Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / mfd / ab8500-gpadc.c
blob866f95960b4b69b34f2fd2e6347842f9b9b096b8
1 /*
2 * Copyright (C) ST-Ericsson SA 2010
4 * License Terms: GNU General Public License v2
5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
7 * Author: Johan Palsson <johan.palsson@stericsson.com>
8 */
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/platform_device.h>
16 #include <linux/completion.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/list.h>
21 #include <linux/mfd/abx500.h>
22 #include <linux/mfd/abx500/ab8500.h>
23 #include <linux/mfd/abx500/ab8500-gpadc.h>
26 * GPADC register offsets
27 * Bank : 0x0A
29 #define AB8500_GPADC_CTRL1_REG 0x00
30 #define AB8500_GPADC_CTRL2_REG 0x01
31 #define AB8500_GPADC_CTRL3_REG 0x02
32 #define AB8500_GPADC_AUTO_TIMER_REG 0x03
33 #define AB8500_GPADC_STAT_REG 0x04
34 #define AB8500_GPADC_MANDATAL_REG 0x05
35 #define AB8500_GPADC_MANDATAH_REG 0x06
36 #define AB8500_GPADC_AUTODATAL_REG 0x07
37 #define AB8500_GPADC_AUTODATAH_REG 0x08
38 #define AB8500_GPADC_MUX_CTRL_REG 0x09
41 * OTP register offsets
42 * Bank : 0x15
44 #define AB8500_GPADC_CAL_1 0x0F
45 #define AB8500_GPADC_CAL_2 0x10
46 #define AB8500_GPADC_CAL_3 0x11
47 #define AB8500_GPADC_CAL_4 0x12
48 #define AB8500_GPADC_CAL_5 0x13
49 #define AB8500_GPADC_CAL_6 0x14
50 #define AB8500_GPADC_CAL_7 0x15
52 /* gpadc constants */
53 #define EN_VINTCORE12 0x04
54 #define EN_VTVOUT 0x02
55 #define EN_GPADC 0x01
56 #define DIS_GPADC 0x00
57 #define SW_AVG_16 0x60
58 #define ADC_SW_CONV 0x04
59 #define EN_ICHAR 0x80
60 #define BTEMP_PULL_UP 0x08
61 #define EN_BUF 0x40
62 #define DIS_ZERO 0x00
63 #define GPADC_BUSY 0x01
65 /* GPADC constants from AB8500 spec, UM0836 */
66 #define ADC_RESOLUTION 1024
67 #define ADC_CH_BTEMP_MIN 0
68 #define ADC_CH_BTEMP_MAX 1350
69 #define ADC_CH_DIETEMP_MIN 0
70 #define ADC_CH_DIETEMP_MAX 1350
71 #define ADC_CH_CHG_V_MIN 0
72 #define ADC_CH_CHG_V_MAX 20030
73 #define ADC_CH_ACCDET2_MIN 0
74 #define ADC_CH_ACCDET2_MAX 2500
75 #define ADC_CH_VBAT_MIN 2300
76 #define ADC_CH_VBAT_MAX 4800
77 #define ADC_CH_CHG_I_MIN 0
78 #define ADC_CH_CHG_I_MAX 1500
79 #define ADC_CH_BKBAT_MIN 0
80 #define ADC_CH_BKBAT_MAX 3200
82 /* This is used to not lose precision when dividing to get gain and offset */
83 #define CALIB_SCALE 1000
85 enum cal_channels {
86 ADC_INPUT_VMAIN = 0,
87 ADC_INPUT_BTEMP,
88 ADC_INPUT_VBAT,
89 NBR_CAL_INPUTS,
92 /**
93 * struct adc_cal_data - Table for storing gain and offset for the calibrated
94 * ADC channels
95 * @gain: Gain of the ADC channel
96 * @offset: Offset of the ADC channel
98 struct adc_cal_data {
99 u64 gain;
100 u64 offset;
104 * struct ab8500_gpadc - AB8500 GPADC device information
105 * @chip_id ABB chip id
106 * @dev: pointer to the struct device
107 * @node: a list of AB8500 GPADCs, hence prepared for
108 reentrance
109 * @ab8500_gpadc_complete: pointer to the struct completion, to indicate
110 * the completion of gpadc conversion
111 * @ab8500_gpadc_lock: structure of type mutex
112 * @regu: pointer to the struct regulator
113 * @irq: interrupt number that is used by gpadc
114 * @cal_data array of ADC calibration data structs
116 struct ab8500_gpadc {
117 u8 chip_id;
118 struct device *dev;
119 struct list_head node;
120 struct completion ab8500_gpadc_complete;
121 struct mutex ab8500_gpadc_lock;
122 struct regulator *regu;
123 int irq;
124 struct adc_cal_data cal_data[NBR_CAL_INPUTS];
127 static LIST_HEAD(ab8500_gpadc_list);
130 * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
131 * (i.e. the first GPADC in the instance list)
133 struct ab8500_gpadc *ab8500_gpadc_get(char *name)
135 struct ab8500_gpadc *gpadc;
137 list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
138 if (!strcmp(name, dev_name(gpadc->dev)))
139 return gpadc;
142 return ERR_PTR(-ENOENT);
144 EXPORT_SYMBOL(ab8500_gpadc_get);
147 * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
149 int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
150 int ad_value)
152 int res;
154 switch (channel) {
155 case MAIN_CHARGER_V:
156 /* For some reason we don't have calibrated data */
157 if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
158 res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
159 ADC_CH_CHG_V_MIN) * ad_value /
160 ADC_RESOLUTION;
161 break;
163 /* Here we can use the calibrated data */
164 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
165 gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
166 break;
168 case BAT_CTRL:
169 case BTEMP_BALL:
170 case ACC_DETECT1:
171 case ADC_AUX1:
172 case ADC_AUX2:
173 /* For some reason we don't have calibrated data */
174 if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
175 res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
176 ADC_CH_BTEMP_MIN) * ad_value /
177 ADC_RESOLUTION;
178 break;
180 /* Here we can use the calibrated data */
181 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
182 gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
183 break;
185 case MAIN_BAT_V:
186 /* For some reason we don't have calibrated data */
187 if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
188 res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
189 ADC_CH_VBAT_MIN) * ad_value /
190 ADC_RESOLUTION;
191 break;
193 /* Here we can use the calibrated data */
194 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
195 gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
196 break;
198 case DIE_TEMP:
199 res = ADC_CH_DIETEMP_MIN +
200 (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
201 ADC_RESOLUTION;
202 break;
204 case ACC_DETECT2:
205 res = ADC_CH_ACCDET2_MIN +
206 (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
207 ADC_RESOLUTION;
208 break;
210 case VBUS_V:
211 res = ADC_CH_CHG_V_MIN +
212 (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
213 ADC_RESOLUTION;
214 break;
216 case MAIN_CHARGER_C:
217 case USB_CHARGER_C:
218 res = ADC_CH_CHG_I_MIN +
219 (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
220 ADC_RESOLUTION;
221 break;
223 case BK_BAT_V:
224 res = ADC_CH_BKBAT_MIN +
225 (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
226 ADC_RESOLUTION;
227 break;
229 default:
230 dev_err(gpadc->dev,
231 "unknown channel, not possible to convert\n");
232 res = -EINVAL;
233 break;
236 return res;
238 EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage);
241 * ab8500_gpadc_convert() - gpadc conversion
242 * @channel: analog channel to be converted to digital data
244 * This function converts the selected analog i/p to digital
245 * data.
247 int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 channel)
249 int ad_value;
250 int voltage;
252 ad_value = ab8500_gpadc_read_raw(gpadc, channel);
253 if (ad_value < 0) {
254 dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", channel);
255 return ad_value;
258 voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value);
260 if (voltage < 0)
261 dev_err(gpadc->dev, "GPADC to voltage conversion failed ch:"
262 " %d AD: 0x%x\n", channel, ad_value);
264 return voltage;
266 EXPORT_SYMBOL(ab8500_gpadc_convert);
269 * ab8500_gpadc_read_raw() - gpadc read
270 * @channel: analog channel to be read
272 * This function obtains the raw ADC value, this then needs
273 * to be converted by calling ab8500_gpadc_ad_to_voltage()
275 int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel)
277 int ret;
278 int looplimit = 0;
279 u8 val, low_data, high_data;
281 if (!gpadc)
282 return -ENODEV;
284 mutex_lock(&gpadc->ab8500_gpadc_lock);
285 /* Enable VTVout LDO this is required for GPADC */
286 regulator_enable(gpadc->regu);
288 /* Check if ADC is not busy, lock and proceed */
289 do {
290 ret = abx500_get_register_interruptible(gpadc->dev,
291 AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
292 if (ret < 0)
293 goto out;
294 if (!(val & GPADC_BUSY))
295 break;
296 msleep(10);
297 } while (++looplimit < 10);
298 if (looplimit >= 10 && (val & GPADC_BUSY)) {
299 dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
300 ret = -EINVAL;
301 goto out;
304 /* Enable GPADC */
305 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
306 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_GPADC, EN_GPADC);
307 if (ret < 0) {
308 dev_err(gpadc->dev, "gpadc_conversion: enable gpadc failed\n");
309 goto out;
312 /* Select the channel source and set average samples to 16 */
313 ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
314 AB8500_GPADC_CTRL2_REG, (channel | SW_AVG_16));
315 if (ret < 0) {
316 dev_err(gpadc->dev,
317 "gpadc_conversion: set avg samples failed\n");
318 goto out;
322 * Enable ADC, buffering, select rising edge and enable ADC path
323 * charging current sense if it needed, ABB 3.0 needs some special
324 * treatment too.
326 switch (channel) {
327 case MAIN_CHARGER_C:
328 case USB_CHARGER_C:
329 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
330 AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
331 EN_BUF | EN_ICHAR,
332 EN_BUF | EN_ICHAR);
333 break;
334 case BTEMP_BALL:
335 if (gpadc->chip_id >= AB8500_CUT3P0) {
336 /* Turn on btemp pull-up on ABB 3.0 */
337 ret = abx500_mask_and_set_register_interruptible(
338 gpadc->dev,
339 AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
340 EN_BUF | BTEMP_PULL_UP,
341 EN_BUF | BTEMP_PULL_UP);
344 * Delay might be needed for ABB8500 cut 3.0, if not, remove
345 * when hardware will be availible
347 msleep(1);
348 break;
350 /* Intentional fallthrough */
351 default:
352 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
353 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_BUF, EN_BUF);
354 break;
356 if (ret < 0) {
357 dev_err(gpadc->dev,
358 "gpadc_conversion: select falling edge failed\n");
359 goto out;
362 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
363 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV);
364 if (ret < 0) {
365 dev_err(gpadc->dev,
366 "gpadc_conversion: start s/w conversion failed\n");
367 goto out;
369 /* wait for completion of conversion */
370 if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, 2*HZ)) {
371 dev_err(gpadc->dev,
372 "timeout: didn't receive GPADC conversion interrupt\n");
373 ret = -EINVAL;
374 goto out;
377 /* Read the converted RAW data */
378 ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
379 AB8500_GPADC_MANDATAL_REG, &low_data);
380 if (ret < 0) {
381 dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
382 goto out;
385 ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
386 AB8500_GPADC_MANDATAH_REG, &high_data);
387 if (ret < 0) {
388 dev_err(gpadc->dev,
389 "gpadc_conversion: read high data failed\n");
390 goto out;
393 /* Disable GPADC */
394 ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
395 AB8500_GPADC_CTRL1_REG, DIS_GPADC);
396 if (ret < 0) {
397 dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
398 goto out;
400 /* Disable VTVout LDO this is required for GPADC */
401 regulator_disable(gpadc->regu);
402 mutex_unlock(&gpadc->ab8500_gpadc_lock);
404 return (high_data << 8) | low_data;
406 out:
408 * It has shown to be needed to turn off the GPADC if an error occurs,
409 * otherwise we might have problem when waiting for the busy bit in the
410 * GPADC status register to go low. In V1.1 there wait_for_completion
411 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
413 (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
414 AB8500_GPADC_CTRL1_REG, DIS_GPADC);
415 regulator_disable(gpadc->regu);
416 mutex_unlock(&gpadc->ab8500_gpadc_lock);
417 dev_err(gpadc->dev,
418 "gpadc_conversion: Failed to AD convert channel %d\n", channel);
419 return ret;
421 EXPORT_SYMBOL(ab8500_gpadc_read_raw);
424 * ab8500_bm_gpswadcconvend_handler() - isr for s/w gpadc conversion completion
425 * @irq: irq number
426 * @data: pointer to the data passed during request irq
428 * This is a interrupt service routine for s/w gpadc conversion completion.
429 * Notifies the gpadc completion is completed and the converted raw value
430 * can be read from the registers.
431 * Returns IRQ status(IRQ_HANDLED)
433 static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
435 struct ab8500_gpadc *gpadc = _gpadc;
437 complete(&gpadc->ab8500_gpadc_complete);
439 return IRQ_HANDLED;
442 static int otp_cal_regs[] = {
443 AB8500_GPADC_CAL_1,
444 AB8500_GPADC_CAL_2,
445 AB8500_GPADC_CAL_3,
446 AB8500_GPADC_CAL_4,
447 AB8500_GPADC_CAL_5,
448 AB8500_GPADC_CAL_6,
449 AB8500_GPADC_CAL_7,
452 static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
454 int i;
455 int ret[ARRAY_SIZE(otp_cal_regs)];
456 u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
458 int vmain_high, vmain_low;
459 int btemp_high, btemp_low;
460 int vbat_high, vbat_low;
462 /* First we read all OTP registers and store the error code */
463 for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
464 ret[i] = abx500_get_register_interruptible(gpadc->dev,
465 AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
466 if (ret[i] < 0)
467 dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
468 __func__, otp_cal_regs[i]);
472 * The ADC calibration data is stored in OTP registers.
473 * The layout of the calibration data is outlined below and a more
474 * detailed description can be found in UM0836
476 * vm_h/l = vmain_high/low
477 * bt_h/l = btemp_high/low
478 * vb_h/l = vbat_high/low
480 * Data bits:
481 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
482 * |.......|.......|.......|.......|.......|.......|.......|.......
483 * | | vm_h9 | vm_h8
484 * |.......|.......|.......|.......|.......|.......|.......|.......
485 * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
486 * |.......|.......|.......|.......|.......|.......|.......|.......
487 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
488 * |.......|.......|.......|.......|.......|.......|.......|.......
489 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
490 * |.......|.......|.......|.......|.......|.......|.......|.......
491 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
492 * |.......|.......|.......|.......|.......|.......|.......|.......
493 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
494 * |.......|.......|.......|.......|.......|.......|.......|.......
495 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
496 * |.......|.......|.......|.......|.......|.......|.......|.......
499 * Ideal output ADC codes corresponding to injected input voltages
500 * during manufacturing is:
502 * vmain_high: Vin = 19500mV / ADC ideal code = 997
503 * vmain_low: Vin = 315mV / ADC ideal code = 16
504 * btemp_high: Vin = 1300mV / ADC ideal code = 985
505 * btemp_low: Vin = 21mV / ADC ideal code = 16
506 * vbat_high: Vin = 4700mV / ADC ideal code = 982
507 * vbat_low: Vin = 2380mV / ADC ideal code = 33
510 /* Calculate gain and offset for VMAIN if all reads succeeded */
511 if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
512 vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
513 ((gpadc_cal[1] & 0x3F) << 2) |
514 ((gpadc_cal[2] & 0xC0) >> 6));
516 vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
518 gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
519 (19500 - 315) / (vmain_high - vmain_low);
521 gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
522 (CALIB_SCALE * (19500 - 315) /
523 (vmain_high - vmain_low)) * vmain_high;
524 } else {
525 gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
528 /* Calculate gain and offset for BTEMP if all reads succeeded */
529 if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
530 btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
531 (gpadc_cal[3] << 1) |
532 ((gpadc_cal[4] & 0x80) >> 7));
534 btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
536 gpadc->cal_data[ADC_INPUT_BTEMP].gain =
537 CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
539 gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
540 (CALIB_SCALE * (1300 - 21) /
541 (btemp_high - btemp_low)) * btemp_high;
542 } else {
543 gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
546 /* Calculate gain and offset for VBAT if all reads succeeded */
547 if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
548 vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
549 vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
551 gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
552 (4700 - 2380) / (vbat_high - vbat_low);
554 gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
555 (CALIB_SCALE * (4700 - 2380) /
556 (vbat_high - vbat_low)) * vbat_high;
557 } else {
558 gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
561 dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
562 gpadc->cal_data[ADC_INPUT_VMAIN].gain,
563 gpadc->cal_data[ADC_INPUT_VMAIN].offset);
565 dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
566 gpadc->cal_data[ADC_INPUT_BTEMP].gain,
567 gpadc->cal_data[ADC_INPUT_BTEMP].offset);
569 dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
570 gpadc->cal_data[ADC_INPUT_VBAT].gain,
571 gpadc->cal_data[ADC_INPUT_VBAT].offset);
574 static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
576 int ret = 0;
577 struct ab8500_gpadc *gpadc;
579 gpadc = kzalloc(sizeof(struct ab8500_gpadc), GFP_KERNEL);
580 if (!gpadc) {
581 dev_err(&pdev->dev, "Error: No memory\n");
582 return -ENOMEM;
585 gpadc->irq = platform_get_irq_byname(pdev, "SW_CONV_END");
586 if (gpadc->irq < 0) {
587 dev_err(&pdev->dev, "failed to get platform irq-%d\n",
588 gpadc->irq);
589 ret = gpadc->irq;
590 goto fail;
593 gpadc->dev = &pdev->dev;
594 mutex_init(&gpadc->ab8500_gpadc_lock);
596 /* Initialize completion used to notify completion of conversion */
597 init_completion(&gpadc->ab8500_gpadc_complete);
599 /* Register interrupt - SwAdcComplete */
600 ret = request_threaded_irq(gpadc->irq, NULL,
601 ab8500_bm_gpswadcconvend_handler,
602 IRQF_ONESHOT | IRQF_NO_SUSPEND | IRQF_SHARED,
603 "ab8500-gpadc", gpadc);
604 if (ret < 0) {
605 dev_err(gpadc->dev, "Failed to register interrupt, irq: %d\n",
606 gpadc->irq);
607 goto fail;
610 /* Get Chip ID of the ABB ASIC */
611 ret = abx500_get_chip_id(gpadc->dev);
612 if (ret < 0) {
613 dev_err(gpadc->dev, "failed to get chip ID\n");
614 goto fail_irq;
616 gpadc->chip_id = (u8) ret;
618 /* VTVout LDO used to power up ab8500-GPADC */
619 gpadc->regu = regulator_get(&pdev->dev, "vddadc");
620 if (IS_ERR(gpadc->regu)) {
621 ret = PTR_ERR(gpadc->regu);
622 dev_err(gpadc->dev, "failed to get vtvout LDO\n");
623 goto fail_irq;
625 ab8500_gpadc_read_calibration_data(gpadc);
626 list_add_tail(&gpadc->node, &ab8500_gpadc_list);
627 dev_dbg(gpadc->dev, "probe success\n");
628 return 0;
629 fail_irq:
630 free_irq(gpadc->irq, gpadc);
631 fail:
632 kfree(gpadc);
633 gpadc = NULL;
634 return ret;
637 static int __devexit ab8500_gpadc_remove(struct platform_device *pdev)
639 struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
641 /* remove this gpadc entry from the list */
642 list_del(&gpadc->node);
643 /* remove interrupt - completion of Sw ADC conversion */
644 free_irq(gpadc->irq, gpadc);
645 /* disable VTVout LDO that is being used by GPADC */
646 regulator_put(gpadc->regu);
647 kfree(gpadc);
648 gpadc = NULL;
649 return 0;
652 static struct platform_driver ab8500_gpadc_driver = {
653 .probe = ab8500_gpadc_probe,
654 .remove = __devexit_p(ab8500_gpadc_remove),
655 .driver = {
656 .name = "ab8500-gpadc",
657 .owner = THIS_MODULE,
661 static int __init ab8500_gpadc_init(void)
663 return platform_driver_register(&ab8500_gpadc_driver);
666 static void __exit ab8500_gpadc_exit(void)
668 platform_driver_unregister(&ab8500_gpadc_driver);
671 subsys_initcall_sync(ab8500_gpadc_init);
672 module_exit(ab8500_gpadc_exit);
674 MODULE_LICENSE("GPL v2");
675 MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
676 MODULE_ALIAS("platform:ab8500_gpadc");
677 MODULE_DESCRIPTION("AB8500 GPADC driver");