Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / media / rc / nuvoton-cir.c
blob699eef39128bf3eacf91a08d1a1026a1dfac1653
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25 * USA
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
40 #include "nuvoton-cir.h"
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
45 outb(reg, nvt->cr_efir);
46 outb(val, nvt->cr_efdr);
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
52 outb(reg, nvt->cr_efir);
53 return inb(nvt->cr_efdr);
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
59 u8 tmp = nvt_cr_read(nvt, reg) | val;
60 nvt_cr_write(nvt, tmp, reg);
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
66 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 nvt_cr_write(nvt, tmp, reg);
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
73 /* Enabling Extended Function Mode explicitly requires writing 2x */
74 outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 outb(EFER_EFM_ENABLE, nvt->cr_efir);
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
81 outb(EFER_EFM_DISABLE, nvt->cr_efir);
85 * When you want to address a specific logical device, write its logical
86 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
91 outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 outb(ldev, nvt->cr_efdr);
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
98 outb(val, nvt->cir_addr + offset);
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
104 u8 val;
106 val = inb(nvt->cir_addr + offset);
108 return val;
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 u8 val, u8 offset)
115 outb(val, nvt->cir_wake_addr + offset);
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
121 u8 val;
123 val = inb(nvt->cir_wake_addr + offset);
125 return val;
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
131 nvt_efm_enable(nvt);
132 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
134 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 pr_info(" * CR CIR ACTIVE : 0x%x\n",
136 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
141 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
143 nvt_efm_disable(nvt);
145 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
167 u8 i, fifo_len;
169 nvt_efm_enable(nvt);
170 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
172 pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 NVT_DRIVER_NAME);
174 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
175 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
180 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
182 nvt_efm_disable(nvt);
184 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 pr_info(" * IRCON: 0x%x\n",
186 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 pr_info(" * IRSTS: 0x%x\n",
188 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 pr_info(" * IREN: 0x%x\n",
190 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 pr_info(" * FIFO CMP DEEP: 0x%x\n",
192 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 pr_info(" * FIFO CMP TOL: 0x%x\n",
194 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 pr_info(" * FIFO COUNT: 0x%x\n",
196 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 pr_info(" * SLCH: 0x%x\n",
198 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 pr_info(" * SLCL: 0x%x\n",
200 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 pr_info(" * FIFOCON: 0x%x\n",
202 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 pr_info(" * SRXFSTS: 0x%x\n",
204 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 pr_info(" * WR FIFO DATA: 0x%x\n",
208 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 pr_info(" * RD FIFO ONLY: 0x%x\n",
210 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 pr_info(" * FIFO IGNORE: 0x%x\n",
214 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 pr_info(" * IRFSM: 0x%x\n",
216 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
218 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 pr_info("* Contents =");
221 for (i = 0; i < fifo_len; i++)
222 pr_cont(" %02x",
223 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 pr_cont("\n");
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
230 unsigned long flags;
231 u8 chip_major, chip_minor;
232 int ret = 0;
233 char chip_id[12];
234 bool chip_unknown = false;
236 nvt_efm_enable(nvt);
238 /* Check if we're wired for the alternate EFER setup */
239 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240 if (chip_major == 0xff) {
241 nvt->cr_efir = CR_EFIR2;
242 nvt->cr_efdr = CR_EFDR2;
243 nvt_efm_enable(nvt);
244 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
247 chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
249 /* these are the known working chip revisions... */
250 switch (chip_major) {
251 case CHIP_ID_HIGH_667:
252 strcpy(chip_id, "w83667hg\0");
253 if (chip_minor != CHIP_ID_LOW_667)
254 chip_unknown = true;
255 break;
256 case CHIP_ID_HIGH_677B:
257 strcpy(chip_id, "w83677hg\0");
258 if (chip_minor != CHIP_ID_LOW_677B2 &&
259 chip_minor != CHIP_ID_LOW_677B3)
260 chip_unknown = true;
261 break;
262 case CHIP_ID_HIGH_677C:
263 strcpy(chip_id, "w83677hg-c\0");
264 if (chip_minor != CHIP_ID_LOW_677C)
265 chip_unknown = true;
266 break;
267 default:
268 strcpy(chip_id, "w836x7hg\0");
269 chip_unknown = true;
270 break;
273 /* warn, but still let the driver load, if we don't know this chip */
274 if (chip_unknown)
275 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276 "it may not work...", chip_id, chip_major, chip_minor);
277 else
278 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279 chip_id, chip_major, chip_minor);
281 nvt_efm_disable(nvt);
283 spin_lock_irqsave(&nvt->nvt_lock, flags);
284 nvt->chip_major = chip_major;
285 nvt->chip_minor = chip_minor;
286 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
288 return ret;
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
293 u8 val, psreg, psmask, psval;
295 if (nvt->chip_major == CHIP_ID_HIGH_667) {
296 psreg = CR_MULTIFUNC_PIN_SEL;
297 psmask = MULTIFUNC_PIN_SEL_MASK;
298 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299 } else {
300 psreg = CR_OUTPUT_PIN_SEL;
301 psmask = OUTPUT_PIN_SEL_MASK;
302 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
305 /* output pin selection: enable CIR, with WB sensor enabled */
306 val = nvt_cr_read(nvt, psreg);
307 val &= psmask;
308 val |= psval;
309 nvt_cr_write(nvt, val, psreg);
311 /* Select CIR logical device and enable */
312 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
315 nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316 nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
318 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
320 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321 nvt->cir_addr, nvt->cir_irq);
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
326 /* Select ACPI logical device, enable it and CIR Wake */
327 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
330 /* Enable CIR Wake via PSOUT# (Pin60) */
331 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
333 /* enable cir interrupt of mouse/keyboard IRQ event */
334 nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
336 /* enable pme interrupt of cir wakeup event */
337 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
339 /* Select CIR Wake logical device and enable */
340 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
341 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
343 nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
344 nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
346 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
348 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
349 nvt->cir_wake_addr, nvt->cir_wake_irq);
352 /* clear out the hardware's cir rx fifo */
353 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
355 u8 val;
357 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
358 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
361 /* clear out the hardware's cir wake rx fifo */
362 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
364 u8 val;
366 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
367 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
368 CIR_WAKE_FIFOCON);
371 /* clear out the hardware's cir tx fifo */
372 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
374 u8 val;
376 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
377 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
380 /* enable RX Trigger Level Reach and Packet End interrupts */
381 static void nvt_set_cir_iren(struct nvt_dev *nvt)
383 u8 iren;
385 iren = CIR_IREN_RTR | CIR_IREN_PE;
386 nvt_cir_reg_write(nvt, iren, CIR_IREN);
389 static void nvt_cir_regs_init(struct nvt_dev *nvt)
391 /* set sample limit count (PE interrupt raised when reached) */
392 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
393 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
395 /* set fifo irq trigger levels */
396 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
397 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
400 * Enable TX and RX, specify carrier on = low, off = high, and set
401 * sample period (currently 50us)
403 nvt_cir_reg_write(nvt,
404 CIR_IRCON_TXEN | CIR_IRCON_RXEN |
405 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
406 CIR_IRCON);
408 /* clear hardware rx and tx fifos */
409 nvt_clear_cir_fifo(nvt);
410 nvt_clear_tx_fifo(nvt);
412 /* clear any and all stray interrupts */
413 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
415 /* and finally, enable interrupts */
416 nvt_set_cir_iren(nvt);
419 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
421 /* set number of bytes needed for wake from s3 (default 65) */
422 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
423 CIR_WAKE_FIFO_CMP_DEEP);
425 /* set tolerance/variance allowed per byte during wake compare */
426 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
427 CIR_WAKE_FIFO_CMP_TOL);
429 /* set sample limit count (PE interrupt raised when reached) */
430 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
431 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
433 /* set cir wake fifo rx trigger level (currently 67) */
434 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
435 CIR_WAKE_FIFOCON);
438 * Enable TX and RX, specific carrier on = low, off = high, and set
439 * sample period (currently 50us)
441 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
442 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
443 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
444 CIR_WAKE_IRCON);
446 /* clear cir wake rx fifo */
447 nvt_clear_cir_wake_fifo(nvt);
449 /* clear any and all stray interrupts */
450 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
453 static void nvt_enable_wake(struct nvt_dev *nvt)
455 nvt_efm_enable(nvt);
457 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
458 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
459 nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
460 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
462 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
463 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
465 nvt_efm_disable(nvt);
467 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
468 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
469 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
470 CIR_WAKE_IRCON);
471 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
472 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
475 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
476 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
478 u32 count, carrier, duration = 0;
479 int i;
481 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
482 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
484 for (i = 0; i < nvt->pkts; i++) {
485 if (nvt->buf[i] & BUF_PULSE_BIT)
486 duration += nvt->buf[i] & BUF_LEN_MASK;
489 duration *= SAMPLE_PERIOD;
491 if (!count || !duration) {
492 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
493 count, duration);
494 return 0;
497 carrier = MS_TO_NS(count) / duration;
499 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
500 nvt_dbg("WTF? Carrier frequency out of range!");
502 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
503 carrier, count, duration);
505 return carrier;
509 * set carrier frequency
511 * set carrier on 2 registers: CP & CC
512 * always set CP as 0x81
513 * set CC by SPEC, CC = 3MHz/carrier - 1
515 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
517 struct nvt_dev *nvt = dev->priv;
518 u16 val;
520 nvt_cir_reg_write(nvt, 1, CIR_CP);
521 val = 3000000 / (carrier) - 1;
522 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
524 nvt_dbg("cp: 0x%x cc: 0x%x\n",
525 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
527 return 0;
531 * nvt_tx_ir
533 * 1) clean TX fifo first (handled by AP)
534 * 2) copy data from user space
535 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
536 * 4) send 9 packets to TX FIFO to open TTR
537 * in interrupt_handler:
538 * 5) send all data out
539 * go back to write():
540 * 6) disable TX interrupts, re-enable RX interupts
542 * The key problem of this function is user space data may larger than
543 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
544 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
545 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
546 * set TXFCONT as 0xff, until buf_count less than 0xff.
548 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
550 struct nvt_dev *nvt = dev->priv;
551 unsigned long flags;
552 unsigned int i;
553 u8 iren;
554 int ret;
556 spin_lock_irqsave(&nvt->tx.lock, flags);
558 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
559 nvt->tx.buf_count = (ret * sizeof(unsigned));
561 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
563 nvt->tx.cur_buf_num = 0;
565 /* save currently enabled interrupts */
566 iren = nvt_cir_reg_read(nvt, CIR_IREN);
568 /* now disable all interrupts, save TFU & TTR */
569 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
571 nvt->tx.tx_state = ST_TX_REPLY;
573 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
574 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
576 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
577 for (i = 0; i < 9; i++)
578 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
580 spin_unlock_irqrestore(&nvt->tx.lock, flags);
582 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
584 spin_lock_irqsave(&nvt->tx.lock, flags);
585 nvt->tx.tx_state = ST_TX_NONE;
586 spin_unlock_irqrestore(&nvt->tx.lock, flags);
588 /* restore enabled interrupts to prior state */
589 nvt_cir_reg_write(nvt, iren, CIR_IREN);
591 return ret;
594 /* dump contents of the last rx buffer we got from the hw rx fifo */
595 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
597 int i;
599 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
602 printk(KERN_CONT "\n");
606 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
607 * trigger decode when appropriate.
609 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
610 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
611 * (default 50us) intervals for that pulse/space. A discrete signal is
612 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
613 * to signal more IR coming (repeats) or end of IR, respectively. We store
614 * sample data in the raw event kfifo until we see 0x7<something> (except f)
615 * or 0x80, at which time, we trigger a decode operation.
617 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
619 DEFINE_IR_RAW_EVENT(rawir);
620 u32 carrier;
621 u8 sample;
622 int i;
624 nvt_dbg_verbose("%s firing", __func__);
626 if (debug)
627 nvt_dump_rx_buf(nvt);
629 if (nvt->carrier_detect_enabled)
630 carrier = nvt_rx_carrier_detect(nvt);
632 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
634 init_ir_raw_event(&rawir);
636 for (i = 0; i < nvt->pkts; i++) {
637 sample = nvt->buf[i];
639 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
640 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
641 * SAMPLE_PERIOD);
643 nvt_dbg("Storing %s with duration %d",
644 rawir.pulse ? "pulse" : "space", rawir.duration);
646 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
649 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
650 * indicates end of IR signal, but new data incoming. In both
651 * cases, it means we're ready to call ir_raw_event_handle
653 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
654 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
655 ir_raw_event_handle(nvt->rdev);
659 nvt->pkts = 0;
661 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
662 ir_raw_event_handle(nvt->rdev);
664 nvt_dbg_verbose("%s done", __func__);
667 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
669 nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
671 nvt->pkts = 0;
672 nvt_clear_cir_fifo(nvt);
673 ir_raw_event_reset(nvt->rdev);
676 /* copy data from hardware rx fifo into driver buffer */
677 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
679 unsigned long flags;
680 u8 fifocount, val;
681 unsigned int b_idx;
682 bool overrun = false;
683 int i;
685 /* Get count of how many bytes to read from RX FIFO */
686 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
687 /* if we get 0xff, probably means the logical dev is disabled */
688 if (fifocount == 0xff)
689 return;
690 /* watch out for a fifo overrun condition */
691 else if (fifocount > RX_BUF_LEN) {
692 overrun = true;
693 fifocount = RX_BUF_LEN;
696 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
698 spin_lock_irqsave(&nvt->nvt_lock, flags);
700 b_idx = nvt->pkts;
702 /* This should never happen, but lets check anyway... */
703 if (b_idx + fifocount > RX_BUF_LEN) {
704 nvt_process_rx_ir_data(nvt);
705 b_idx = 0;
708 /* Read fifocount bytes from CIR Sample RX FIFO register */
709 for (i = 0; i < fifocount; i++) {
710 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
711 nvt->buf[b_idx + i] = val;
714 nvt->pkts += fifocount;
715 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
717 nvt_process_rx_ir_data(nvt);
719 if (overrun)
720 nvt_handle_rx_fifo_overrun(nvt);
722 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
725 static void nvt_cir_log_irqs(u8 status, u8 iren)
727 nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
728 status, iren,
729 status & CIR_IRSTS_RDR ? " RDR" : "",
730 status & CIR_IRSTS_RTR ? " RTR" : "",
731 status & CIR_IRSTS_PE ? " PE" : "",
732 status & CIR_IRSTS_RFO ? " RFO" : "",
733 status & CIR_IRSTS_TE ? " TE" : "",
734 status & CIR_IRSTS_TTR ? " TTR" : "",
735 status & CIR_IRSTS_TFU ? " TFU" : "",
736 status & CIR_IRSTS_GH ? " GH" : "",
737 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
738 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
739 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
742 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
744 unsigned long flags;
745 bool tx_inactive;
746 u8 tx_state;
748 spin_lock_irqsave(&nvt->tx.lock, flags);
749 tx_state = nvt->tx.tx_state;
750 spin_unlock_irqrestore(&nvt->tx.lock, flags);
752 tx_inactive = (tx_state == ST_TX_NONE);
754 return tx_inactive;
757 /* interrupt service routine for incoming and outgoing CIR data */
758 static irqreturn_t nvt_cir_isr(int irq, void *data)
760 struct nvt_dev *nvt = data;
761 u8 status, iren, cur_state;
762 unsigned long flags;
764 nvt_dbg_verbose("%s firing", __func__);
766 nvt_efm_enable(nvt);
767 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
768 nvt_efm_disable(nvt);
771 * Get IR Status register contents. Write 1 to ack/clear
773 * bit: reg name - description
774 * 7: CIR_IRSTS_RDR - RX Data Ready
775 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
776 * 5: CIR_IRSTS_PE - Packet End
777 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
778 * 3: CIR_IRSTS_TE - TX FIFO Empty
779 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
780 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
781 * 0: CIR_IRSTS_GH - Min Length Detected
783 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
784 if (!status) {
785 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
786 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
787 return IRQ_RETVAL(IRQ_NONE);
790 /* ack/clear all irq flags we've got */
791 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
792 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
794 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
795 iren = nvt_cir_reg_read(nvt, CIR_IREN);
796 if (!iren) {
797 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
798 return IRQ_RETVAL(IRQ_NONE);
801 if (debug)
802 nvt_cir_log_irqs(status, iren);
804 if (status & CIR_IRSTS_RTR) {
805 /* FIXME: add code for study/learn mode */
806 /* We only do rx if not tx'ing */
807 if (nvt_cir_tx_inactive(nvt))
808 nvt_get_rx_ir_data(nvt);
811 if (status & CIR_IRSTS_PE) {
812 if (nvt_cir_tx_inactive(nvt))
813 nvt_get_rx_ir_data(nvt);
815 spin_lock_irqsave(&nvt->nvt_lock, flags);
817 cur_state = nvt->study_state;
819 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
821 if (cur_state == ST_STUDY_NONE)
822 nvt_clear_cir_fifo(nvt);
825 if (status & CIR_IRSTS_TE)
826 nvt_clear_tx_fifo(nvt);
828 if (status & CIR_IRSTS_TTR) {
829 unsigned int pos, count;
830 u8 tmp;
832 spin_lock_irqsave(&nvt->tx.lock, flags);
834 pos = nvt->tx.cur_buf_num;
835 count = nvt->tx.buf_count;
837 /* Write data into the hardware tx fifo while pos < count */
838 if (pos < count) {
839 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
840 nvt->tx.cur_buf_num++;
841 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
842 } else {
843 tmp = nvt_cir_reg_read(nvt, CIR_IREN);
844 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
847 spin_unlock_irqrestore(&nvt->tx.lock, flags);
851 if (status & CIR_IRSTS_TFU) {
852 spin_lock_irqsave(&nvt->tx.lock, flags);
853 if (nvt->tx.tx_state == ST_TX_REPLY) {
854 nvt->tx.tx_state = ST_TX_REQUEST;
855 wake_up(&nvt->tx.queue);
857 spin_unlock_irqrestore(&nvt->tx.lock, flags);
860 nvt_dbg_verbose("%s done", __func__);
861 return IRQ_RETVAL(IRQ_HANDLED);
864 /* Interrupt service routine for CIR Wake */
865 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
867 u8 status, iren, val;
868 struct nvt_dev *nvt = data;
869 unsigned long flags;
871 nvt_dbg_wake("%s firing", __func__);
873 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
874 if (!status)
875 return IRQ_RETVAL(IRQ_NONE);
877 if (status & CIR_WAKE_IRSTS_IR_PENDING)
878 nvt_clear_cir_wake_fifo(nvt);
880 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
881 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
883 /* Interrupt may be shared with CIR, bail if Wake not enabled */
884 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
885 if (!iren) {
886 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
887 return IRQ_RETVAL(IRQ_HANDLED);
890 if ((status & CIR_WAKE_IRSTS_PE) &&
891 (nvt->wake_state == ST_WAKE_START)) {
892 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
893 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
894 nvt_dbg("setting wake up key: 0x%x", val);
897 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
898 spin_lock_irqsave(&nvt->nvt_lock, flags);
899 nvt->wake_state = ST_WAKE_FINISH;
900 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
903 nvt_dbg_wake("%s done", __func__);
904 return IRQ_RETVAL(IRQ_HANDLED);
907 static void nvt_enable_cir(struct nvt_dev *nvt)
909 /* set function enable flags */
910 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
911 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
912 CIR_IRCON);
914 nvt_efm_enable(nvt);
916 /* enable the CIR logical device */
917 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
918 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
920 nvt_efm_disable(nvt);
922 /* clear all pending interrupts */
923 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
925 /* enable interrupts */
926 nvt_set_cir_iren(nvt);
929 static void nvt_disable_cir(struct nvt_dev *nvt)
931 /* disable CIR interrupts */
932 nvt_cir_reg_write(nvt, 0, CIR_IREN);
934 /* clear any and all pending interrupts */
935 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
937 /* clear all function enable flags */
938 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
940 /* clear hardware rx and tx fifos */
941 nvt_clear_cir_fifo(nvt);
942 nvt_clear_tx_fifo(nvt);
944 nvt_efm_enable(nvt);
946 /* disable the CIR logical device */
947 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
948 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
950 nvt_efm_disable(nvt);
953 static int nvt_open(struct rc_dev *dev)
955 struct nvt_dev *nvt = dev->priv;
956 unsigned long flags;
958 spin_lock_irqsave(&nvt->nvt_lock, flags);
959 nvt_enable_cir(nvt);
960 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
962 return 0;
965 static void nvt_close(struct rc_dev *dev)
967 struct nvt_dev *nvt = dev->priv;
968 unsigned long flags;
970 spin_lock_irqsave(&nvt->nvt_lock, flags);
971 nvt_disable_cir(nvt);
972 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
975 /* Allocate memory, probe hardware, and initialize everything */
976 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
978 struct nvt_dev *nvt;
979 struct rc_dev *rdev;
980 int ret = -ENOMEM;
982 nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
983 if (!nvt)
984 return ret;
986 /* input device for IR remote (and tx) */
987 rdev = rc_allocate_device();
988 if (!rdev)
989 goto failure;
991 ret = -ENODEV;
992 /* validate pnp resources */
993 if (!pnp_port_valid(pdev, 0) ||
994 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
995 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
996 goto failure;
999 if (!pnp_irq_valid(pdev, 0)) {
1000 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1001 goto failure;
1004 if (!pnp_port_valid(pdev, 1) ||
1005 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1006 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1007 goto failure;
1010 nvt->cir_addr = pnp_port_start(pdev, 0);
1011 nvt->cir_irq = pnp_irq(pdev, 0);
1013 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1014 /* irq is always shared between cir and cir wake */
1015 nvt->cir_wake_irq = nvt->cir_irq;
1017 nvt->cr_efir = CR_EFIR;
1018 nvt->cr_efdr = CR_EFDR;
1020 spin_lock_init(&nvt->nvt_lock);
1021 spin_lock_init(&nvt->tx.lock);
1023 pnp_set_drvdata(pdev, nvt);
1024 nvt->pdev = pdev;
1026 init_waitqueue_head(&nvt->tx.queue);
1028 ret = nvt_hw_detect(nvt);
1029 if (ret)
1030 goto failure;
1032 /* Initialize CIR & CIR Wake Logical Devices */
1033 nvt_efm_enable(nvt);
1034 nvt_cir_ldev_init(nvt);
1035 nvt_cir_wake_ldev_init(nvt);
1036 nvt_efm_disable(nvt);
1038 /* Initialize CIR & CIR Wake Config Registers */
1039 nvt_cir_regs_init(nvt);
1040 nvt_cir_wake_regs_init(nvt);
1042 /* Set up the rc device */
1043 rdev->priv = nvt;
1044 rdev->driver_type = RC_DRIVER_IR_RAW;
1045 rdev->allowed_protos = RC_TYPE_ALL;
1046 rdev->open = nvt_open;
1047 rdev->close = nvt_close;
1048 rdev->tx_ir = nvt_tx_ir;
1049 rdev->s_tx_carrier = nvt_set_tx_carrier;
1050 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1051 rdev->input_phys = "nuvoton/cir0";
1052 rdev->input_id.bustype = BUS_HOST;
1053 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1054 rdev->input_id.product = nvt->chip_major;
1055 rdev->input_id.version = nvt->chip_minor;
1056 rdev->dev.parent = &pdev->dev;
1057 rdev->driver_name = NVT_DRIVER_NAME;
1058 rdev->map_name = RC_MAP_RC6_MCE;
1059 rdev->timeout = MS_TO_NS(100);
1060 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1061 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1062 #if 0
1063 rdev->min_timeout = XYZ;
1064 rdev->max_timeout = XYZ;
1065 /* tx bits */
1066 rdev->tx_resolution = XYZ;
1067 #endif
1069 ret = -EBUSY;
1070 /* now claim resources */
1071 if (!request_region(nvt->cir_addr,
1072 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1073 goto failure;
1075 if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1076 NVT_DRIVER_NAME, (void *)nvt))
1077 goto failure2;
1079 if (!request_region(nvt->cir_wake_addr,
1080 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1081 goto failure3;
1083 if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1084 NVT_DRIVER_NAME, (void *)nvt))
1085 goto failure4;
1087 ret = rc_register_device(rdev);
1088 if (ret)
1089 goto failure5;
1091 device_init_wakeup(&pdev->dev, true);
1092 nvt->rdev = rdev;
1093 nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1094 if (debug) {
1095 cir_dump_regs(nvt);
1096 cir_wake_dump_regs(nvt);
1099 return 0;
1101 failure5:
1102 free_irq(nvt->cir_wake_irq, nvt);
1103 failure4:
1104 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1105 failure3:
1106 free_irq(nvt->cir_irq, nvt);
1107 failure2:
1108 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1109 failure:
1110 rc_free_device(rdev);
1111 kfree(nvt);
1113 return ret;
1116 static void __devexit nvt_remove(struct pnp_dev *pdev)
1118 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1119 unsigned long flags;
1121 spin_lock_irqsave(&nvt->nvt_lock, flags);
1122 /* disable CIR */
1123 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1124 nvt_disable_cir(nvt);
1125 /* enable CIR Wake (for IR power-on) */
1126 nvt_enable_wake(nvt);
1127 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1129 /* free resources */
1130 free_irq(nvt->cir_irq, nvt);
1131 free_irq(nvt->cir_wake_irq, nvt);
1132 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1133 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1135 rc_unregister_device(nvt->rdev);
1137 kfree(nvt);
1140 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1142 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1143 unsigned long flags;
1145 nvt_dbg("%s called", __func__);
1147 /* zero out misc state tracking */
1148 spin_lock_irqsave(&nvt->nvt_lock, flags);
1149 nvt->study_state = ST_STUDY_NONE;
1150 nvt->wake_state = ST_WAKE_NONE;
1151 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1153 spin_lock_irqsave(&nvt->tx.lock, flags);
1154 nvt->tx.tx_state = ST_TX_NONE;
1155 spin_unlock_irqrestore(&nvt->tx.lock, flags);
1157 /* disable all CIR interrupts */
1158 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1160 nvt_efm_enable(nvt);
1162 /* disable cir logical dev */
1163 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1164 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1166 nvt_efm_disable(nvt);
1168 /* make sure wake is enabled */
1169 nvt_enable_wake(nvt);
1171 return 0;
1174 static int nvt_resume(struct pnp_dev *pdev)
1176 int ret = 0;
1177 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1179 nvt_dbg("%s called", __func__);
1181 /* open interrupt */
1182 nvt_set_cir_iren(nvt);
1184 /* Enable CIR logical device */
1185 nvt_efm_enable(nvt);
1186 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1187 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1189 nvt_efm_disable(nvt);
1191 nvt_cir_regs_init(nvt);
1192 nvt_cir_wake_regs_init(nvt);
1194 return ret;
1197 static void nvt_shutdown(struct pnp_dev *pdev)
1199 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1200 nvt_enable_wake(nvt);
1203 static const struct pnp_device_id nvt_ids[] = {
1204 { "WEC0530", 0 }, /* CIR */
1205 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1206 { "", 0 },
1209 static struct pnp_driver nvt_driver = {
1210 .name = NVT_DRIVER_NAME,
1211 .id_table = nvt_ids,
1212 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1213 .probe = nvt_probe,
1214 .remove = __devexit_p(nvt_remove),
1215 .suspend = nvt_suspend,
1216 .resume = nvt_resume,
1217 .shutdown = nvt_shutdown,
1220 int nvt_init(void)
1222 return pnp_register_driver(&nvt_driver);
1225 void nvt_exit(void)
1227 pnp_unregister_driver(&nvt_driver);
1230 module_param(debug, int, S_IRUGO | S_IWUSR);
1231 MODULE_PARM_DESC(debug, "Enable debugging output");
1233 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1234 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1236 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1237 MODULE_LICENSE("GPL");
1239 module_init(nvt_init);
1240 module_exit(nvt_exit);