*conf
= r10_bio
->mddev
->private;
245 put_all_bios(conf
, r10_bio
);
246 mempool_free(r10_bio
, conf
->r10bio_pool
);
249 static void put_buf(struct r10bio
*r10_bio
)
251 struct r10conf
*conf
= r10_bio
->mddev
->private;
253 mempool_free(r10_bio
, conf
->r10buf_pool
);
258 static void reschedule_retry(struct r10bio
*r10_bio
)
261 struct mddev
*mddev
= r10_bio
->mddev
;
262 struct r10conf
*conf
= mddev
->private;
264 spin_lock_irqsave(&conf
->device_lock
, flags
);
265 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
267 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
269 /* wake up frozen array... */
270 wake_up(&conf
->wait_barrier
);
272 md_wakeup_thread(mddev
->thread
);
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
280 static void raid_end_bio_io(struct r10bio
*r10_bio
)
282 struct bio
*bio
= r10_bio
->master_bio
;
284 struct r10conf
*conf
= r10_bio
->mddev
->private;
286 if (bio
->bi_phys_segments
) {
288 spin_lock_irqsave(&conf
->device_lock
, flags
);
289 bio
->bi_phys_segments
--;
290 done
= (bio
->bi_phys_segments
== 0);
291 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
294 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
295 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
299 * Wake up any possible resync thread that waits for the device
304 free_r10bio(r10_bio
);
308 * Update disk head position estimator based on IRQ completion info.
310 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
312 struct r10conf
*conf
= r10_bio
->mddev
->private;
314 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
315 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
319 * Find the disk number which triggered given bio
321 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
322 struct bio
*bio
, int *slotp
, int *replp
)
327 for (slot
= 0; slot
< conf
->copies
; slot
++) {
328 if (r10_bio
->devs
[slot
].bio
== bio
)
330 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
336 BUG_ON(slot
== conf
->copies
);
337 update_head_pos(slot
, r10_bio
);
343 return r10_bio
->devs
[slot
].devnum
;
346 static void raid10_end_read_request(struct bio
*bio
, int error
)
348 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
349 struct r10bio
*r10_bio
= bio
->bi_private
;
351 struct md_rdev
*rdev
;
352 struct r10conf
*conf
= r10_bio
->mddev
->private;
355 slot
= r10_bio
->read_slot
;
356 dev
= r10_bio
->devs
[slot
].devnum
;
357 rdev
= r10_bio
->devs
[slot
].rdev
;
359 * this branch is our 'one mirror IO has finished' event handler:
361 update_head_pos(slot
, r10_bio
);
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
373 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
381 spin_lock_irqsave(&conf
->device_lock
, flags
);
382 if (!enough(conf
, rdev
->raid_disk
))
384 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
387 raid_end_bio_io(r10_bio
);
388 rdev_dec_pending(rdev
, conf
->mddev
);
391 * oops, read error - keep the refcount on the rdev
393 char b
[BDEVNAME_SIZE
];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
397 bdevname(rdev
->bdev
, b
),
398 (unsigned long long)r10_bio
->sector
);
399 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
400 reschedule_retry(r10_bio
);
404 static void close_write(struct r10bio
*r10_bio
)
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
409 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
411 md_write_end(r10_bio
->mddev
);
414 static void one_write_done(struct r10bio
*r10_bio
)
416 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
417 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
418 reschedule_retry(r10_bio
);
420 close_write(r10_bio
);
421 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
422 reschedule_retry(r10_bio
);
424 raid_end_bio_io(r10_bio
);
429 static void raid10_end_write_request(struct bio
*bio
, int error
)
431 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
432 struct r10bio
*r10_bio
= bio
->bi_private
;
435 struct r10conf
*conf
= r10_bio
->mddev
->private;
437 struct md_rdev
*rdev
= NULL
;
439 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
442 rdev
= conf
->mirrors
[dev
].replacement
;
446 rdev
= conf
->mirrors
[dev
].rdev
;
449 * this branch is our 'one mirror IO has finished' event handler:
453 /* Never record new bad blocks to replacement,
456 md_error(rdev
->mddev
, rdev
);
458 set_bit(WriteErrorSeen
, &rdev
->flags
);
459 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
460 set_bit(MD_RECOVERY_NEEDED
,
461 &rdev
->mddev
->recovery
);
462 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
478 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev
,
482 r10_bio
->devs
[slot
].addr
,
484 &first_bad
, &bad_sectors
)) {
487 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
489 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
491 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
497 * Let's see if all mirrored write operations have finished
500 one_write_done(r10_bio
);
502 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
530 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
539 /* now calculate first sector/dev */
540 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
541 sector
= r10bio
->sector
& geo
->chunk_mask
;
543 chunk
*= geo
->near_copies
;
545 dev
= sector_div(stripe
, geo
->raid_disks
);
547 stripe
*= geo
->far_copies
;
549 sector
+= stripe
<< geo
->chunk_shift
;
551 /* and calculate all the others */
552 for (n
= 0; n
< geo
->near_copies
; n
++) {
555 r10bio
->devs
[slot
].addr
= sector
;
556 r10bio
->devs
[slot
].devnum
= d
;
559 for (f
= 1; f
< geo
->far_copies
; f
++) {
560 d
+= geo
->near_copies
;
561 if (d
>= geo
->raid_disks
)
562 d
-= geo
->raid_disks
;
564 r10bio
->devs
[slot
].devnum
= d
;
565 r10bio
->devs
[slot
].addr
= s
;
569 if (dev
>= geo
->raid_disks
) {
571 sector
+= (geo
->chunk_mask
+ 1);
576 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
578 struct geom
*geo
= &conf
->geo
;
580 if (conf
->reshape_progress
!= MaxSector
&&
581 ((r10bio
->sector
>= conf
->reshape_progress
) !=
582 conf
->mddev
->reshape_backwards
)) {
583 set_bit(R10BIO_Previous
, &r10bio
->state
);
586 clear_bit(R10BIO_Previous
, &r10bio
->state
);
588 __raid10_find_phys(geo
, r10bio
);
591 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
593 sector_t offset
, chunk
, vchunk
;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
597 struct geom
*geo
= &conf
->geo
;
599 offset
= sector
& geo
->chunk_mask
;
600 if (geo
->far_offset
) {
602 chunk
= sector
>> geo
->chunk_shift
;
603 fc
= sector_div(chunk
, geo
->far_copies
);
604 dev
-= fc
* geo
->near_copies
;
606 dev
+= geo
->raid_disks
;
608 while (sector
>= geo
->stride
) {
609 sector
-= geo
->stride
;
610 if (dev
< geo
->near_copies
)
611 dev
+= geo
->raid_disks
- geo
->near_copies
;
613 dev
-= geo
->near_copies
;
615 chunk
= sector
>> geo
->chunk_shift
;
617 vchunk
= chunk
* geo
->raid_disks
+ dev
;
618 sector_div(vchunk
, geo
->near_copies
);
619 return (vchunk
<< geo
->chunk_shift
) + offset
;
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
632 static int raid10_mergeable_bvec(struct request_queue
*q
,
633 struct bvec_merge_data
*bvm
,
634 struct bio_vec
*biovec
)
636 struct mddev
*mddev
= q
->queuedata
;
637 struct r10conf
*conf
= mddev
->private;
638 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
640 unsigned int chunk_sectors
;
641 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
642 struct geom
*geo
= &conf
->geo
;
644 chunk_sectors
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
) + 1;
645 if (conf
->reshape_progress
!= MaxSector
&&
646 ((sector
>= conf
->reshape_progress
) !=
647 conf
->mddev
->reshape_backwards
))
650 if (geo
->near_copies
< geo
->raid_disks
) {
651 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
652 + bio_sectors
)) << 9;
654 /* bio_add cannot handle a negative return */
656 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
657 return biovec
->bv_len
;
659 max
= biovec
->bv_len
;
661 if (mddev
->merge_check_needed
) {
663 struct r10bio r10_bio
;
664 struct r10dev devs
[conf
->copies
];
666 struct r10bio
*r10_bio
= &on_stack
.r10_bio
;
668 if (conf
->reshape_progress
!= MaxSector
) {
669 /* Cannot give any guidance during reshape */
670 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
671 return biovec
->bv_len
;
674 r10_bio
->sector
= sector
;
675 raid10_find_phys(conf
, r10_bio
);
677 for (s
= 0; s
< conf
->copies
; s
++) {
678 int disk
= r10_bio
->devs
[s
].devnum
;
679 struct md_rdev
*rdev
= rcu_dereference(
680 conf
->mirrors
[disk
].rdev
);
681 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
682 struct request_queue
*q
=
683 bdev_get_queue(rdev
->bdev
);
684 if (q
->merge_bvec_fn
) {
685 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
687 bvm
->bi_bdev
= rdev
->bdev
;
688 max
= min(max
, q
->merge_bvec_fn(
692 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
693 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
694 struct request_queue
*q
=
695 bdev_get_queue(rdev
->bdev
);
696 if (q
->merge_bvec_fn
) {
697 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
699 bvm
->bi_bdev
= rdev
->bdev
;
700 max
= min(max
, q
->merge_bvec_fn(
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
722 * The rdev for the device selected will have nr_pending incremented.
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
729 static struct md_rdev
*read_balance(struct r10conf
*conf
,
730 struct r10bio
*r10_bio
,
733 const sector_t this_sector
= r10_bio
->sector
;
735 int sectors
= r10_bio
->sectors
;
736 int best_good_sectors
;
737 sector_t new_distance
, best_dist
;
738 struct md_rdev
*best_rdev
, *rdev
= NULL
;
741 struct geom
*geo
= &conf
->geo
;
743 raid10_find_phys(conf
, r10_bio
);
746 sectors
= r10_bio
->sectors
;
749 best_dist
= MaxSector
;
750 best_good_sectors
= 0;
753 * Check if we can balance. We can balance on the whole
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
758 if (conf
->mddev
->recovery_cp
< MaxSector
759 && (this_sector
+ sectors
>= conf
->next_resync
))
762 for (slot
= 0; slot
< conf
->copies
; slot
++) {
767 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
769 disk
= r10_bio
->devs
[slot
].devnum
;
770 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
771 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
772 test_bit(Unmerged
, &rdev
->flags
) ||
773 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
774 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
776 test_bit(Faulty
, &rdev
->flags
) ||
777 test_bit(Unmerged
, &rdev
->flags
))
779 if (!test_bit(In_sync
, &rdev
->flags
) &&
780 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
783 dev_sector
= r10_bio
->devs
[slot
].addr
;
784 if (is_badblock(rdev
, dev_sector
, sectors
,
785 &first_bad
, &bad_sectors
)) {
786 if (best_dist
< MaxSector
)
787 /* Already have a better slot */
789 if (first_bad
<= dev_sector
) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
794 bad_sectors
-= (dev_sector
- first_bad
);
795 if (!do_balance
&& sectors
> bad_sectors
)
796 sectors
= bad_sectors
;
797 if (best_good_sectors
> sectors
)
798 best_good_sectors
= sectors
;
800 sector_t good_sectors
=
801 first_bad
- dev_sector
;
802 if (good_sectors
> best_good_sectors
) {
803 best_good_sectors
= good_sectors
;
808 /* Must read from here */
813 best_good_sectors
= sectors
;
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
822 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
825 /* for far > 1 always use the lowest address */
826 if (geo
->far_copies
> 1)
827 new_distance
= r10_bio
->devs
[slot
].addr
;
829 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
830 conf
->mirrors
[disk
].head_position
);
831 if (new_distance
< best_dist
) {
832 best_dist
= new_distance
;
837 if (slot
>= conf
->copies
) {
843 atomic_inc(&rdev
->nr_pending
);
844 if (test_bit(Faulty
, &rdev
->flags
)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
848 rdev_dec_pending(rdev
, conf
->mddev
);
851 r10_bio
->read_slot
= slot
;
855 *max_sectors
= best_good_sectors
;
860 int md_raid10_congested(struct mddev
*mddev
, int bits
)
862 struct r10conf
*conf
= mddev
->private;
865 if ((bits
& (1 << BDI_async_congested
)) &&
866 conf
->pending_count
>= max_queued_requests
)
871 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
874 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
875 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
876 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
878 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
884 EXPORT_SYMBOL_GPL(md_raid10_congested
);
886 static int raid10_congested(void *data
, int bits
)
888 struct mddev
*mddev
= data
;
890 return mddev_congested(mddev
, bits
) ||
891 md_raid10_congested(mddev
, bits
);
894 static void flush_pending_writes(struct r10conf
*conf
)
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
899 spin_lock_irq(&conf
->device_lock
);
901 if (conf
->pending_bio_list
.head
) {
903 bio
= bio_list_get(&conf
->pending_bio_list
);
904 conf
->pending_count
= 0;
905 spin_unlock_irq(&conf
->device_lock
);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf
->mddev
->bitmap
);
909 wake_up(&conf
->wait_barrier
);
911 while (bio
) { /* submit pending writes */
912 struct bio
*next
= bio
->bi_next
;
914 generic_make_request(bio
);
918 spin_unlock_irq(&conf
->device_lock
);
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down. This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
935 * So: regular IO calls 'wait_barrier'. When that returns there
936 * is no backgroup IO happening, It must arrange to call
937 * allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier. Once that returns
939 * there is no normal IO happeing. It must arrange to call
940 * lower_barrier when the particular background IO completes.
943 static void raise_barrier(struct r10conf
*conf
, int force
)
945 BUG_ON(force
&& !conf
->barrier
);
946 spin_lock_irq(&conf
->resync_lock
);
948 /* Wait until no block IO is waiting (unless 'force') */
949 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
950 conf
->resync_lock
, );
952 /* block any new IO from starting */
955 /* Now wait for all pending IO to complete */
956 wait_event_lock_irq(conf
->wait_barrier
,
957 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
958 conf
->resync_lock
, );
960 spin_unlock_irq(&conf
->resync_lock
);
963 static void lower_barrier(struct r10conf
*conf
)
966 spin_lock_irqsave(&conf
->resync_lock
, flags
);
968 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
969 wake_up(&conf
->wait_barrier
);
972 static void wait_barrier(struct r10conf
*conf
)
974 spin_lock_irq(&conf
->resync_lock
);
977 /* Wait for the barrier to drop.
978 * However if there are already pending
979 * requests (preventing the barrier from
980 * rising completely), and the
981 * pre-process bio queue isn't empty,
982 * then don't wait, as we need to empty
983 * that queue to get the nr_pending
986 wait_event_lock_irq(conf
->wait_barrier
,
990 !bio_list_empty(current
->bio_list
)),
996 spin_unlock_irq(&conf
->resync_lock
);
999 static void allow_barrier(struct r10conf
*conf
)
1001 unsigned long flags
;
1002 spin_lock_irqsave(&conf
->resync_lock
, flags
);
1004 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
1005 wake_up(&conf
->wait_barrier
);
1008 static void freeze_array(struct r10conf
*conf
)
1010 /* stop syncio and normal IO and wait for everything to
1012 * We increment barrier and nr_waiting, and then
1013 * wait until nr_pending match nr_queued+1
1014 * This is called in the context of one normal IO request
1015 * that has failed. Thus any sync request that might be pending
1016 * will be blocked by nr_pending, and we need to wait for
1017 * pending IO requests to complete or be queued for re-try.
1018 * Thus the number queued (nr_queued) plus this request (1)
1019 * must match the number of pending IOs (nr_pending) before
1022 spin_lock_irq(&conf
->resync_lock
);
1025 wait_event_lock_irq(conf
->wait_barrier
,
1026 conf
->nr_pending
== conf
->nr_queued
+1,
1028 flush_pending_writes(conf
));
1030 spin_unlock_irq(&conf
->resync_lock
);
1033 static void unfreeze_array(struct r10conf
*conf
)
1035 /* reverse the effect of the freeze */
1036 spin_lock_irq(&conf
->resync_lock
);
1039 wake_up(&conf
->wait_barrier
);
1040 spin_unlock_irq(&conf
->resync_lock
);
1043 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1044 struct md_rdev
*rdev
)
1046 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1047 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1048 return rdev
->data_offset
;
1050 return rdev
->new_data_offset
;
1053 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1055 struct r10conf
*conf
= mddev
->private;
1056 struct r10bio
*r10_bio
;
1057 struct bio
*read_bio
;
1059 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1060 int chunk_sects
= chunk_mask
+ 1;
1061 const int rw
= bio_data_dir(bio
);
1062 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1063 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1064 unsigned long flags
;
1065 struct md_rdev
*blocked_rdev
;
1066 int sectors_handled
;
1070 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1071 md_flush_request(mddev
, bio
);
1075 /* If this request crosses a chunk boundary, we need to
1076 * split it. This will only happen for 1 PAGE (or less) requests.
1078 if (unlikely((bio
->bi_sector
& chunk_mask
) + (bio
->bi_size
>> 9)
1080 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1081 || conf
->prev
.near_copies
< conf
->prev
.raid_disks
))) {
1082 struct bio_pair
*bp
;
1083 /* Sanity check -- queue functions should prevent this happening */
1084 if (bio
->bi_vcnt
!= 1 ||
1087 /* This is a one page bio that upper layers
1088 * refuse to split for us, so we need to split it.
1091 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1093 /* Each of these 'make_request' calls will call 'wait_barrier'.
1094 * If the first succeeds but the second blocks due to the resync
1095 * thread raising the barrier, we will deadlock because the
1096 * IO to the underlying device will be queued in generic_make_request
1097 * and will never complete, so will never reduce nr_pending.
1098 * So increment nr_waiting here so no new raise_barriers will
1099 * succeed, and so the second wait_barrier cannot block.
1101 spin_lock_irq(&conf
->resync_lock
);
1103 spin_unlock_irq(&conf
->resync_lock
);
1105 make_request(mddev
, &bp
->bio1
);
1106 make_request(mddev
, &bp
->bio2
);
1108 spin_lock_irq(&conf
->resync_lock
);
1110 wake_up(&conf
->wait_barrier
);
1111 spin_unlock_irq(&conf
->resync_lock
);
1113 bio_pair_release(bp
);
1116 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1118 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1124 md_write_start(mddev
, bio
);
1127 * Register the new request and wait if the reconstruction
1128 * thread has put up a bar for new requests.
1129 * Continue immediately if no resync is active currently.
1133 sectors
= bio
->bi_size
>> 9;
1134 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1135 bio
->bi_sector
< conf
->reshape_progress
&&
1136 bio
->bi_sector
+ sectors
> conf
->reshape_progress
) {
1137 /* IO spans the reshape position. Need to wait for
1140 allow_barrier(conf
);
1141 wait_event(conf
->wait_barrier
,
1142 conf
->reshape_progress
<= bio
->bi_sector
||
1143 conf
->reshape_progress
>= bio
->bi_sector
+ sectors
);
1146 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1147 bio_data_dir(bio
) == WRITE
&&
1148 (mddev
->reshape_backwards
1149 ? (bio
->bi_sector
< conf
->reshape_safe
&&
1150 bio
->bi_sector
+ sectors
> conf
->reshape_progress
)
1151 : (bio
->bi_sector
+ sectors
> conf
->reshape_safe
&&
1152 bio
->bi_sector
< conf
->reshape_progress
))) {
1153 /* Need to update reshape_position in metadata */
1154 mddev
->reshape_position
= conf
->reshape_progress
;
1155 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1156 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1157 md_wakeup_thread(mddev
->thread
);
1158 wait_event(mddev
->sb_wait
,
1159 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1161 conf
->reshape_safe
= mddev
->reshape_position
;
1164 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1166 r10_bio
->master_bio
= bio
;
1167 r10_bio
->sectors
= sectors
;
1169 r10_bio
->mddev
= mddev
;
1170 r10_bio
->sector
= bio
->bi_sector
;
1173 /* We might need to issue multiple reads to different
1174 * devices if there are bad blocks around, so we keep
1175 * track of the number of reads in bio->bi_phys_segments.
1176 * If this is 0, there is only one r10_bio and no locking
1177 * will be needed when the request completes. If it is
1178 * non-zero, then it is the number of not-completed requests.
1180 bio
->bi_phys_segments
= 0;
1181 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1185 * read balancing logic:
1187 struct md_rdev
*rdev
;
1191 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1193 raid_end_bio_io(r10_bio
);
1196 slot
= r10_bio
->read_slot
;
1198 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1199 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1202 r10_bio
->devs
[slot
].bio
= read_bio
;
1203 r10_bio
->devs
[slot
].rdev
= rdev
;
1205 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1206 choose_data_offset(r10_bio
, rdev
);
1207 read_bio
->bi_bdev
= rdev
->bdev
;
1208 read_bio
->bi_end_io
= raid10_end_read_request
;
1209 read_bio
->bi_rw
= READ
| do_sync
;
1210 read_bio
->bi_private
= r10_bio
;
1212 if (max_sectors
< r10_bio
->sectors
) {
1213 /* Could not read all from this device, so we will
1214 * need another r10_bio.
1216 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1218 r10_bio
->sectors
= max_sectors
;
1219 spin_lock_irq(&conf
->device_lock
);
1220 if (bio
->bi_phys_segments
== 0)
1221 bio
->bi_phys_segments
= 2;
1223 bio
->bi_phys_segments
++;
1224 spin_unlock(&conf
->device_lock
);
1225 /* Cannot call generic_make_request directly
1226 * as that will be queued in __generic_make_request
1227 * and subsequent mempool_alloc might block
1228 * waiting for it. so hand bio over to raid10d.
1230 reschedule_retry(r10_bio
);
1232 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1234 r10_bio
->master_bio
= bio
;
1235 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1238 r10_bio
->mddev
= mddev
;
1239 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1242 generic_make_request(read_bio
);
1249 if (conf
->pending_count
>= max_queued_requests
) {
1250 md_wakeup_thread(mddev
->thread
);
1251 wait_event(conf
->wait_barrier
,
1252 conf
->pending_count
< max_queued_requests
);
1254 /* first select target devices under rcu_lock and
1255 * inc refcount on their rdev. Record them by setting
1257 * If there are known/acknowledged bad blocks on any device
1258 * on which we have seen a write error, we want to avoid
1259 * writing to those blocks. This potentially requires several
1260 * writes to write around the bad blocks. Each set of writes
1261 * gets its own r10_bio with a set of bios attached. The number
1262 * of r10_bios is recored in bio->bi_phys_segments just as with
1266 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1267 raid10_find_phys(conf
, r10_bio
);
1269 blocked_rdev
= NULL
;
1271 max_sectors
= r10_bio
->sectors
;
1273 for (i
= 0; i
< conf
->copies
; i
++) {
1274 int d
= r10_bio
->devs
[i
].devnum
;
1275 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1276 struct md_rdev
*rrdev
= rcu_dereference(
1277 conf
->mirrors
[d
].replacement
);
1280 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1281 atomic_inc(&rdev
->nr_pending
);
1282 blocked_rdev
= rdev
;
1285 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1286 atomic_inc(&rrdev
->nr_pending
);
1287 blocked_rdev
= rrdev
;
1290 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1291 || test_bit(Unmerged
, &rrdev
->flags
)))
1294 r10_bio
->devs
[i
].bio
= NULL
;
1295 r10_bio
->devs
[i
].repl_bio
= NULL
;
1296 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
1297 test_bit(Unmerged
, &rdev
->flags
)) {
1298 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1301 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1303 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1307 is_bad
= is_badblock(rdev
, dev_sector
,
1309 &first_bad
, &bad_sectors
);
1311 /* Mustn't write here until the bad block
1314 atomic_inc(&rdev
->nr_pending
);
1315 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1316 blocked_rdev
= rdev
;
1319 if (is_bad
&& first_bad
<= dev_sector
) {
1320 /* Cannot write here at all */
1321 bad_sectors
-= (dev_sector
- first_bad
);
1322 if (bad_sectors
< max_sectors
)
1323 /* Mustn't write more than bad_sectors
1324 * to other devices yet
1326 max_sectors
= bad_sectors
;
1327 /* We don't set R10BIO_Degraded as that
1328 * only applies if the disk is missing,
1329 * so it might be re-added, and we want to
1330 * know to recover this chunk.
1331 * In this case the device is here, and the
1332 * fact that this chunk is not in-sync is
1333 * recorded in the bad block log.
1338 int good_sectors
= first_bad
- dev_sector
;
1339 if (good_sectors
< max_sectors
)
1340 max_sectors
= good_sectors
;
1343 r10_bio
->devs
[i
].bio
= bio
;
1344 atomic_inc(&rdev
->nr_pending
);
1346 r10_bio
->devs
[i
].repl_bio
= bio
;
1347 atomic_inc(&rrdev
->nr_pending
);
1352 if (unlikely(blocked_rdev
)) {
1353 /* Have to wait for this device to get unblocked, then retry */
1357 for (j
= 0; j
< i
; j
++) {
1358 if (r10_bio
->devs
[j
].bio
) {
1359 d
= r10_bio
->devs
[j
].devnum
;
1360 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1362 if (r10_bio
->devs
[j
].repl_bio
) {
1363 struct md_rdev
*rdev
;
1364 d
= r10_bio
->devs
[j
].devnum
;
1365 rdev
= conf
->mirrors
[d
].replacement
;
1367 /* Race with remove_disk */
1369 rdev
= conf
->mirrors
[d
].rdev
;
1371 rdev_dec_pending(rdev
, mddev
);
1374 allow_barrier(conf
);
1375 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1380 if (max_sectors
< r10_bio
->sectors
) {
1381 /* We are splitting this into multiple parts, so
1382 * we need to prepare for allocating another r10_bio.
1384 r10_bio
->sectors
= max_sectors
;
1385 spin_lock_irq(&conf
->device_lock
);
1386 if (bio
->bi_phys_segments
== 0)
1387 bio
->bi_phys_segments
= 2;
1389 bio
->bi_phys_segments
++;
1390 spin_unlock_irq(&conf
->device_lock
);
1392 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1394 atomic_set(&r10_bio
->remaining
, 1);
1395 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1397 for (i
= 0; i
< conf
->copies
; i
++) {
1399 int d
= r10_bio
->devs
[i
].devnum
;
1400 if (!r10_bio
->devs
[i
].bio
)
1403 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1404 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1406 r10_bio
->devs
[i
].bio
= mbio
;
1408 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1409 choose_data_offset(r10_bio
,
1410 conf
->mirrors
[d
].rdev
));
1411 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1412 mbio
->bi_end_io
= raid10_end_write_request
;
1413 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1414 mbio
->bi_private
= r10_bio
;
1416 atomic_inc(&r10_bio
->remaining
);
1417 spin_lock_irqsave(&conf
->device_lock
, flags
);
1418 bio_list_add(&conf
->pending_bio_list
, mbio
);
1419 conf
->pending_count
++;
1420 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1421 if (!mddev_check_plugged(mddev
))
1422 md_wakeup_thread(mddev
->thread
);
1424 if (!r10_bio
->devs
[i
].repl_bio
)
1427 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1428 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1430 r10_bio
->devs
[i
].repl_bio
= mbio
;
1432 /* We are actively writing to the original device
1433 * so it cannot disappear, so the replacement cannot
1436 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1439 conf
->mirrors
[d
].replacement
));
1440 mbio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
1441 mbio
->bi_end_io
= raid10_end_write_request
;
1442 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1443 mbio
->bi_private
= r10_bio
;
1445 atomic_inc(&r10_bio
->remaining
);
1446 spin_lock_irqsave(&conf
->device_lock
, flags
);
1447 bio_list_add(&conf
->pending_bio_list
, mbio
);
1448 conf
->pending_count
++;
1449 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1450 if (!mddev_check_plugged(mddev
))
1451 md_wakeup_thread(mddev
->thread
);
1454 /* Don't remove the bias on 'remaining' (one_write_done) until
1455 * after checking if we need to go around again.
1458 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1459 one_write_done(r10_bio
);
1460 /* We need another r10_bio. It has already been counted
1461 * in bio->bi_phys_segments.
1463 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1465 r10_bio
->master_bio
= bio
;
1466 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1468 r10_bio
->mddev
= mddev
;
1469 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1473 one_write_done(r10_bio
);
1475 /* In case raid10d snuck in to freeze_array */
1476 wake_up(&conf
->wait_barrier
);
1479 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1481 struct r10conf
*conf
= mddev
->private;
1484 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1485 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1486 if (conf
->geo
.near_copies
> 1)
1487 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1488 if (conf
->geo
.far_copies
> 1) {
1489 if (conf
->geo
.far_offset
)
1490 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1492 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1494 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1495 conf
->geo
.raid_disks
- mddev
->degraded
);
1496 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1497 seq_printf(seq
, "%s",
1498 conf
->mirrors
[i
].rdev
&&
1499 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1500 seq_printf(seq
, "]");
1503 /* check if there are enough drives for
1504 * every block to appear on atleast one.
1505 * Don't consider the device numbered 'ignore'
1506 * as we might be about to remove it.
1508 static int _enough(struct r10conf
*conf
, struct geom
*geo
, int ignore
)
1513 int n
= conf
->copies
;
1517 if (conf
->mirrors
[this].rdev
&&
1520 this = (this+1) % geo
->raid_disks
;
1524 first
= (first
+ geo
->near_copies
) % geo
->raid_disks
;
1525 } while (first
!= 0);
1529 static int enough(struct r10conf
*conf
, int ignore
)
1531 return _enough(conf
, &conf
->geo
, ignore
) &&
1532 _enough(conf
, &conf
->prev
, ignore
);
1535 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1537 char b
[BDEVNAME_SIZE
];
1538 struct r10conf
*conf
= mddev
->private;
1541 * If it is not operational, then we have already marked it as dead
1542 * else if it is the last working disks, ignore the error, let the
1543 * next level up know.
1544 * else mark the drive as failed
1546 if (test_bit(In_sync
, &rdev
->flags
)
1547 && !enough(conf
, rdev
->raid_disk
))
1549 * Don't fail the drive, just return an IO error.
1552 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1553 unsigned long flags
;
1554 spin_lock_irqsave(&conf
->device_lock
, flags
);
1556 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1558 * if recovery is running, make sure it aborts.
1560 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1562 set_bit(Blocked
, &rdev
->flags
);
1563 set_bit(Faulty
, &rdev
->flags
);
1564 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1566 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1567 "md/raid10:%s: Operation continuing on %d devices.\n",
1568 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1569 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1572 static void print_conf(struct r10conf
*conf
)
1575 struct raid10_info
*tmp
;
1577 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1579 printk(KERN_DEBUG
"(!conf)\n");
1582 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1583 conf
->geo
.raid_disks
);
1585 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1586 char b
[BDEVNAME_SIZE
];
1587 tmp
= conf
->mirrors
+ i
;
1589 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1590 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1591 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1592 bdevname(tmp
->rdev
->bdev
,b
));
1596 static void close_sync(struct r10conf
*conf
)
1599 allow_barrier(conf
);
1601 mempool_destroy(conf
->r10buf_pool
);
1602 conf
->r10buf_pool
= NULL
;
1605 static int raid10_spare_active(struct mddev
*mddev
)
1608 struct r10conf
*conf
= mddev
->private;
1609 struct raid10_info
*tmp
;
1611 unsigned long flags
;
1614 * Find all non-in_sync disks within the RAID10 configuration
1615 * and mark them in_sync
1617 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1618 tmp
= conf
->mirrors
+ i
;
1619 if (tmp
->replacement
1620 && tmp
->replacement
->recovery_offset
== MaxSector
1621 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1622 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1623 /* Replacement has just become active */
1625 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1628 /* Replaced device not technically faulty,
1629 * but we need to be sure it gets removed
1630 * and never re-added.
1632 set_bit(Faulty
, &tmp
->rdev
->flags
);
1633 sysfs_notify_dirent_safe(
1634 tmp
->rdev
->sysfs_state
);
1636 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1637 } else if (tmp
->rdev
1638 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1639 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1641 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1644 spin_lock_irqsave(&conf
->device_lock
, flags
);
1645 mddev
->degraded
-= count
;
1646 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1653 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1655 struct r10conf
*conf
= mddev
->private;
1659 int last
= conf
->geo
.raid_disks
- 1;
1660 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1662 if (mddev
->recovery_cp
< MaxSector
)
1663 /* only hot-add to in-sync arrays, as recovery is
1664 * very different from resync
1667 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, &conf
->prev
, -1))
1670 if (rdev
->raid_disk
>= 0)
1671 first
= last
= rdev
->raid_disk
;
1673 if (q
->merge_bvec_fn
) {
1674 set_bit(Unmerged
, &rdev
->flags
);
1675 mddev
->merge_check_needed
= 1;
1678 if (rdev
->saved_raid_disk
>= first
&&
1679 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1680 mirror
= rdev
->saved_raid_disk
;
1683 for ( ; mirror
<= last
; mirror
++) {
1684 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1685 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1688 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1689 p
->replacement
!= NULL
)
1691 clear_bit(In_sync
, &rdev
->flags
);
1692 set_bit(Replacement
, &rdev
->flags
);
1693 rdev
->raid_disk
= mirror
;
1695 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1696 rdev
->data_offset
<< 9);
1698 rcu_assign_pointer(p
->replacement
, rdev
);
1702 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1703 rdev
->data_offset
<< 9);
1705 p
->head_position
= 0;
1706 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1707 rdev
->raid_disk
= mirror
;
1709 if (rdev
->saved_raid_disk
!= mirror
)
1711 rcu_assign_pointer(p
->rdev
, rdev
);
1714 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1715 /* Some requests might not have seen this new
1716 * merge_bvec_fn. We must wait for them to complete
1717 * before merging the device fully.
1718 * First we make sure any code which has tested
1719 * our function has submitted the request, then
1720 * we wait for all outstanding requests to complete.
1722 synchronize_sched();
1723 raise_barrier(conf
, 0);
1724 lower_barrier(conf
);
1725 clear_bit(Unmerged
, &rdev
->flags
);
1727 md_integrity_add_rdev(rdev
, mddev
);
1732 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1734 struct r10conf
*conf
= mddev
->private;
1736 int number
= rdev
->raid_disk
;
1737 struct md_rdev
**rdevp
;
1738 struct raid10_info
*p
= conf
->mirrors
+ number
;
1741 if (rdev
== p
->rdev
)
1743 else if (rdev
== p
->replacement
)
1744 rdevp
= &p
->replacement
;
1748 if (test_bit(In_sync
, &rdev
->flags
) ||
1749 atomic_read(&rdev
->nr_pending
)) {
1753 /* Only remove faulty devices if recovery
1756 if (!test_bit(Faulty
, &rdev
->flags
) &&
1757 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1758 (!p
->replacement
|| p
->replacement
== rdev
) &&
1759 number
< conf
->geo
.raid_disks
&&
1766 if (atomic_read(&rdev
->nr_pending
)) {
1767 /* lost the race, try later */
1771 } else if (p
->replacement
) {
1772 /* We must have just cleared 'rdev' */
1773 p
->rdev
= p
->replacement
;
1774 clear_bit(Replacement
, &p
->replacement
->flags
);
1775 smp_mb(); /* Make sure other CPUs may see both as identical
1776 * but will never see neither -- if they are careful.
1778 p
->replacement
= NULL
;
1779 clear_bit(WantReplacement
, &rdev
->flags
);
1781 /* We might have just remove the Replacement as faulty
1782 * Clear the flag just in case
1784 clear_bit(WantReplacement
, &rdev
->flags
);
1786 err
= md_integrity_register(mddev
);
1795 static void end_sync_read(struct bio
*bio
, int error
)
1797 struct r10bio
*r10_bio
= bio
->bi_private
;
1798 struct r10conf
*conf
= r10_bio
->mddev
->private;
1801 if (bio
== r10_bio
->master_bio
) {
1802 /* this is a reshape read */
1803 d
= r10_bio
->read_slot
; /* really the read dev */
1805 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1807 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1808 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1810 /* The write handler will notice the lack of
1811 * R10BIO_Uptodate and record any errors etc
1813 atomic_add(r10_bio
->sectors
,
1814 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1816 /* for reconstruct, we always reschedule after a read.
1817 * for resync, only after all reads
1819 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1820 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1821 atomic_dec_and_test(&r10_bio
->remaining
)) {
1822 /* we have read all the blocks,
1823 * do the comparison in process context in raid10d
1825 reschedule_retry(r10_bio
);
1829 static void end_sync_request(struct r10bio
*r10_bio
)
1831 struct mddev
*mddev
= r10_bio
->mddev
;
1833 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1834 if (r10_bio
->master_bio
== NULL
) {
1835 /* the primary of several recovery bios */
1836 sector_t s
= r10_bio
->sectors
;
1837 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1838 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1839 reschedule_retry(r10_bio
);
1842 md_done_sync(mddev
, s
, 1);
1845 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1846 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1847 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1848 reschedule_retry(r10_bio
);
1856 static void end_sync_write(struct bio
*bio
, int error
)
1858 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1859 struct r10bio
*r10_bio
= bio
->bi_private
;
1860 struct mddev
*mddev
= r10_bio
->mddev
;
1861 struct r10conf
*conf
= mddev
->private;
1867 struct md_rdev
*rdev
= NULL
;
1869 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1871 rdev
= conf
->mirrors
[d
].replacement
;
1873 rdev
= conf
->mirrors
[d
].rdev
;
1877 md_error(mddev
, rdev
);
1879 set_bit(WriteErrorSeen
, &rdev
->flags
);
1880 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1881 set_bit(MD_RECOVERY_NEEDED
,
1882 &rdev
->mddev
->recovery
);
1883 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1885 } else if (is_badblock(rdev
,
1886 r10_bio
->devs
[slot
].addr
,
1888 &first_bad
, &bad_sectors
))
1889 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1891 rdev_dec_pending(rdev
, mddev
);
1893 end_sync_request(r10_bio
);
1897 * Note: sync and recover and handled very differently for raid10
1898 * This code is for resync.
1899 * For resync, we read through virtual addresses and read all blocks.
1900 * If there is any error, we schedule a write. The lowest numbered
1901 * drive is authoritative.
1902 * However requests come for physical address, so we need to map.
1903 * For every physical address there are raid_disks/copies virtual addresses,
1904 * which is always are least one, but is not necessarly an integer.
1905 * This means that a physical address can span multiple chunks, so we may
1906 * have to submit multiple io requests for a single sync request.
1909 * We check if all blocks are in-sync and only write to blocks that
1912 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1914 struct r10conf
*conf
= mddev
->private;
1916 struct bio
*tbio
, *fbio
;
1919 atomic_set(&r10_bio
->remaining
, 1);
1921 /* find the first device with a block */
1922 for (i
=0; i
<conf
->copies
; i
++)
1923 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1926 if (i
== conf
->copies
)
1930 fbio
= r10_bio
->devs
[i
].bio
;
1932 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1933 /* now find blocks with errors */
1934 for (i
=0 ; i
< conf
->copies
; i
++) {
1937 tbio
= r10_bio
->devs
[i
].bio
;
1939 if (tbio
->bi_end_io
!= end_sync_read
)
1943 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1944 /* We know that the bi_io_vec layout is the same for
1945 * both 'first' and 'i', so we just compare them.
1946 * All vec entries are PAGE_SIZE;
1948 for (j
= 0; j
< vcnt
; j
++)
1949 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1950 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1951 fbio
->bi_io_vec
[j
].bv_len
))
1955 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1956 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1957 /* Don't fix anything. */
1960 /* Ok, we need to write this bio, either to correct an
1961 * inconsistency or to correct an unreadable block.
1962 * First we need to fixup bv_offset, bv_len and
1963 * bi_vecs, as the read request might have corrupted these
1965 tbio
->bi_vcnt
= vcnt
;
1966 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1968 tbio
->bi_phys_segments
= 0;
1969 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1970 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1971 tbio
->bi_next
= NULL
;
1972 tbio
->bi_rw
= WRITE
;
1973 tbio
->bi_private
= r10_bio
;
1974 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1976 for (j
=0; j
< vcnt
; j
++) {
1977 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1978 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1980 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1981 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1984 tbio
->bi_end_io
= end_sync_write
;
1986 d
= r10_bio
->devs
[i
].devnum
;
1987 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1988 atomic_inc(&r10_bio
->remaining
);
1989 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1991 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1992 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1993 generic_make_request(tbio
);
1996 /* Now write out to any replacement devices
1999 for (i
= 0; i
< conf
->copies
; i
++) {
2002 tbio
= r10_bio
->devs
[i
].repl_bio
;
2003 if (!tbio
|| !tbio
->bi_end_io
)
2005 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2006 && r10_bio
->devs
[i
].bio
!= fbio
)
2007 for (j
= 0; j
< vcnt
; j
++)
2008 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
2009 page_address(fbio
->bi_io_vec
[j
].bv_page
),
2011 d
= r10_bio
->devs
[i
].devnum
;
2012 atomic_inc(&r10_bio
->remaining
);
2013 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2014 tbio
->bi_size
>> 9);
2015 generic_make_request(tbio
);
2019 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2020 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2026 * Now for the recovery code.
2027 * Recovery happens across physical sectors.
2028 * We recover all non-is_sync drives by finding the virtual address of
2029 * each, and then choose a working drive that also has that virt address.
2030 * There is a separate r10_bio for each non-in_sync drive.
2031 * Only the first two slots are in use. The first for reading,
2032 * The second for writing.
2035 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2037 /* We got a read error during recovery.
2038 * We repeat the read in smaller page-sized sections.
2039 * If a read succeeds, write it to the new device or record
2040 * a bad block if we cannot.
2041 * If a read fails, record a bad block on both old and
2044 struct mddev
*mddev
= r10_bio
->mddev
;
2045 struct r10conf
*conf
= mddev
->private;
2046 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2048 int sectors
= r10_bio
->sectors
;
2050 int dr
= r10_bio
->devs
[0].devnum
;
2051 int dw
= r10_bio
->devs
[1].devnum
;
2055 struct md_rdev
*rdev
;
2059 if (s
> (PAGE_SIZE
>>9))
2062 rdev
= conf
->mirrors
[dr
].rdev
;
2063 addr
= r10_bio
->devs
[0].addr
+ sect
,
2064 ok
= sync_page_io(rdev
,
2067 bio
->bi_io_vec
[idx
].bv_page
,
2070 rdev
= conf
->mirrors
[dw
].rdev
;
2071 addr
= r10_bio
->devs
[1].addr
+ sect
;
2072 ok
= sync_page_io(rdev
,
2075 bio
->bi_io_vec
[idx
].bv_page
,
2078 set_bit(WriteErrorSeen
, &rdev
->flags
);
2079 if (!test_and_set_bit(WantReplacement
,
2081 set_bit(MD_RECOVERY_NEEDED
,
2082 &rdev
->mddev
->recovery
);
2086 /* We don't worry if we cannot set a bad block -
2087 * it really is bad so there is no loss in not
2090 rdev_set_badblocks(rdev
, addr
, s
, 0);
2092 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2093 /* need bad block on destination too */
2094 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2095 addr
= r10_bio
->devs
[1].addr
+ sect
;
2096 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2098 /* just abort the recovery */
2100 "md/raid10:%s: recovery aborted"
2101 " due to read error\n",
2104 conf
->mirrors
[dw
].recovery_disabled
2105 = mddev
->recovery_disabled
;
2106 set_bit(MD_RECOVERY_INTR
,
2119 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2121 struct r10conf
*conf
= mddev
->private;
2123 struct bio
*wbio
, *wbio2
;
2125 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2126 fix_recovery_read_error(r10_bio
);
2127 end_sync_request(r10_bio
);
2132 * share the pages with the first bio
2133 * and submit the write request
2135 d
= r10_bio
->devs
[1].devnum
;
2136 wbio
= r10_bio
->devs
[1].bio
;
2137 wbio2
= r10_bio
->devs
[1].repl_bio
;
2138 if (wbio
->bi_end_io
) {
2139 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2140 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2141 generic_make_request(wbio
);
2143 if (wbio2
&& wbio2
->bi_end_io
) {
2144 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2145 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2146 wbio2
->bi_size
>> 9);
2147 generic_make_request(wbio2
);
2153 * Used by fix_read_error() to decay the per rdev read_errors.
2154 * We halve the read error count for every hour that has elapsed
2155 * since the last recorded read error.
2158 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2160 struct timespec cur_time_mon
;
2161 unsigned long hours_since_last
;
2162 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2164 ktime_get_ts(&cur_time_mon
);
2166 if (rdev
->last_read_error
.tv_sec
== 0 &&
2167 rdev
->last_read_error
.tv_nsec
== 0) {
2168 /* first time we've seen a read error */
2169 rdev
->last_read_error
= cur_time_mon
;
2173 hours_since_last
= (cur_time_mon
.tv_sec
-
2174 rdev
->last_read_error
.tv_sec
) / 3600;
2176 rdev
->last_read_error
= cur_time_mon
;
2179 * if hours_since_last is > the number of bits in read_errors
2180 * just set read errors to 0. We do this to avoid
2181 * overflowing the shift of read_errors by hours_since_last.
2183 if (hours_since_last
>= 8 * sizeof(read_errors
))
2184 atomic_set(&rdev
->read_errors
, 0);
2186 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2189 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2190 int sectors
, struct page
*page
, int rw
)
2195 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2196 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2198 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2202 set_bit(WriteErrorSeen
, &rdev
->flags
);
2203 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2204 set_bit(MD_RECOVERY_NEEDED
,
2205 &rdev
->mddev
->recovery
);
2207 /* need to record an error - either for the block or the device */
2208 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2209 md_error(rdev
->mddev
, rdev
);
2214 * This is a kernel thread which:
2216 * 1. Retries failed read operations on working mirrors.
2217 * 2. Updates the raid superblock when problems encounter.
2218 * 3. Performs writes following reads for array synchronising.
2221 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2223 int sect
= 0; /* Offset from r10_bio->sector */
2224 int sectors
= r10_bio
->sectors
;
2225 struct md_rdev
*rdev
;
2226 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2227 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2229 /* still own a reference to this rdev, so it cannot
2230 * have been cleared recently.
2232 rdev
= conf
->mirrors
[d
].rdev
;
2234 if (test_bit(Faulty
, &rdev
->flags
))
2235 /* drive has already been failed, just ignore any
2236 more fix_read_error() attempts */
2239 check_decay_read_errors(mddev
, rdev
);
2240 atomic_inc(&rdev
->read_errors
);
2241 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2242 char b
[BDEVNAME_SIZE
];
2243 bdevname(rdev
->bdev
, b
);
2246 "md/raid10:%s: %s: Raid device exceeded "
2247 "read_error threshold [cur %d:max %d]\n",
2249 atomic_read(&rdev
->read_errors
), max_read_errors
);
2251 "md/raid10:%s: %s: Failing raid device\n",
2253 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2254 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2260 int sl
= r10_bio
->read_slot
;
2264 if (s
> (PAGE_SIZE
>>9))
2272 d
= r10_bio
->devs
[sl
].devnum
;
2273 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2275 !test_bit(Unmerged
, &rdev
->flags
) &&
2276 test_bit(In_sync
, &rdev
->flags
) &&
2277 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2278 &first_bad
, &bad_sectors
) == 0) {
2279 atomic_inc(&rdev
->nr_pending
);
2281 success
= sync_page_io(rdev
,
2282 r10_bio
->devs
[sl
].addr
+
2285 conf
->tmppage
, READ
, false);
2286 rdev_dec_pending(rdev
, mddev
);
2292 if (sl
== conf
->copies
)
2294 } while (!success
&& sl
!= r10_bio
->read_slot
);
2298 /* Cannot read from anywhere, just mark the block
2299 * as bad on the first device to discourage future
2302 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2303 rdev
= conf
->mirrors
[dn
].rdev
;
2305 if (!rdev_set_badblocks(
2307 r10_bio
->devs
[r10_bio
->read_slot
].addr
2310 md_error(mddev
, rdev
);
2311 r10_bio
->devs
[r10_bio
->read_slot
].bio
2318 /* write it back and re-read */
2320 while (sl
!= r10_bio
->read_slot
) {
2321 char b
[BDEVNAME_SIZE
];
2326 d
= r10_bio
->devs
[sl
].devnum
;
2327 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2329 test_bit(Unmerged
, &rdev
->flags
) ||
2330 !test_bit(In_sync
, &rdev
->flags
))
2333 atomic_inc(&rdev
->nr_pending
);
2335 if (r10_sync_page_io(rdev
,
2336 r10_bio
->devs
[sl
].addr
+
2338 s
, conf
->tmppage
, WRITE
)
2340 /* Well, this device is dead */
2342 "md/raid10:%s: read correction "
2344 " (%d sectors at %llu on %s)\n",
2346 (unsigned long long)(
2348 choose_data_offset(r10_bio
,
2350 bdevname(rdev
->bdev
, b
));
2351 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2354 bdevname(rdev
->bdev
, b
));
2356 rdev_dec_pending(rdev
, mddev
);
2360 while (sl
!= r10_bio
->read_slot
) {
2361 char b
[BDEVNAME_SIZE
];
2366 d
= r10_bio
->devs
[sl
].devnum
;
2367 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2369 !test_bit(In_sync
, &rdev
->flags
))
2372 atomic_inc(&rdev
->nr_pending
);
2374 switch (r10_sync_page_io(rdev
,
2375 r10_bio
->devs
[sl
].addr
+
2380 /* Well, this device is dead */
2382 "md/raid10:%s: unable to read back "
2384 " (%d sectors at %llu on %s)\n",
2386 (unsigned long long)(
2388 choose_data_offset(r10_bio
, rdev
)),
2389 bdevname(rdev
->bdev
, b
));
2390 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2393 bdevname(rdev
->bdev
, b
));
2397 "md/raid10:%s: read error corrected"
2398 " (%d sectors at %llu on %s)\n",
2400 (unsigned long long)(
2402 choose_data_offset(r10_bio
, rdev
)),
2403 bdevname(rdev
->bdev
, b
));
2404 atomic_add(s
, &rdev
->corrected_errors
);
2407 rdev_dec_pending(rdev
, mddev
);
2417 static void bi_complete(struct bio
*bio
, int error
)
2419 complete((struct completion
*)bio
->bi_private
);
2422 static int submit_bio_wait(int rw
, struct bio
*bio
)
2424 struct completion event
;
2427 init_completion(&event
);
2428 bio
->bi_private
= &event
;
2429 bio
->bi_end_io
= bi_complete
;
2430 submit_bio(rw
, bio
);
2431 wait_for_completion(&event
);
2433 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2436 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2438 struct bio
*bio
= r10_bio
->master_bio
;
2439 struct mddev
*mddev
= r10_bio
->mddev
;
2440 struct r10conf
*conf
= mddev
->private;
2441 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2442 /* bio has the data to be written to slot 'i' where
2443 * we just recently had a write error.
2444 * We repeatedly clone the bio and trim down to one block,
2445 * then try the write. Where the write fails we record
2447 * It is conceivable that the bio doesn't exactly align with
2448 * blocks. We must handle this.
2450 * We currently own a reference to the rdev.
2456 int sect_to_write
= r10_bio
->sectors
;
2459 if (rdev
->badblocks
.shift
< 0)
2462 block_sectors
= 1 << rdev
->badblocks
.shift
;
2463 sector
= r10_bio
->sector
;
2464 sectors
= ((r10_bio
->sector
+ block_sectors
)
2465 & ~(sector_t
)(block_sectors
- 1))
2468 while (sect_to_write
) {
2470 if (sectors
> sect_to_write
)
2471 sectors
= sect_to_write
;
2472 /* Write at 'sector' for 'sectors' */
2473 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2474 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2475 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2476 choose_data_offset(r10_bio
, rdev
) +
2477 (sector
- r10_bio
->sector
));
2478 wbio
->bi_bdev
= rdev
->bdev
;
2479 if (submit_bio_wait(WRITE
, wbio
) == 0)
2481 ok
= rdev_set_badblocks(rdev
, sector
,
2486 sect_to_write
-= sectors
;
2488 sectors
= block_sectors
;
2493 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2495 int slot
= r10_bio
->read_slot
;
2497 struct r10conf
*conf
= mddev
->private;
2498 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2499 char b
[BDEVNAME_SIZE
];
2500 unsigned long do_sync
;
2503 /* we got a read error. Maybe the drive is bad. Maybe just
2504 * the block and we can fix it.
2505 * We freeze all other IO, and try reading the block from
2506 * other devices. When we find one, we re-write
2507 * and check it that fixes the read error.
2508 * This is all done synchronously while the array is
2511 bio
= r10_bio
->devs
[slot
].bio
;
2512 bdevname(bio
->bi_bdev
, b
);
2514 r10_bio
->devs
[slot
].bio
= NULL
;
2516 if (mddev
->ro
== 0) {
2518 fix_read_error(conf
, mddev
, r10_bio
);
2519 unfreeze_array(conf
);
2521 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2523 rdev_dec_pending(rdev
, mddev
);
2526 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2528 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2529 " read error for block %llu\n",
2531 (unsigned long long)r10_bio
->sector
);
2532 raid_end_bio_io(r10_bio
);
2536 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2537 slot
= r10_bio
->read_slot
;
2540 "md/raid10:%s: %s: redirecting "
2541 "sector %llu to another mirror\n",
2543 bdevname(rdev
->bdev
, b
),
2544 (unsigned long long)r10_bio
->sector
);
2545 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2548 r10_bio
->sector
- bio
->bi_sector
,
2550 r10_bio
->devs
[slot
].bio
= bio
;
2551 r10_bio
->devs
[slot
].rdev
= rdev
;
2552 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2553 + choose_data_offset(r10_bio
, rdev
);
2554 bio
->bi_bdev
= rdev
->bdev
;
2555 bio
->bi_rw
= READ
| do_sync
;
2556 bio
->bi_private
= r10_bio
;
2557 bio
->bi_end_io
= raid10_end_read_request
;
2558 if (max_sectors
< r10_bio
->sectors
) {
2559 /* Drat - have to split this up more */
2560 struct bio
*mbio
= r10_bio
->master_bio
;
2561 int sectors_handled
=
2562 r10_bio
->sector
+ max_sectors
2564 r10_bio
->sectors
= max_sectors
;
2565 spin_lock_irq(&conf
->device_lock
);
2566 if (mbio
->bi_phys_segments
== 0)
2567 mbio
->bi_phys_segments
= 2;
2569 mbio
->bi_phys_segments
++;
2570 spin_unlock_irq(&conf
->device_lock
);
2571 generic_make_request(bio
);
2573 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2575 r10_bio
->master_bio
= mbio
;
2576 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2579 set_bit(R10BIO_ReadError
,
2581 r10_bio
->mddev
= mddev
;
2582 r10_bio
->sector
= mbio
->bi_sector
2587 generic_make_request(bio
);
2590 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2592 /* Some sort of write request has finished and it
2593 * succeeded in writing where we thought there was a
2594 * bad block. So forget the bad block.
2595 * Or possibly if failed and we need to record
2599 struct md_rdev
*rdev
;
2601 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2602 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2603 for (m
= 0; m
< conf
->copies
; m
++) {
2604 int dev
= r10_bio
->devs
[m
].devnum
;
2605 rdev
= conf
->mirrors
[dev
].rdev
;
2606 if (r10_bio
->devs
[m
].bio
== NULL
)
2608 if (test_bit(BIO_UPTODATE
,
2609 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2610 rdev_clear_badblocks(
2612 r10_bio
->devs
[m
].addr
,
2613 r10_bio
->sectors
, 0);
2615 if (!rdev_set_badblocks(
2617 r10_bio
->devs
[m
].addr
,
2618 r10_bio
->sectors
, 0))
2619 md_error(conf
->mddev
, rdev
);
2621 rdev
= conf
->mirrors
[dev
].replacement
;
2622 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2624 if (test_bit(BIO_UPTODATE
,
2625 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2626 rdev_clear_badblocks(
2628 r10_bio
->devs
[m
].addr
,
2629 r10_bio
->sectors
, 0);
2631 if (!rdev_set_badblocks(
2633 r10_bio
->devs
[m
].addr
,
2634 r10_bio
->sectors
, 0))
2635 md_error(conf
->mddev
, rdev
);
2640 for (m
= 0; m
< conf
->copies
; m
++) {
2641 int dev
= r10_bio
->devs
[m
].devnum
;
2642 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2643 rdev
= conf
->mirrors
[dev
].rdev
;
2644 if (bio
== IO_MADE_GOOD
) {
2645 rdev_clear_badblocks(
2647 r10_bio
->devs
[m
].addr
,
2648 r10_bio
->sectors
, 0);
2649 rdev_dec_pending(rdev
, conf
->mddev
);
2650 } else if (bio
!= NULL
&&
2651 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2652 if (!narrow_write_error(r10_bio
, m
)) {
2653 md_error(conf
->mddev
, rdev
);
2654 set_bit(R10BIO_Degraded
,
2657 rdev_dec_pending(rdev
, conf
->mddev
);
2659 bio
= r10_bio
->devs
[m
].repl_bio
;
2660 rdev
= conf
->mirrors
[dev
].replacement
;
2661 if (rdev
&& bio
== IO_MADE_GOOD
) {
2662 rdev_clear_badblocks(
2664 r10_bio
->devs
[m
].addr
,
2665 r10_bio
->sectors
, 0);
2666 rdev_dec_pending(rdev
, conf
->mddev
);
2669 if (test_bit(R10BIO_WriteError
,
2671 close_write(r10_bio
);
2672 raid_end_bio_io(r10_bio
);
2676 static void raid10d(struct mddev
*mddev
)
2678 struct r10bio
*r10_bio
;
2679 unsigned long flags
;
2680 struct r10conf
*conf
= mddev
->private;
2681 struct list_head
*head
= &conf
->retry_list
;
2682 struct blk_plug plug
;
2684 md_check_recovery(mddev
);
2686 blk_start_plug(&plug
);
2689 flush_pending_writes(conf
);
2691 spin_lock_irqsave(&conf
->device_lock
, flags
);
2692 if (list_empty(head
)) {
2693 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2696 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2697 list_del(head
->prev
);
2699 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2701 mddev
= r10_bio
->mddev
;
2702 conf
= mddev
->private;
2703 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2704 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2705 handle_write_completed(conf
, r10_bio
);
2706 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2707 reshape_request_write(mddev
, r10_bio
);
2708 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2709 sync_request_write(mddev
, r10_bio
);
2710 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2711 recovery_request_write(mddev
, r10_bio
);
2712 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2713 handle_read_error(mddev
, r10_bio
);
2715 /* just a partial read to be scheduled from a
2718 int slot
= r10_bio
->read_slot
;
2719 generic_make_request(r10_bio
->devs
[slot
].bio
);
2723 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2724 md_check_recovery(mddev
);
2726 blk_finish_plug(&plug
);
2730 static int init_resync(struct r10conf
*conf
)
2735 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2736 BUG_ON(conf
->r10buf_pool
);
2737 conf
->have_replacement
= 0;
2738 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2739 if (conf
->mirrors
[i
].replacement
)
2740 conf
->have_replacement
= 1;
2741 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2742 if (!conf
->r10buf_pool
)
2744 conf
->next_resync
= 0;
2749 * perform a "sync" on one "block"
2751 * We need to make sure that no normal I/O request - particularly write
2752 * requests - conflict with active sync requests.
2754 * This is achieved by tracking pending requests and a 'barrier' concept
2755 * that can be installed to exclude normal IO requests.
2757 * Resync and recovery are handled very differently.
2758 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2760 * For resync, we iterate over virtual addresses, read all copies,
2761 * and update if there are differences. If only one copy is live,
2763 * For recovery, we iterate over physical addresses, read a good
2764 * value for each non-in_sync drive, and over-write.
2766 * So, for recovery we may have several outstanding complex requests for a
2767 * given address, one for each out-of-sync device. We model this by allocating
2768 * a number of r10_bio structures, one for each out-of-sync device.
2769 * As we setup these structures, we collect all bio's together into a list
2770 * which we then process collectively to add pages, and then process again
2771 * to pass to generic_make_request.
2773 * The r10_bio structures are linked using a borrowed master_bio pointer.
2774 * This link is counted in ->remaining. When the r10_bio that points to NULL
2775 * has its remaining count decremented to 0, the whole complex operation
2780 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2781 int *skipped
, int go_faster
)
2783 struct r10conf
*conf
= mddev
->private;
2784 struct r10bio
*r10_bio
;
2785 struct bio
*biolist
= NULL
, *bio
;
2786 sector_t max_sector
, nr_sectors
;
2789 sector_t sync_blocks
;
2790 sector_t sectors_skipped
= 0;
2791 int chunks_skipped
= 0;
2792 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2794 if (!conf
->r10buf_pool
)
2795 if (init_resync(conf
))
2799 max_sector
= mddev
->dev_sectors
;
2800 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2801 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2802 max_sector
= mddev
->resync_max_sectors
;
2803 if (sector_nr
>= max_sector
) {
2804 /* If we aborted, we need to abort the
2805 * sync on the 'current' bitmap chucks (there can
2806 * be several when recovering multiple devices).
2807 * as we may have started syncing it but not finished.
2808 * We can find the current address in
2809 * mddev->curr_resync, but for recovery,
2810 * we need to convert that to several
2811 * virtual addresses.
2813 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2818 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2819 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2820 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2822 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2824 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2825 bitmap_end_sync(mddev
->bitmap
, sect
,
2829 /* completed sync */
2830 if ((!mddev
->bitmap
|| conf
->fullsync
)
2831 && conf
->have_replacement
2832 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2833 /* Completed a full sync so the replacements
2834 * are now fully recovered.
2836 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2837 if (conf
->mirrors
[i
].replacement
)
2838 conf
->mirrors
[i
].replacement
2844 bitmap_close_sync(mddev
->bitmap
);
2847 return sectors_skipped
;
2850 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2851 return reshape_request(mddev
, sector_nr
, skipped
);
2853 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2854 /* if there has been nothing to do on any drive,
2855 * then there is nothing to do at all..
2858 return (max_sector
- sector_nr
) + sectors_skipped
;
2861 if (max_sector
> mddev
->resync_max
)
2862 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2864 /* make sure whole request will fit in a chunk - if chunks
2867 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2868 max_sector
> (sector_nr
| chunk_mask
))
2869 max_sector
= (sector_nr
| chunk_mask
) + 1;
2871 * If there is non-resync activity waiting for us then
2872 * put in a delay to throttle resync.
2874 if (!go_faster
&& conf
->nr_waiting
)
2875 msleep_interruptible(1000);
2877 /* Again, very different code for resync and recovery.
2878 * Both must result in an r10bio with a list of bios that
2879 * have bi_end_io, bi_sector, bi_bdev set,
2880 * and bi_private set to the r10bio.
2881 * For recovery, we may actually create several r10bios
2882 * with 2 bios in each, that correspond to the bios in the main one.
2883 * In this case, the subordinate r10bios link back through a
2884 * borrowed master_bio pointer, and the counter in the master
2885 * includes a ref from each subordinate.
2887 /* First, we decide what to do and set ->bi_end_io
2888 * To end_sync_read if we want to read, and
2889 * end_sync_write if we will want to write.
2892 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2893 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2894 /* recovery... the complicated one */
2898 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2904 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
2906 if ((mirror
->rdev
== NULL
||
2907 test_bit(In_sync
, &mirror
->rdev
->flags
))
2909 (mirror
->replacement
== NULL
||
2911 &mirror
->replacement
->flags
)))
2915 /* want to reconstruct this device */
2917 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2918 if (sect
>= mddev
->resync_max_sectors
) {
2919 /* last stripe is not complete - don't
2920 * try to recover this sector.
2924 /* Unless we are doing a full sync, or a replacement
2925 * we only need to recover the block if it is set in
2928 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2930 if (sync_blocks
< max_sync
)
2931 max_sync
= sync_blocks
;
2933 mirror
->replacement
== NULL
&&
2935 /* yep, skip the sync_blocks here, but don't assume
2936 * that there will never be anything to do here
2938 chunks_skipped
= -1;
2942 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2943 raise_barrier(conf
, rb2
!= NULL
);
2944 atomic_set(&r10_bio
->remaining
, 0);
2946 r10_bio
->master_bio
= (struct bio
*)rb2
;
2948 atomic_inc(&rb2
->remaining
);
2949 r10_bio
->mddev
= mddev
;
2950 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2951 r10_bio
->sector
= sect
;
2953 raid10_find_phys(conf
, r10_bio
);
2955 /* Need to check if the array will still be
2958 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
2959 if (conf
->mirrors
[j
].rdev
== NULL
||
2960 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2965 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2966 &sync_blocks
, still_degraded
);
2969 for (j
=0; j
<conf
->copies
;j
++) {
2971 int d
= r10_bio
->devs
[j
].devnum
;
2972 sector_t from_addr
, to_addr
;
2973 struct md_rdev
*rdev
;
2974 sector_t sector
, first_bad
;
2976 if (!conf
->mirrors
[d
].rdev
||
2977 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2979 /* This is where we read from */
2981 rdev
= conf
->mirrors
[d
].rdev
;
2982 sector
= r10_bio
->devs
[j
].addr
;
2984 if (is_badblock(rdev
, sector
, max_sync
,
2985 &first_bad
, &bad_sectors
)) {
2986 if (first_bad
> sector
)
2987 max_sync
= first_bad
- sector
;
2989 bad_sectors
-= (sector
2991 if (max_sync
> bad_sectors
)
2992 max_sync
= bad_sectors
;
2996 bio
= r10_bio
->devs
[0].bio
;
2997 bio
->bi_next
= biolist
;
2999 bio
->bi_private
= r10_bio
;
3000 bio
->bi_end_io
= end_sync_read
;
3002 from_addr
= r10_bio
->devs
[j
].addr
;
3003 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
3004 bio
->bi_bdev
= rdev
->bdev
;
3005 atomic_inc(&rdev
->nr_pending
);
3006 /* and we write to 'i' (if not in_sync) */
3008 for (k
=0; k
<conf
->copies
; k
++)
3009 if (r10_bio
->devs
[k
].devnum
== i
)
3011 BUG_ON(k
== conf
->copies
);
3012 to_addr
= r10_bio
->devs
[k
].addr
;
3013 r10_bio
->devs
[0].devnum
= d
;
3014 r10_bio
->devs
[0].addr
= from_addr
;
3015 r10_bio
->devs
[1].devnum
= i
;
3016 r10_bio
->devs
[1].addr
= to_addr
;
3018 rdev
= mirror
->rdev
;
3019 if (!test_bit(In_sync
, &rdev
->flags
)) {
3020 bio
= r10_bio
->devs
[1].bio
;
3021 bio
->bi_next
= biolist
;
3023 bio
->bi_private
= r10_bio
;
3024 bio
->bi_end_io
= end_sync_write
;
3026 bio
->bi_sector
= to_addr
3027 + rdev
->data_offset
;
3028 bio
->bi_bdev
= rdev
->bdev
;
3029 atomic_inc(&r10_bio
->remaining
);
3031 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3033 /* and maybe write to replacement */
3034 bio
= r10_bio
->devs
[1].repl_bio
;
3036 bio
->bi_end_io
= NULL
;
3037 rdev
= mirror
->replacement
;
3038 /* Note: if rdev != NULL, then bio
3039 * cannot be NULL as r10buf_pool_alloc will
3040 * have allocated it.
3041 * So the second test here is pointless.
3042 * But it keeps semantic-checkers happy, and
3043 * this comment keeps human reviewers
3046 if (rdev
== NULL
|| bio
== NULL
||
3047 test_bit(Faulty
, &rdev
->flags
))
3049 bio
->bi_next
= biolist
;
3051 bio
->bi_private
= r10_bio
;
3052 bio
->bi_end_io
= end_sync_write
;
3054 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
3055 bio
->bi_bdev
= rdev
->bdev
;
3056 atomic_inc(&r10_bio
->remaining
);
3059 if (j
== conf
->copies
) {
3060 /* Cannot recover, so abort the recovery or
3061 * record a bad block */
3064 atomic_dec(&rb2
->remaining
);
3067 /* problem is that there are bad blocks
3068 * on other device(s)
3071 for (k
= 0; k
< conf
->copies
; k
++)
3072 if (r10_bio
->devs
[k
].devnum
== i
)
3074 if (!test_bit(In_sync
,
3075 &mirror
->rdev
->flags
)
3076 && !rdev_set_badblocks(
3078 r10_bio
->devs
[k
].addr
,
3081 if (mirror
->replacement
&&
3082 !rdev_set_badblocks(
3083 mirror
->replacement
,
3084 r10_bio
->devs
[k
].addr
,
3089 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3091 printk(KERN_INFO
"md/raid10:%s: insufficient "
3092 "working devices for recovery.\n",
3094 mirror
->recovery_disabled
3095 = mddev
->recovery_disabled
;
3100 if (biolist
== NULL
) {
3102 struct r10bio
*rb2
= r10_bio
;
3103 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3104 rb2
->master_bio
= NULL
;
3110 /* resync. Schedule a read for every block at this virt offset */
3113 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3115 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3116 &sync_blocks
, mddev
->degraded
) &&
3117 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3118 &mddev
->recovery
)) {
3119 /* We can skip this block */
3121 return sync_blocks
+ sectors_skipped
;
3123 if (sync_blocks
< max_sync
)
3124 max_sync
= sync_blocks
;
3125 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3127 r10_bio
->mddev
= mddev
;
3128 atomic_set(&r10_bio
->remaining
, 0);
3129 raise_barrier(conf
, 0);
3130 conf
->next_resync
= sector_nr
;
3132 r10_bio
->master_bio
= NULL
;
3133 r10_bio
->sector
= sector_nr
;
3134 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3135 raid10_find_phys(conf
, r10_bio
);
3136 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3138 for (i
= 0; i
< conf
->copies
; i
++) {
3139 int d
= r10_bio
->devs
[i
].devnum
;
3140 sector_t first_bad
, sector
;
3143 if (r10_bio
->devs
[i
].repl_bio
)
3144 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3146 bio
= r10_bio
->devs
[i
].bio
;
3147 bio
->bi_end_io
= NULL
;
3148 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3149 if (conf
->mirrors
[d
].rdev
== NULL
||
3150 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3152 sector
= r10_bio
->devs
[i
].addr
;
3153 if (is_badblock(conf
->mirrors
[d
].rdev
,
3155 &first_bad
, &bad_sectors
)) {
3156 if (first_bad
> sector
)
3157 max_sync
= first_bad
- sector
;
3159 bad_sectors
-= (sector
- first_bad
);
3160 if (max_sync
> bad_sectors
)
3161 max_sync
= bad_sectors
;
3165 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3166 atomic_inc(&r10_bio
->remaining
);
3167 bio
->bi_next
= biolist
;
3169 bio
->bi_private
= r10_bio
;
3170 bio
->bi_end_io
= end_sync_read
;
3172 bio
->bi_sector
= sector
+
3173 conf
->mirrors
[d
].rdev
->data_offset
;
3174 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3177 if (conf
->mirrors
[d
].replacement
== NULL
||
3179 &conf
->mirrors
[d
].replacement
->flags
))
3182 /* Need to set up for writing to the replacement */
3183 bio
= r10_bio
->devs
[i
].repl_bio
;
3184 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3186 sector
= r10_bio
->devs
[i
].addr
;
3187 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3188 bio
->bi_next
= biolist
;
3190 bio
->bi_private
= r10_bio
;
3191 bio
->bi_end_io
= end_sync_write
;
3193 bio
->bi_sector
= sector
+
3194 conf
->mirrors
[d
].replacement
->data_offset
;
3195 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3200 for (i
=0; i
<conf
->copies
; i
++) {
3201 int d
= r10_bio
->devs
[i
].devnum
;
3202 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3203 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3205 if (r10_bio
->devs
[i
].repl_bio
&&
3206 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3208 conf
->mirrors
[d
].replacement
,
3217 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3219 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3221 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3224 bio
->bi_phys_segments
= 0;
3229 if (sector_nr
+ max_sync
< max_sector
)
3230 max_sector
= sector_nr
+ max_sync
;
3233 int len
= PAGE_SIZE
;
3234 if (sector_nr
+ (len
>>9) > max_sector
)
3235 len
= (max_sector
- sector_nr
) << 9;
3238 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3240 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3241 if (bio_add_page(bio
, page
, len
, 0))
3245 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3246 for (bio2
= biolist
;
3247 bio2
&& bio2
!= bio
;
3248 bio2
= bio2
->bi_next
) {
3249 /* remove last page from this bio */
3251 bio2
->bi_size
-= len
;
3252 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3256 nr_sectors
+= len
>>9;
3257 sector_nr
+= len
>>9;
3258 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3260 r10_bio
->sectors
= nr_sectors
;
3264 biolist
= biolist
->bi_next
;
3266 bio
->bi_next
= NULL
;
3267 r10_bio
= bio
->bi_private
;
3268 r10_bio
->sectors
= nr_sectors
;
3270 if (bio
->bi_end_io
== end_sync_read
) {
3271 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3272 generic_make_request(bio
);
3276 if (sectors_skipped
)
3277 /* pretend they weren't skipped, it makes
3278 * no important difference in this case
3280 md_done_sync(mddev
, sectors_skipped
, 1);
3282 return sectors_skipped
+ nr_sectors
;
3284 /* There is nowhere to write, so all non-sync
3285 * drives must be failed or in resync, all drives
3286 * have a bad block, so try the next chunk...
3288 if (sector_nr
+ max_sync
< max_sector
)
3289 max_sector
= sector_nr
+ max_sync
;
3291 sectors_skipped
+= (max_sector
- sector_nr
);
3293 sector_nr
= max_sector
;
3298 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3301 struct r10conf
*conf
= mddev
->private;
3304 raid_disks
= min(conf
->geo
.raid_disks
,
3305 conf
->prev
.raid_disks
);
3307 sectors
= conf
->dev_sectors
;
3309 size
= sectors
>> conf
->geo
.chunk_shift
;
3310 sector_div(size
, conf
->geo
.far_copies
);
3311 size
= size
* raid_disks
;
3312 sector_div(size
, conf
->geo
.near_copies
);
3314 return size
<< conf
->geo
.chunk_shift
;
3317 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3319 /* Calculate the number of sectors-per-device that will
3320 * actually be used, and set conf->dev_sectors and
3324 size
= size
>> conf
->geo
.chunk_shift
;
3325 sector_div(size
, conf
->geo
.far_copies
);
3326 size
= size
* conf
->geo
.raid_disks
;
3327 sector_div(size
, conf
->geo
.near_copies
);
3328 /* 'size' is now the number of chunks in the array */
3329 /* calculate "used chunks per device" */
3330 size
= size
* conf
->copies
;
3332 /* We need to round up when dividing by raid_disks to
3333 * get the stride size.
3335 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3337 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3339 if (conf
->geo
.far_offset
)
3340 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3342 sector_div(size
, conf
->geo
.far_copies
);
3343 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3347 enum geo_type
{geo_new
, geo_old
, geo_start
};
3348 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3351 int layout
, chunk
, disks
;
3354 layout
= mddev
->layout
;
3355 chunk
= mddev
->chunk_sectors
;
3356 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3359 layout
= mddev
->new_layout
;
3360 chunk
= mddev
->new_chunk_sectors
;
3361 disks
= mddev
->raid_disks
;
3363 default: /* avoid 'may be unused' warnings */
3364 case geo_start
: /* new when starting reshape - raid_disks not
3366 layout
= mddev
->new_layout
;
3367 chunk
= mddev
->new_chunk_sectors
;
3368 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3373 if (chunk
< (PAGE_SIZE
>> 9) ||
3374 !is_power_of_2(chunk
))
3377 fc
= (layout
>> 8) & 255;
3378 fo
= layout
& (1<<16);
3379 geo
->raid_disks
= disks
;
3380 geo
->near_copies
= nc
;
3381 geo
->far_copies
= fc
;
3382 geo
->far_offset
= fo
;
3383 geo
->chunk_mask
= chunk
- 1;
3384 geo
->chunk_shift
= ffz(~chunk
);
3388 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3390 struct r10conf
*conf
= NULL
;
3395 copies
= setup_geo(&geo
, mddev
, geo_new
);
3398 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3399 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3400 mdname(mddev
), PAGE_SIZE
);
3404 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3405 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3406 mdname(mddev
), mddev
->new_layout
);
3411 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3415 /* FIXME calc properly */
3416 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3417 max(0,mddev
->delta_disks
)),
3422 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3427 conf
->copies
= copies
;
3428 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3429 r10bio_pool_free
, conf
);
3430 if (!conf
->r10bio_pool
)
3433 calc_sectors(conf
, mddev
->dev_sectors
);
3434 if (mddev
->reshape_position
== MaxSector
) {
3435 conf
->prev
= conf
->geo
;
3436 conf
->reshape_progress
= MaxSector
;
3438 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3442 conf
->reshape_progress
= mddev
->reshape_position
;
3443 if (conf
->prev
.far_offset
)
3444 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3446 /* far_copies must be 1 */
3447 conf
->prev
.stride
= conf
->dev_sectors
;
3449 spin_lock_init(&conf
->device_lock
);
3450 INIT_LIST_HEAD(&conf
->retry_list
);
3452 spin_lock_init(&conf
->resync_lock
);
3453 init_waitqueue_head(&conf
->wait_barrier
);
3455 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3459 conf
->mddev
= mddev
;
3464 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3467 if (conf
->r10bio_pool
)
3468 mempool_destroy(conf
->r10bio_pool
);
3469 kfree(conf
->mirrors
);
3470 safe_put_page(conf
->tmppage
);
3473 return ERR_PTR(err
);
3476 static int run(struct mddev
*mddev
)
3478 struct r10conf
*conf
;
3479 int i
, disk_idx
, chunk_size
;
3480 struct raid10_info
*disk
;
3481 struct md_rdev
*rdev
;
3483 sector_t min_offset_diff
= 0;
3486 if (mddev
->private == NULL
) {
3487 conf
= setup_conf(mddev
);
3489 return PTR_ERR(conf
);
3490 mddev
->private = conf
;
3492 conf
= mddev
->private;
3496 mddev
->thread
= conf
->thread
;
3497 conf
->thread
= NULL
;
3499 chunk_size
= mddev
->chunk_sectors
<< 9;
3501 blk_queue_io_min(mddev
->queue
, chunk_size
);
3502 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3503 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3505 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3506 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3509 rdev_for_each(rdev
, mddev
) {
3511 struct request_queue
*q
;
3513 disk_idx
= rdev
->raid_disk
;
3516 if (disk_idx
>= conf
->geo
.raid_disks
&&
3517 disk_idx
>= conf
->prev
.raid_disks
)
3519 disk
= conf
->mirrors
+ disk_idx
;
3521 if (test_bit(Replacement
, &rdev
->flags
)) {
3522 if (disk
->replacement
)
3524 disk
->replacement
= rdev
;
3530 q
= bdev_get_queue(rdev
->bdev
);
3531 if (q
->merge_bvec_fn
)
3532 mddev
->merge_check_needed
= 1;
3533 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3534 if (!mddev
->reshape_backwards
)
3538 if (first
|| diff
< min_offset_diff
)
3539 min_offset_diff
= diff
;
3542 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3543 rdev
->data_offset
<< 9);
3545 disk
->head_position
= 0;
3548 /* need to check that every block has at least one working mirror */
3549 if (!enough(conf
, -1)) {
3550 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3555 if (conf
->reshape_progress
!= MaxSector
) {
3556 /* must ensure that shape change is supported */
3557 if (conf
->geo
.far_copies
!= 1 &&
3558 conf
->geo
.far_offset
== 0)
3560 if (conf
->prev
.far_copies
!= 1 &&
3561 conf
->geo
.far_offset
== 0)
3565 mddev
->degraded
= 0;
3567 i
< conf
->geo
.raid_disks
3568 || i
< conf
->prev
.raid_disks
;
3571 disk
= conf
->mirrors
+ i
;
3573 if (!disk
->rdev
&& disk
->replacement
) {
3574 /* The replacement is all we have - use it */
3575 disk
->rdev
= disk
->replacement
;
3576 disk
->replacement
= NULL
;
3577 clear_bit(Replacement
, &disk
->rdev
->flags
);
3581 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3582 disk
->head_position
= 0;
3587 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3590 if (mddev
->recovery_cp
!= MaxSector
)
3591 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3592 " -- starting background reconstruction\n",
3595 "md/raid10:%s: active with %d out of %d devices\n",
3596 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3597 conf
->geo
.raid_disks
);
3599 * Ok, everything is just fine now
3601 mddev
->dev_sectors
= conf
->dev_sectors
;
3602 size
= raid10_size(mddev
, 0, 0);
3603 md_set_array_sectors(mddev
, size
);
3604 mddev
->resync_max_sectors
= size
;
3607 int stripe
= conf
->geo
.raid_disks
*
3608 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3609 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3610 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3612 /* Calculate max read-ahead size.
3613 * We need to readahead at least twice a whole stripe....
3616 stripe
/= conf
->geo
.near_copies
;
3617 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3618 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3619 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3623 if (md_integrity_register(mddev
))
3626 if (conf
->reshape_progress
!= MaxSector
) {
3627 unsigned long before_length
, after_length
;
3629 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3630 conf
->prev
.far_copies
);
3631 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3632 conf
->geo
.far_copies
);
3634 if (max(before_length
, after_length
) > min_offset_diff
) {
3635 /* This cannot work */
3636 printk("md/raid10: offset difference not enough to continue reshape\n");
3639 conf
->offset_diff
= min_offset_diff
;
3641 conf
->reshape_safe
= conf
->reshape_progress
;
3642 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3643 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3644 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3645 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3646 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3653 md_unregister_thread(&mddev
->thread
);
3654 if (conf
->r10bio_pool
)
3655 mempool_destroy(conf
->r10bio_pool
);
3656 safe_put_page(conf
->tmppage
);
3657 kfree(conf
->mirrors
);
3659 mddev
->private = NULL
;
3664 static int stop(struct mddev
*mddev
)
3666 struct r10conf
*conf
= mddev
->private;
3668 raise_barrier(conf
, 0);
3669 lower_barrier(conf
);
3671 md_unregister_thread(&mddev
->thread
);
3673 /* the unplug fn references 'conf'*/
3674 blk_sync_queue(mddev
->queue
);
3676 if (conf
->r10bio_pool
)
3677 mempool_destroy(conf
->r10bio_pool
);
3678 kfree(conf
->mirrors
);
3680 mddev
->private = NULL
;
3684 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3686 struct r10conf
*conf
= mddev
->private;
3690 raise_barrier(conf
, 0);
3693 lower_barrier(conf
);
3698 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3700 /* Resize of 'far' arrays is not supported.
3701 * For 'near' and 'offset' arrays we can set the
3702 * number of sectors used to be an appropriate multiple
3703 * of the chunk size.
3704 * For 'offset', this is far_copies*chunksize.
3705 * For 'near' the multiplier is the LCM of
3706 * near_copies and raid_disks.
3707 * So if far_copies > 1 && !far_offset, fail.
3708 * Else find LCM(raid_disks, near_copy)*far_copies and
3709 * multiply by chunk_size. Then round to this number.
3710 * This is mostly done by raid10_size()
3712 struct r10conf
*conf
= mddev
->private;
3713 sector_t oldsize
, size
;
3715 if (mddev
->reshape_position
!= MaxSector
)
3718 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3721 oldsize
= raid10_size(mddev
, 0, 0);
3722 size
= raid10_size(mddev
, sectors
, 0);
3723 if (mddev
->external_size
&&
3724 mddev
->array_sectors
> size
)
3726 if (mddev
->bitmap
) {
3727 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3731 md_set_array_sectors(mddev
, size
);
3732 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3733 revalidate_disk(mddev
->gendisk
);
3734 if (sectors
> mddev
->dev_sectors
&&
3735 mddev
->recovery_cp
> oldsize
) {
3736 mddev
->recovery_cp
= oldsize
;
3737 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3739 calc_sectors(conf
, sectors
);
3740 mddev
->dev_sectors
= conf
->dev_sectors
;
3741 mddev
->resync_max_sectors
= size
;
3745 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3747 struct md_rdev
*rdev
;
3748 struct r10conf
*conf
;
3750 if (mddev
->degraded
> 0) {
3751 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3753 return ERR_PTR(-EINVAL
);
3756 /* Set new parameters */
3757 mddev
->new_level
= 10;
3758 /* new layout: far_copies = 1, near_copies = 2 */
3759 mddev
->new_layout
= (1<<8) + 2;
3760 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3761 mddev
->delta_disks
= mddev
->raid_disks
;
3762 mddev
->raid_disks
*= 2;
3763 /* make sure it will be not marked as dirty */
3764 mddev
->recovery_cp
= MaxSector
;
3766 conf
= setup_conf(mddev
);
3767 if (!IS_ERR(conf
)) {
3768 rdev_for_each(rdev
, mddev
)
3769 if (rdev
->raid_disk
>= 0)
3770 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3777 static void *raid10_takeover(struct mddev
*mddev
)
3779 struct r0conf
*raid0_conf
;
3781 /* raid10 can take over:
3782 * raid0 - providing it has only two drives
3784 if (mddev
->level
== 0) {
3785 /* for raid0 takeover only one zone is supported */
3786 raid0_conf
= mddev
->private;
3787 if (raid0_conf
->nr_strip_zones
> 1) {
3788 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3789 " with more than one zone.\n",
3791 return ERR_PTR(-EINVAL
);
3793 return raid10_takeover_raid0(mddev
);
3795 return ERR_PTR(-EINVAL
);
3798 static int raid10_check_reshape(struct mddev
*mddev
)
3800 /* Called when there is a request to change
3801 * - layout (to ->new_layout)
3802 * - chunk size (to ->new_chunk_sectors)
3803 * - raid_disks (by delta_disks)
3804 * or when trying to restart a reshape that was ongoing.
3806 * We need to validate the request and possibly allocate
3807 * space if that might be an issue later.
3809 * Currently we reject any reshape of a 'far' mode array,
3810 * allow chunk size to change if new is generally acceptable,
3811 * allow raid_disks to increase, and allow
3812 * a switch between 'near' mode and 'offset' mode.
3814 struct r10conf
*conf
= mddev
->private;
3817 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3820 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3821 /* mustn't change number of copies */
3823 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3824 /* Cannot switch to 'far' mode */
3827 if (mddev
->array_sectors
& geo
.chunk_mask
)
3828 /* not factor of array size */
3831 if (!enough(conf
, -1))
3834 kfree(conf
->mirrors_new
);
3835 conf
->mirrors_new
= NULL
;
3836 if (mddev
->delta_disks
> 0) {
3837 /* allocate new 'mirrors' list */
3838 conf
->mirrors_new
= kzalloc(
3839 sizeof(struct raid10_info
)
3840 *(mddev
->raid_disks
+
3841 mddev
->delta_disks
),
3843 if (!conf
->mirrors_new
)
3850 * Need to check if array has failed when deciding whether to:
3852 * - remove non-faulty devices
3855 * This determination is simple when no reshape is happening.
3856 * However if there is a reshape, we need to carefully check
3857 * both the before and after sections.
3858 * This is because some failed devices may only affect one
3859 * of the two sections, and some non-in_sync devices may
3860 * be insync in the section most affected by failed devices.
3862 static int calc_degraded(struct r10conf
*conf
)
3864 int degraded
, degraded2
;
3869 /* 'prev' section first */
3870 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3871 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3872 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3874 else if (!test_bit(In_sync
, &rdev
->flags
))
3875 /* When we can reduce the number of devices in
3876 * an array, this might not contribute to
3877 * 'degraded'. It does now.
3882 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3886 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3887 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3888 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3890 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3891 /* If reshape is increasing the number of devices,
3892 * this section has already been recovered, so
3893 * it doesn't contribute to degraded.
3896 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
3901 if (degraded2
> degraded
)
3906 static int raid10_start_reshape(struct mddev
*mddev
)
3908 /* A 'reshape' has been requested. This commits
3909 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3910 * This also checks if there are enough spares and adds them
3912 * We currently require enough spares to make the final
3913 * array non-degraded. We also require that the difference
3914 * between old and new data_offset - on each device - is
3915 * enough that we never risk over-writing.
3918 unsigned long before_length
, after_length
;
3919 sector_t min_offset_diff
= 0;
3922 struct r10conf
*conf
= mddev
->private;
3923 struct md_rdev
*rdev
;
3927 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
3930 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
3933 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3934 conf
->prev
.far_copies
);
3935 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3936 conf
->geo
.far_copies
);
3938 rdev_for_each(rdev
, mddev
) {
3939 if (!test_bit(In_sync
, &rdev
->flags
)
3940 && !test_bit(Faulty
, &rdev
->flags
))
3942 if (rdev
->raid_disk
>= 0) {
3943 long long diff
= (rdev
->new_data_offset
3944 - rdev
->data_offset
);
3945 if (!mddev
->reshape_backwards
)
3949 if (first
|| diff
< min_offset_diff
)
3950 min_offset_diff
= diff
;
3954 if (max(before_length
, after_length
) > min_offset_diff
)
3957 if (spares
< mddev
->delta_disks
)
3960 conf
->offset_diff
= min_offset_diff
;
3961 spin_lock_irq(&conf
->device_lock
);
3962 if (conf
->mirrors_new
) {
3963 memcpy(conf
->mirrors_new
, conf
->mirrors
,
3964 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
3966 kfree(conf
->mirrors_old
); /* FIXME and elsewhere */
3967 conf
->mirrors_old
= conf
->mirrors
;
3968 conf
->mirrors
= conf
->mirrors_new
;
3969 conf
->mirrors_new
= NULL
;
3971 setup_geo(&conf
->geo
, mddev
, geo_start
);
3973 if (mddev
->reshape_backwards
) {
3974 sector_t size
= raid10_size(mddev
, 0, 0);
3975 if (size
< mddev
->array_sectors
) {
3976 spin_unlock_irq(&conf
->device_lock
);
3977 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
3981 mddev
->resync_max_sectors
= size
;
3982 conf
->reshape_progress
= size
;
3984 conf
->reshape_progress
= 0;
3985 spin_unlock_irq(&conf
->device_lock
);
3987 if (mddev
->delta_disks
&& mddev
->bitmap
) {
3988 ret
= bitmap_resize(mddev
->bitmap
,
3989 raid10_size(mddev
, 0,
3990 conf
->geo
.raid_disks
),
3995 if (mddev
->delta_disks
> 0) {
3996 rdev_for_each(rdev
, mddev
)
3997 if (rdev
->raid_disk
< 0 &&
3998 !test_bit(Faulty
, &rdev
->flags
)) {
3999 if (raid10_add_disk(mddev
, rdev
) == 0) {
4000 if (rdev
->raid_disk
>=
4001 conf
->prev
.raid_disks
)
4002 set_bit(In_sync
, &rdev
->flags
);
4004 rdev
->recovery_offset
= 0;
4006 if (sysfs_link_rdev(mddev
, rdev
))
4007 /* Failure here is OK */;
4009 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4010 && !test_bit(Faulty
, &rdev
->flags
)) {
4011 /* This is a spare that was manually added */
4012 set_bit(In_sync
, &rdev
->flags
);
4015 /* When a reshape changes the number of devices,
4016 * ->degraded is measured against the larger of the
4017 * pre and post numbers.
4019 spin_lock_irq(&conf
->device_lock
);
4020 mddev
->degraded
= calc_degraded(conf
);
4021 spin_unlock_irq(&conf
->device_lock
);
4022 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4023 mddev
->reshape_position
= conf
->reshape_progress
;
4024 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4026 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4027 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4028 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4029 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4031 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4033 if (!mddev
->sync_thread
) {
4037 conf
->reshape_checkpoint
= jiffies
;
4038 md_wakeup_thread(mddev
->sync_thread
);
4039 md_new_event(mddev
);
4043 mddev
->recovery
= 0;
4044 spin_lock_irq(&conf
->device_lock
);
4045 conf
->geo
= conf
->prev
;
4046 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4047 rdev_for_each(rdev
, mddev
)
4048 rdev
->new_data_offset
= rdev
->data_offset
;
4050 conf
->reshape_progress
= MaxSector
;
4051 mddev
->reshape_position
= MaxSector
;
4052 spin_unlock_irq(&conf
->device_lock
);
4056 /* Calculate the last device-address that could contain
4057 * any block from the chunk that includes the array-address 's'
4058 * and report the next address.
4059 * i.e. the address returned will be chunk-aligned and after
4060 * any data that is in the chunk containing 's'.
4062 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4064 s
= (s
| geo
->chunk_mask
) + 1;
4065 s
>>= geo
->chunk_shift
;
4066 s
*= geo
->near_copies
;
4067 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4068 s
*= geo
->far_copies
;
4069 s
<<= geo
->chunk_shift
;
4073 /* Calculate the first device-address that could contain
4074 * any block from the chunk that includes the array-address 's'.
4075 * This too will be the start of a chunk
4077 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4079 s
>>= geo
->chunk_shift
;
4080 s
*= geo
->near_copies
;
4081 sector_div(s
, geo
->raid_disks
);
4082 s
*= geo
->far_copies
;
4083 s
<<= geo
->chunk_shift
;
4087 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4090 /* We simply copy at most one chunk (smallest of old and new)
4091 * at a time, possibly less if that exceeds RESYNC_PAGES,
4092 * or we hit a bad block or something.
4093 * This might mean we pause for normal IO in the middle of
4094 * a chunk, but that is not a problem was mddev->reshape_position
4095 * can record any location.
4097 * If we will want to write to a location that isn't
4098 * yet recorded as 'safe' (i.e. in metadata on disk) then
4099 * we need to flush all reshape requests and update the metadata.
4101 * When reshaping forwards (e.g. to more devices), we interpret
4102 * 'safe' as the earliest block which might not have been copied
4103 * down yet. We divide this by previous stripe size and multiply
4104 * by previous stripe length to get lowest device offset that we
4105 * cannot write to yet.
4106 * We interpret 'sector_nr' as an address that we want to write to.
4107 * From this we use last_device_address() to find where we might
4108 * write to, and first_device_address on the 'safe' position.
4109 * If this 'next' write position is after the 'safe' position,
4110 * we must update the metadata to increase the 'safe' position.
4112 * When reshaping backwards, we round in the opposite direction
4113 * and perform the reverse test: next write position must not be
4114 * less than current safe position.
4116 * In all this the minimum difference in data offsets
4117 * (conf->offset_diff - always positive) allows a bit of slack,
4118 * so next can be after 'safe', but not by more than offset_disk
4120 * We need to prepare all the bios here before we start any IO
4121 * to ensure the size we choose is acceptable to all devices.
4122 * The means one for each copy for write-out and an extra one for
4124 * We store the read-in bio in ->master_bio and the others in
4125 * ->devs[x].bio and ->devs[x].repl_bio.
4127 struct r10conf
*conf
= mddev
->private;
4128 struct r10bio
*r10_bio
;
4129 sector_t next
, safe
, last
;
4133 struct md_rdev
*rdev
;
4136 struct bio
*bio
, *read_bio
;
4137 int sectors_done
= 0;
4139 if (sector_nr
== 0) {
4140 /* If restarting in the middle, skip the initial sectors */
4141 if (mddev
->reshape_backwards
&&
4142 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4143 sector_nr
= (raid10_size(mddev
, 0, 0)
4144 - conf
->reshape_progress
);
4145 } else if (!mddev
->reshape_backwards
&&
4146 conf
->reshape_progress
> 0)
4147 sector_nr
= conf
->reshape_progress
;
4149 mddev
->curr_resync_completed
= sector_nr
;
4150 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4156 /* We don't use sector_nr to track where we are up to
4157 * as that doesn't work well for ->reshape_backwards.
4158 * So just use ->reshape_progress.
4160 if (mddev
->reshape_backwards
) {
4161 /* 'next' is the earliest device address that we might
4162 * write to for this chunk in the new layout
4164 next
= first_dev_address(conf
->reshape_progress
- 1,
4167 /* 'safe' is the last device address that we might read from
4168 * in the old layout after a restart
4170 safe
= last_dev_address(conf
->reshape_safe
- 1,
4173 if (next
+ conf
->offset_diff
< safe
)
4176 last
= conf
->reshape_progress
- 1;
4177 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4178 & conf
->prev
.chunk_mask
);
4179 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4180 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4182 /* 'next' is after the last device address that we
4183 * might write to for this chunk in the new layout
4185 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4187 /* 'safe' is the earliest device address that we might
4188 * read from in the old layout after a restart
4190 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4192 /* Need to update metadata if 'next' might be beyond 'safe'
4193 * as that would possibly corrupt data
4195 if (next
> safe
+ conf
->offset_diff
)
4198 sector_nr
= conf
->reshape_progress
;
4199 last
= sector_nr
| (conf
->geo
.chunk_mask
4200 & conf
->prev
.chunk_mask
);
4202 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4203 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4207 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4208 /* Need to update reshape_position in metadata */
4210 mddev
->reshape_position
= conf
->reshape_progress
;
4211 if (mddev
->reshape_backwards
)
4212 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4213 - conf
->reshape_progress
;
4215 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4216 conf
->reshape_checkpoint
= jiffies
;
4217 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4218 md_wakeup_thread(mddev
->thread
);
4219 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4220 kthread_should_stop());
4221 conf
->reshape_safe
= mddev
->reshape_position
;
4222 allow_barrier(conf
);
4226 /* Now schedule reads for blocks from sector_nr to last */
4227 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4228 raise_barrier(conf
, sectors_done
!= 0);
4229 atomic_set(&r10_bio
->remaining
, 0);
4230 r10_bio
->mddev
= mddev
;
4231 r10_bio
->sector
= sector_nr
;
4232 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4233 r10_bio
->sectors
= last
- sector_nr
+ 1;
4234 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4235 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4238 /* Cannot read from here, so need to record bad blocks
4239 * on all the target devices.
4242 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4243 return sectors_done
;
4246 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4248 read_bio
->bi_bdev
= rdev
->bdev
;
4249 read_bio
->bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4250 + rdev
->data_offset
);
4251 read_bio
->bi_private
= r10_bio
;
4252 read_bio
->bi_end_io
= end_sync_read
;
4253 read_bio
->bi_rw
= READ
;
4254 read_bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4255 read_bio
->bi_flags
|= 1 << BIO_UPTODATE
;
4256 read_bio
->bi_vcnt
= 0;
4257 read_bio
->bi_idx
= 0;
4258 read_bio
->bi_size
= 0;
4259 r10_bio
->master_bio
= read_bio
;
4260 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4262 /* Now find the locations in the new layout */
4263 __raid10_find_phys(&conf
->geo
, r10_bio
);
4266 read_bio
->bi_next
= NULL
;
4268 for (s
= 0; s
< conf
->copies
*2; s
++) {
4270 int d
= r10_bio
->devs
[s
/2].devnum
;
4271 struct md_rdev
*rdev2
;
4273 rdev2
= conf
->mirrors
[d
].replacement
;
4274 b
= r10_bio
->devs
[s
/2].repl_bio
;
4276 rdev2
= conf
->mirrors
[d
].rdev
;
4277 b
= r10_bio
->devs
[s
/2].bio
;
4279 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4281 b
->bi_bdev
= rdev2
->bdev
;
4282 b
->bi_sector
= r10_bio
->devs
[s
/2].addr
+ rdev2
->new_data_offset
;
4283 b
->bi_private
= r10_bio
;
4284 b
->bi_end_io
= end_reshape_write
;
4286 b
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4287 b
->bi_flags
|= 1 << BIO_UPTODATE
;
4295 /* Now add as many pages as possible to all of these bios. */
4298 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4299 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4300 int len
= (max_sectors
- s
) << 9;
4301 if (len
> PAGE_SIZE
)
4303 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4305 if (bio_add_page(bio
, page
, len
, 0))
4308 /* Didn't fit, must stop */
4310 bio2
&& bio2
!= bio
;
4311 bio2
= bio2
->bi_next
) {
4312 /* Remove last page from this bio */
4314 bio2
->bi_size
-= len
;
4315 bio2
->bi_flags
&= ~(1<<BIO_SEG_VALID
);
4319 sector_nr
+= len
>> 9;
4320 nr_sectors
+= len
>> 9;
4323 r10_bio
->sectors
= nr_sectors
;
4325 /* Now submit the read */
4326 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4327 atomic_inc(&r10_bio
->remaining
);
4328 read_bio
->bi_next
= NULL
;
4329 generic_make_request(read_bio
);
4330 sector_nr
+= nr_sectors
;
4331 sectors_done
+= nr_sectors
;
4332 if (sector_nr
<= last
)
4335 /* Now that we have done the whole section we can
4336 * update reshape_progress
4338 if (mddev
->reshape_backwards
)
4339 conf
->reshape_progress
-= sectors_done
;
4341 conf
->reshape_progress
+= sectors_done
;
4343 return sectors_done
;
4346 static void end_reshape_request(struct r10bio
*r10_bio
);
4347 static int handle_reshape_read_error(struct mddev
*mddev
,
4348 struct r10bio
*r10_bio
);
4349 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4351 /* Reshape read completed. Hopefully we have a block
4353 * If we got a read error then we do sync 1-page reads from
4354 * elsewhere until we find the data - or give up.
4356 struct r10conf
*conf
= mddev
->private;
4359 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4360 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4361 /* Reshape has been aborted */
4362 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4366 /* We definitely have the data in the pages, schedule the
4369 atomic_set(&r10_bio
->remaining
, 1);
4370 for (s
= 0; s
< conf
->copies
*2; s
++) {
4372 int d
= r10_bio
->devs
[s
/2].devnum
;
4373 struct md_rdev
*rdev
;
4375 rdev
= conf
->mirrors
[d
].replacement
;
4376 b
= r10_bio
->devs
[s
/2].repl_bio
;
4378 rdev
= conf
->mirrors
[d
].rdev
;
4379 b
= r10_bio
->devs
[s
/2].bio
;
4381 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4383 atomic_inc(&rdev
->nr_pending
);
4384 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4385 atomic_inc(&r10_bio
->remaining
);
4387 generic_make_request(b
);
4389 end_reshape_request(r10_bio
);
4392 static void end_reshape(struct r10conf
*conf
)
4394 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4397 spin_lock_irq(&conf
->device_lock
);
4398 conf
->prev
= conf
->geo
;
4399 md_finish_reshape(conf
->mddev
);
4401 conf
->reshape_progress
= MaxSector
;
4402 spin_unlock_irq(&conf
->device_lock
);
4404 /* read-ahead size must cover two whole stripes, which is
4405 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4407 if (conf
->mddev
->queue
) {
4408 int stripe
= conf
->geo
.raid_disks
*
4409 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4410 stripe
/= conf
->geo
.near_copies
;
4411 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4412 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4418 static int handle_reshape_read_error(struct mddev
*mddev
,
4419 struct r10bio
*r10_bio
)
4421 /* Use sync reads to get the blocks from somewhere else */
4422 int sectors
= r10_bio
->sectors
;
4423 struct r10conf
*conf
= mddev
->private;
4425 struct r10bio r10_bio
;
4426 struct r10dev devs
[conf
->copies
];
4428 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4431 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4433 r10b
->sector
= r10_bio
->sector
;
4434 __raid10_find_phys(&conf
->prev
, r10b
);
4439 int first_slot
= slot
;
4441 if (s
> (PAGE_SIZE
>> 9))
4445 int d
= r10b
->devs
[slot
].devnum
;
4446 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4449 test_bit(Faulty
, &rdev
->flags
) ||
4450 !test_bit(In_sync
, &rdev
->flags
))
4453 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4454 success
= sync_page_io(rdev
,
4463 if (slot
>= conf
->copies
)
4465 if (slot
== first_slot
)
4469 /* couldn't read this block, must give up */
4470 set_bit(MD_RECOVERY_INTR
,
4480 static void end_reshape_write(struct bio
*bio
, int error
)
4482 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
4483 struct r10bio
*r10_bio
= bio
->bi_private
;
4484 struct mddev
*mddev
= r10_bio
->mddev
;
4485 struct r10conf
*conf
= mddev
->private;
4489 struct md_rdev
*rdev
= NULL
;
4491 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4493 rdev
= conf
->mirrors
[d
].replacement
;
4496 rdev
= conf
->mirrors
[d
].rdev
;
4500 /* FIXME should record badblock */
4501 md_error(mddev
, rdev
);
4504 rdev_dec_pending(rdev
, mddev
);
4505 end_reshape_request(r10_bio
);
4508 static void end_reshape_request(struct r10bio
*r10_bio
)
4510 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4512 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4513 bio_put(r10_bio
->master_bio
);
4517 static void raid10_finish_reshape(struct mddev
*mddev
)
4519 struct r10conf
*conf
= mddev
->private;
4521 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4524 if (mddev
->delta_disks
> 0) {
4525 sector_t size
= raid10_size(mddev
, 0, 0);
4526 md_set_array_sectors(mddev
, size
);
4527 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4528 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4529 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4531 mddev
->resync_max_sectors
= size
;
4532 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4533 revalidate_disk(mddev
->gendisk
);
4536 for (d
= conf
->geo
.raid_disks
;
4537 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4539 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4541 clear_bit(In_sync
, &rdev
->flags
);
4542 rdev
= conf
->mirrors
[d
].replacement
;
4544 clear_bit(In_sync
, &rdev
->flags
);
4547 mddev
->layout
= mddev
->new_layout
;
4548 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4549 mddev
->reshape_position
= MaxSector
;
4550 mddev
->delta_disks
= 0;
4551 mddev
->reshape_backwards
= 0;
4554 static struct md_personality raid10_personality
=
4558 .owner
= THIS_MODULE
,
4559 .make_request
= make_request
,
4563 .error_handler
= error
,
4564 .hot_add_disk
= raid10_add_disk
,
4565 .hot_remove_disk
= raid10_remove_disk
,
4566 .spare_active
= raid10_spare_active
,
4567 .sync_request
= sync_request
,
4568 .quiesce
= raid10_quiesce
,
4569 .size
= raid10_size
,
4570 .resize
= raid10_resize
,
4571 .takeover
= raid10_takeover
,
4572 .check_reshape
= raid10_check_reshape
,
4573 .start_reshape
= raid10_start_reshape
,
4574 .finish_reshape
= raid10_finish_reshape
,
4577 static int __init
raid_init(void)
4579 return register_md_personality(&raid10_personality
);
4582 static void raid_exit(void)
4584 unregister_md_personality(&raid10_personality
);
4587 module_init(raid_init
);
4588 module_exit(raid_exit
);
4589 MODULE_LICENSE("GPL");
4590 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4591 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4592 MODULE_ALIAS("md-raid10");
4593 MODULE_ALIAS("md-level-10");
4595 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);