Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / media / dvb / frontends / af9033.c
bloba38998286260043f9fdc9fa294c3bab8ccdd7306
1 /*
2 * Afatech AF9033 demodulator driver
4 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #include "af9033_priv.h"
24 struct af9033_state {
25 struct i2c_adapter *i2c;
26 struct dvb_frontend fe;
27 struct af9033_config cfg;
29 u32 bandwidth_hz;
30 bool ts_mode_parallel;
31 bool ts_mode_serial;
33 u32 ber;
34 u32 ucb;
35 unsigned long last_stat_check;
38 /* write multiple registers */
39 static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
40 int len)
42 int ret;
43 u8 buf[3 + len];
44 struct i2c_msg msg[1] = {
46 .addr = state->cfg.i2c_addr,
47 .flags = 0,
48 .len = sizeof(buf),
49 .buf = buf,
53 buf[0] = (reg >> 16) & 0xff;
54 buf[1] = (reg >> 8) & 0xff;
55 buf[2] = (reg >> 0) & 0xff;
56 memcpy(&buf[3], val, len);
58 ret = i2c_transfer(state->i2c, msg, 1);
59 if (ret == 1) {
60 ret = 0;
61 } else {
62 printk(KERN_WARNING "%s: i2c wr failed=%d reg=%06x len=%d\n",
63 __func__, ret, reg, len);
64 ret = -EREMOTEIO;
67 return ret;
70 /* read multiple registers */
71 static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
73 int ret;
74 u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
75 (reg >> 0) & 0xff };
76 struct i2c_msg msg[2] = {
78 .addr = state->cfg.i2c_addr,
79 .flags = 0,
80 .len = sizeof(buf),
81 .buf = buf
82 }, {
83 .addr = state->cfg.i2c_addr,
84 .flags = I2C_M_RD,
85 .len = len,
86 .buf = val
90 ret = i2c_transfer(state->i2c, msg, 2);
91 if (ret == 2) {
92 ret = 0;
93 } else {
94 printk(KERN_WARNING "%s: i2c rd failed=%d reg=%06x len=%d\n",
95 __func__, ret, reg, len);
96 ret = -EREMOTEIO;
99 return ret;
103 /* write single register */
104 static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
106 return af9033_wr_regs(state, reg, &val, 1);
109 /* read single register */
110 static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
112 return af9033_rd_regs(state, reg, val, 1);
115 /* write single register with mask */
116 static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
117 u8 mask)
119 int ret;
120 u8 tmp;
122 /* no need for read if whole reg is written */
123 if (mask != 0xff) {
124 ret = af9033_rd_regs(state, reg, &tmp, 1);
125 if (ret)
126 return ret;
128 val &= mask;
129 tmp &= ~mask;
130 val |= tmp;
133 return af9033_wr_regs(state, reg, &val, 1);
136 /* read single register with mask */
137 static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
138 u8 mask)
140 int ret, i;
141 u8 tmp;
143 ret = af9033_rd_regs(state, reg, &tmp, 1);
144 if (ret)
145 return ret;
147 tmp &= mask;
149 /* find position of the first bit */
150 for (i = 0; i < 8; i++) {
151 if ((mask >> i) & 0x01)
152 break;
154 *val = tmp >> i;
156 return 0;
159 static u32 af9033_div(u32 a, u32 b, u32 x)
161 u32 r = 0, c = 0, i;
163 pr_debug("%s: a=%d b=%d x=%d\n", __func__, a, b, x);
165 if (a > b) {
166 c = a / b;
167 a = a - c * b;
170 for (i = 0; i < x; i++) {
171 if (a >= b) {
172 r += 1;
173 a -= b;
175 a <<= 1;
176 r <<= 1;
178 r = (c << (u32)x) + r;
180 pr_debug("%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r);
182 return r;
185 static void af9033_release(struct dvb_frontend *fe)
187 struct af9033_state *state = fe->demodulator_priv;
189 kfree(state);
192 static int af9033_init(struct dvb_frontend *fe)
194 struct af9033_state *state = fe->demodulator_priv;
195 int ret, i, len;
196 const struct reg_val *init;
197 u8 buf[4];
198 u32 adc_cw, clock_cw;
199 struct reg_val_mask tab[] = {
200 { 0x80fb24, 0x00, 0x08 },
201 { 0x80004c, 0x00, 0xff },
202 { 0x00f641, state->cfg.tuner, 0xff },
203 { 0x80f5ca, 0x01, 0x01 },
204 { 0x80f715, 0x01, 0x01 },
205 { 0x00f41f, 0x04, 0x04 },
206 { 0x00f41a, 0x01, 0x01 },
207 { 0x80f731, 0x00, 0x01 },
208 { 0x00d91e, 0x00, 0x01 },
209 { 0x00d919, 0x00, 0x01 },
210 { 0x80f732, 0x00, 0x01 },
211 { 0x00d91f, 0x00, 0x01 },
212 { 0x00d91a, 0x00, 0x01 },
213 { 0x80f730, 0x00, 0x01 },
214 { 0x80f778, 0x00, 0xff },
215 { 0x80f73c, 0x01, 0x01 },
216 { 0x80f776, 0x00, 0x01 },
217 { 0x00d8fd, 0x01, 0xff },
218 { 0x00d830, 0x01, 0xff },
219 { 0x00d831, 0x00, 0xff },
220 { 0x00d832, 0x00, 0xff },
221 { 0x80f985, state->ts_mode_serial, 0x01 },
222 { 0x80f986, state->ts_mode_parallel, 0x01 },
223 { 0x00d827, 0x00, 0xff },
224 { 0x00d829, 0x00, 0xff },
227 /* program clock control */
228 clock_cw = af9033_div(state->cfg.clock, 1000000ul, 19ul);
229 buf[0] = (clock_cw >> 0) & 0xff;
230 buf[1] = (clock_cw >> 8) & 0xff;
231 buf[2] = (clock_cw >> 16) & 0xff;
232 buf[3] = (clock_cw >> 24) & 0xff;
234 pr_debug("%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock,
235 clock_cw);
237 ret = af9033_wr_regs(state, 0x800025, buf, 4);
238 if (ret < 0)
239 goto err;
241 /* program ADC control */
242 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
243 if (clock_adc_lut[i].clock == state->cfg.clock)
244 break;
247 adc_cw = af9033_div(clock_adc_lut[i].adc, 1000000ul, 19ul);
248 buf[0] = (adc_cw >> 0) & 0xff;
249 buf[1] = (adc_cw >> 8) & 0xff;
250 buf[2] = (adc_cw >> 16) & 0xff;
252 pr_debug("%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc,
253 adc_cw);
255 ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
256 if (ret < 0)
257 goto err;
259 /* program register table */
260 for (i = 0; i < ARRAY_SIZE(tab); i++) {
261 ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
262 tab[i].mask);
263 if (ret < 0)
264 goto err;
267 /* settings for TS interface */
268 if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
269 ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
270 if (ret < 0)
271 goto err;
273 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
274 if (ret < 0)
275 goto err;
276 } else {
277 ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
278 if (ret < 0)
279 goto err;
281 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
282 if (ret < 0)
283 goto err;
286 /* load OFSM settings */
287 pr_debug("%s: load ofsm settings\n", __func__);
288 len = ARRAY_SIZE(ofsm_init);
289 init = ofsm_init;
290 for (i = 0; i < len; i++) {
291 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
292 if (ret < 0)
293 goto err;
296 /* load tuner specific settings */
297 pr_debug("%s: load tuner specific settings\n",
298 __func__);
299 switch (state->cfg.tuner) {
300 case AF9033_TUNER_TUA9001:
301 len = ARRAY_SIZE(tuner_init_tua9001);
302 init = tuner_init_tua9001;
303 break;
304 case AF9033_TUNER_FC0011:
305 len = ARRAY_SIZE(tuner_init_fc0011);
306 init = tuner_init_fc0011;
307 break;
308 case AF9033_TUNER_MXL5007T:
309 len = ARRAY_SIZE(tuner_init_mxl5007t);
310 init = tuner_init_mxl5007t;
311 break;
312 case AF9033_TUNER_TDA18218:
313 len = ARRAY_SIZE(tuner_init_tda18218);
314 init = tuner_init_tda18218;
315 break;
316 default:
317 pr_debug("%s: unsupported tuner ID=%d\n", __func__,
318 state->cfg.tuner);
319 ret = -ENODEV;
320 goto err;
323 for (i = 0; i < len; i++) {
324 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
325 if (ret < 0)
326 goto err;
329 state->bandwidth_hz = 0; /* force to program all parameters */
331 return 0;
333 err:
334 pr_debug("%s: failed=%d\n", __func__, ret);
336 return ret;
339 static int af9033_sleep(struct dvb_frontend *fe)
341 struct af9033_state *state = fe->demodulator_priv;
342 int ret, i;
343 u8 tmp;
345 ret = af9033_wr_reg(state, 0x80004c, 1);
346 if (ret < 0)
347 goto err;
349 ret = af9033_wr_reg(state, 0x800000, 0);
350 if (ret < 0)
351 goto err;
353 for (i = 100, tmp = 1; i && tmp; i--) {
354 ret = af9033_rd_reg(state, 0x80004c, &tmp);
355 if (ret < 0)
356 goto err;
358 usleep_range(200, 10000);
361 pr_debug("%s: loop=%d\n", __func__, i);
363 if (i == 0) {
364 ret = -ETIMEDOUT;
365 goto err;
368 ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
369 if (ret < 0)
370 goto err;
372 /* prevent current leak (?) */
373 if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
374 /* enable parallel TS */
375 ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
376 if (ret < 0)
377 goto err;
379 ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
380 if (ret < 0)
381 goto err;
384 return 0;
386 err:
387 pr_debug("%s: failed=%d\n", __func__, ret);
389 return ret;
392 static int af9033_get_tune_settings(struct dvb_frontend *fe,
393 struct dvb_frontend_tune_settings *fesettings)
395 fesettings->min_delay_ms = 800;
396 fesettings->step_size = 0;
397 fesettings->max_drift = 0;
399 return 0;
402 static int af9033_set_frontend(struct dvb_frontend *fe)
404 struct af9033_state *state = fe->demodulator_priv;
405 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
406 int ret, i, spec_inv;
407 u8 tmp, buf[3], bandwidth_reg_val;
408 u32 if_frequency, freq_cw, adc_freq;
410 pr_debug("%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency,
411 c->bandwidth_hz);
413 /* check bandwidth */
414 switch (c->bandwidth_hz) {
415 case 6000000:
416 bandwidth_reg_val = 0x00;
417 break;
418 case 7000000:
419 bandwidth_reg_val = 0x01;
420 break;
421 case 8000000:
422 bandwidth_reg_val = 0x02;
423 break;
424 default:
425 pr_debug("%s: invalid bandwidth_hz\n", __func__);
426 ret = -EINVAL;
427 goto err;
430 /* program tuner */
431 if (fe->ops.tuner_ops.set_params)
432 fe->ops.tuner_ops.set_params(fe);
434 /* program CFOE coefficients */
435 if (c->bandwidth_hz != state->bandwidth_hz) {
436 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
437 if (coeff_lut[i].clock == state->cfg.clock &&
438 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
439 break;
442 ret = af9033_wr_regs(state, 0x800001,
443 coeff_lut[i].val, sizeof(coeff_lut[i].val));
446 /* program frequency control */
447 if (c->bandwidth_hz != state->bandwidth_hz) {
448 spec_inv = state->cfg.spec_inv ? -1 : 1;
450 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
451 if (clock_adc_lut[i].clock == state->cfg.clock)
452 break;
454 adc_freq = clock_adc_lut[i].adc;
456 /* get used IF frequency */
457 if (fe->ops.tuner_ops.get_if_frequency)
458 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
459 else
460 if_frequency = 0;
462 while (if_frequency > (adc_freq / 2))
463 if_frequency -= adc_freq;
465 if (if_frequency >= 0)
466 spec_inv *= -1;
467 else
468 if_frequency *= -1;
470 freq_cw = af9033_div(if_frequency, adc_freq, 23ul);
472 if (spec_inv == -1)
473 freq_cw *= -1;
475 /* get adc multiplies */
476 ret = af9033_rd_reg(state, 0x800045, &tmp);
477 if (ret < 0)
478 goto err;
480 if (tmp == 1)
481 freq_cw /= 2;
483 buf[0] = (freq_cw >> 0) & 0xff;
484 buf[1] = (freq_cw >> 8) & 0xff;
485 buf[2] = (freq_cw >> 16) & 0x7f;
486 ret = af9033_wr_regs(state, 0x800029, buf, 3);
487 if (ret < 0)
488 goto err;
490 state->bandwidth_hz = c->bandwidth_hz;
493 ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
494 if (ret < 0)
495 goto err;
497 ret = af9033_wr_reg(state, 0x800040, 0x00);
498 if (ret < 0)
499 goto err;
501 ret = af9033_wr_reg(state, 0x800047, 0x00);
502 if (ret < 0)
503 goto err;
505 ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
506 if (ret < 0)
507 goto err;
509 if (c->frequency <= 230000000)
510 tmp = 0x00; /* VHF */
511 else
512 tmp = 0x01; /* UHF */
514 ret = af9033_wr_reg(state, 0x80004b, tmp);
515 if (ret < 0)
516 goto err;
518 ret = af9033_wr_reg(state, 0x800000, 0x00);
519 if (ret < 0)
520 goto err;
522 return 0;
524 err:
525 pr_debug("%s: failed=%d\n", __func__, ret);
527 return ret;
530 static int af9033_get_frontend(struct dvb_frontend *fe)
532 struct af9033_state *state = fe->demodulator_priv;
533 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
534 int ret;
535 u8 buf[8];
537 pr_debug("%s\n", __func__);
539 /* read all needed registers */
540 ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
541 if (ret < 0)
542 goto err;
544 switch ((buf[0] >> 0) & 3) {
545 case 0:
546 c->transmission_mode = TRANSMISSION_MODE_2K;
547 break;
548 case 1:
549 c->transmission_mode = TRANSMISSION_MODE_8K;
550 break;
553 switch ((buf[1] >> 0) & 3) {
554 case 0:
555 c->guard_interval = GUARD_INTERVAL_1_32;
556 break;
557 case 1:
558 c->guard_interval = GUARD_INTERVAL_1_16;
559 break;
560 case 2:
561 c->guard_interval = GUARD_INTERVAL_1_8;
562 break;
563 case 3:
564 c->guard_interval = GUARD_INTERVAL_1_4;
565 break;
568 switch ((buf[2] >> 0) & 7) {
569 case 0:
570 c->hierarchy = HIERARCHY_NONE;
571 break;
572 case 1:
573 c->hierarchy = HIERARCHY_1;
574 break;
575 case 2:
576 c->hierarchy = HIERARCHY_2;
577 break;
578 case 3:
579 c->hierarchy = HIERARCHY_4;
580 break;
583 switch ((buf[3] >> 0) & 3) {
584 case 0:
585 c->modulation = QPSK;
586 break;
587 case 1:
588 c->modulation = QAM_16;
589 break;
590 case 2:
591 c->modulation = QAM_64;
592 break;
595 switch ((buf[4] >> 0) & 3) {
596 case 0:
597 c->bandwidth_hz = 6000000;
598 break;
599 case 1:
600 c->bandwidth_hz = 7000000;
601 break;
602 case 2:
603 c->bandwidth_hz = 8000000;
604 break;
607 switch ((buf[6] >> 0) & 7) {
608 case 0:
609 c->code_rate_HP = FEC_1_2;
610 break;
611 case 1:
612 c->code_rate_HP = FEC_2_3;
613 break;
614 case 2:
615 c->code_rate_HP = FEC_3_4;
616 break;
617 case 3:
618 c->code_rate_HP = FEC_5_6;
619 break;
620 case 4:
621 c->code_rate_HP = FEC_7_8;
622 break;
623 case 5:
624 c->code_rate_HP = FEC_NONE;
625 break;
628 switch ((buf[7] >> 0) & 7) {
629 case 0:
630 c->code_rate_LP = FEC_1_2;
631 break;
632 case 1:
633 c->code_rate_LP = FEC_2_3;
634 break;
635 case 2:
636 c->code_rate_LP = FEC_3_4;
637 break;
638 case 3:
639 c->code_rate_LP = FEC_5_6;
640 break;
641 case 4:
642 c->code_rate_LP = FEC_7_8;
643 break;
644 case 5:
645 c->code_rate_LP = FEC_NONE;
646 break;
649 return 0;
651 err:
652 pr_debug("%s: failed=%d\n", __func__, ret);
654 return ret;
657 static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
659 struct af9033_state *state = fe->demodulator_priv;
660 int ret;
661 u8 tmp;
663 *status = 0;
665 /* radio channel status, 0=no result, 1=has signal, 2=no signal */
666 ret = af9033_rd_reg(state, 0x800047, &tmp);
667 if (ret < 0)
668 goto err;
670 /* has signal */
671 if (tmp == 0x01)
672 *status |= FE_HAS_SIGNAL;
674 if (tmp != 0x02) {
675 /* TPS lock */
676 ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
677 if (ret < 0)
678 goto err;
680 if (tmp)
681 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
682 FE_HAS_VITERBI;
684 /* full lock */
685 ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
686 if (ret < 0)
687 goto err;
689 if (tmp)
690 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
691 FE_HAS_VITERBI | FE_HAS_SYNC |
692 FE_HAS_LOCK;
695 return 0;
697 err:
698 pr_debug("%s: failed=%d\n", __func__, ret);
700 return ret;
703 static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
705 struct af9033_state *state = fe->demodulator_priv;
706 int ret, i, len;
707 u8 buf[3], tmp;
708 u32 snr_val;
709 const struct val_snr *uninitialized_var(snr_lut);
711 /* read value */
712 ret = af9033_rd_regs(state, 0x80002c, buf, 3);
713 if (ret < 0)
714 goto err;
716 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
718 /* read current modulation */
719 ret = af9033_rd_reg(state, 0x80f903, &tmp);
720 if (ret < 0)
721 goto err;
723 switch ((tmp >> 0) & 3) {
724 case 0:
725 len = ARRAY_SIZE(qpsk_snr_lut);
726 snr_lut = qpsk_snr_lut;
727 break;
728 case 1:
729 len = ARRAY_SIZE(qam16_snr_lut);
730 snr_lut = qam16_snr_lut;
731 break;
732 case 2:
733 len = ARRAY_SIZE(qam64_snr_lut);
734 snr_lut = qam64_snr_lut;
735 break;
736 default:
737 goto err;
740 for (i = 0; i < len; i++) {
741 tmp = snr_lut[i].snr;
743 if (snr_val < snr_lut[i].val)
744 break;
747 *snr = tmp * 10; /* dB/10 */
749 return 0;
751 err:
752 pr_debug("%s: failed=%d\n", __func__, ret);
754 return ret;
757 static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
759 struct af9033_state *state = fe->demodulator_priv;
760 int ret;
761 u8 strength2;
763 /* read signal strength of 0-100 scale */
764 ret = af9033_rd_reg(state, 0x800048, &strength2);
765 if (ret < 0)
766 goto err;
768 /* scale value to 0x0000-0xffff */
769 *strength = strength2 * 0xffff / 100;
771 return 0;
773 err:
774 pr_debug("%s: failed=%d\n", __func__, ret);
776 return ret;
779 static int af9033_update_ch_stat(struct af9033_state *state)
781 int ret = 0;
782 u32 err_cnt, bit_cnt;
783 u16 abort_cnt;
784 u8 buf[7];
786 /* only update data every half second */
787 if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
788 ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
789 if (ret < 0)
790 goto err;
791 /* in 8 byte packets? */
792 abort_cnt = (buf[1] << 8) + buf[0];
793 /* in bits */
794 err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
795 /* in 8 byte packets? always(?) 0x2710 = 10000 */
796 bit_cnt = (buf[6] << 8) + buf[5];
798 if (bit_cnt < abort_cnt) {
799 abort_cnt = 1000;
800 state->ber = 0xffffffff;
801 } else {
802 /* 8 byte packets, that have not been rejected already */
803 bit_cnt -= (u32)abort_cnt;
804 if (bit_cnt == 0) {
805 state->ber = 0xffffffff;
806 } else {
807 err_cnt -= (u32)abort_cnt * 8 * 8;
808 bit_cnt *= 8 * 8;
809 state->ber = err_cnt * (0xffffffff / bit_cnt);
812 state->ucb += abort_cnt;
813 state->last_stat_check = jiffies;
816 return 0;
817 err:
818 pr_debug("%s: failed=%d\n", __func__, ret);
819 return ret;
822 static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
824 struct af9033_state *state = fe->demodulator_priv;
825 int ret;
827 ret = af9033_update_ch_stat(state);
828 if (ret < 0)
829 return ret;
831 *ber = state->ber;
833 return 0;
836 static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
838 struct af9033_state *state = fe->demodulator_priv;
839 int ret;
841 ret = af9033_update_ch_stat(state);
842 if (ret < 0)
843 return ret;
845 *ucblocks = state->ucb;
847 return 0;
850 static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
852 struct af9033_state *state = fe->demodulator_priv;
853 int ret;
855 pr_debug("%s: enable=%d\n", __func__, enable);
857 ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
858 if (ret < 0)
859 goto err;
861 return 0;
863 err:
864 pr_debug("%s: failed=%d\n", __func__, ret);
866 return ret;
869 static struct dvb_frontend_ops af9033_ops;
871 struct dvb_frontend *af9033_attach(const struct af9033_config *config,
872 struct i2c_adapter *i2c)
874 int ret;
875 struct af9033_state *state;
876 u8 buf[8];
878 pr_debug("%s:\n", __func__);
880 /* allocate memory for the internal state */
881 state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
882 if (state == NULL)
883 goto err;
885 /* setup the state */
886 state->i2c = i2c;
887 memcpy(&state->cfg, config, sizeof(struct af9033_config));
889 if (state->cfg.clock != 12000000) {
890 printk(KERN_INFO "af9033: unsupported clock=%d, only " \
891 "12000000 Hz is supported currently\n",
892 state->cfg.clock);
893 goto err;
896 /* firmware version */
897 ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
898 if (ret < 0)
899 goto err;
901 ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
902 if (ret < 0)
903 goto err;
905 printk(KERN_INFO "af9033: firmware version: LINK=%d.%d.%d.%d " \
906 "OFDM=%d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3],
907 buf[4], buf[5], buf[6], buf[7]);
909 /* configure internal TS mode */
910 switch (state->cfg.ts_mode) {
911 case AF9033_TS_MODE_PARALLEL:
912 state->ts_mode_parallel = true;
913 break;
914 case AF9033_TS_MODE_SERIAL:
915 state->ts_mode_serial = true;
916 break;
917 case AF9033_TS_MODE_USB:
918 /* usb mode for AF9035 */
919 default:
920 break;
923 /* create dvb_frontend */
924 memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
925 state->fe.demodulator_priv = state;
927 return &state->fe;
929 err:
930 kfree(state);
931 return NULL;
933 EXPORT_SYMBOL(af9033_attach);
935 static struct dvb_frontend_ops af9033_ops = {
936 .delsys = { SYS_DVBT },
937 .info = {
938 .name = "Afatech AF9033 (DVB-T)",
939 .frequency_min = 174000000,
940 .frequency_max = 862000000,
941 .frequency_stepsize = 250000,
942 .frequency_tolerance = 0,
943 .caps = FE_CAN_FEC_1_2 |
944 FE_CAN_FEC_2_3 |
945 FE_CAN_FEC_3_4 |
946 FE_CAN_FEC_5_6 |
947 FE_CAN_FEC_7_8 |
948 FE_CAN_FEC_AUTO |
949 FE_CAN_QPSK |
950 FE_CAN_QAM_16 |
951 FE_CAN_QAM_64 |
952 FE_CAN_QAM_AUTO |
953 FE_CAN_TRANSMISSION_MODE_AUTO |
954 FE_CAN_GUARD_INTERVAL_AUTO |
955 FE_CAN_HIERARCHY_AUTO |
956 FE_CAN_RECOVER |
957 FE_CAN_MUTE_TS
960 .release = af9033_release,
962 .init = af9033_init,
963 .sleep = af9033_sleep,
965 .get_tune_settings = af9033_get_tune_settings,
966 .set_frontend = af9033_set_frontend,
967 .get_frontend = af9033_get_frontend,
969 .read_status = af9033_read_status,
970 .read_snr = af9033_read_snr,
971 .read_signal_strength = af9033_read_signal_strength,
972 .read_ber = af9033_read_ber,
973 .read_ucblocks = af9033_read_ucblocks,
975 .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
978 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
979 MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
980 MODULE_LICENSE("GPL");