Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / mmc / card / block.c
blob172a768036d87d700c018d36cdfdf9dc7093ae4d
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/uaccess.h>
46 #include "queue.h"
48 MODULE_ALIAS("mmc:block");
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "mmcblk."
54 #define INAND_CMD38_ARG_EXT_CSD 113
55 #define INAND_CMD38_ARG_ERASE 0x00
56 #define INAND_CMD38_ARG_TRIM 0x01
57 #define INAND_CMD38_ARG_SECERASE 0x80
58 #define INAND_CMD38_ARG_SECTRIM1 0x81
59 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 static DEFINE_MUTEX(block_mutex);
64 * The defaults come from config options but can be overriden by module
65 * or bootarg options.
67 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
70 * We've only got one major, so number of mmcblk devices is
71 * limited to 256 / number of minors per device.
73 static int max_devices;
75 /* 256 minors, so at most 256 separate devices */
76 static DECLARE_BITMAP(dev_use, 256);
77 static DECLARE_BITMAP(name_use, 256);
80 * There is one mmc_blk_data per slot.
82 struct mmc_blk_data {
83 spinlock_t lock;
84 struct gendisk *disk;
85 struct mmc_queue queue;
86 struct list_head part;
88 unsigned int flags;
89 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
90 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
92 unsigned int usage;
93 unsigned int read_only;
94 unsigned int part_type;
95 unsigned int name_idx;
96 unsigned int reset_done;
97 #define MMC_BLK_READ BIT(0)
98 #define MMC_BLK_WRITE BIT(1)
99 #define MMC_BLK_DISCARD BIT(2)
100 #define MMC_BLK_SECDISCARD BIT(3)
103 * Only set in main mmc_blk_data associated
104 * with mmc_card with mmc_set_drvdata, and keeps
105 * track of the current selected device partition.
107 unsigned int part_curr;
108 struct device_attribute force_ro;
109 struct device_attribute power_ro_lock;
110 int area_type;
113 static DEFINE_MUTEX(open_lock);
115 enum mmc_blk_status {
116 MMC_BLK_SUCCESS = 0,
117 MMC_BLK_PARTIAL,
118 MMC_BLK_CMD_ERR,
119 MMC_BLK_RETRY,
120 MMC_BLK_ABORT,
121 MMC_BLK_DATA_ERR,
122 MMC_BLK_ECC_ERR,
123 MMC_BLK_NOMEDIUM,
126 module_param(perdev_minors, int, 0444);
127 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
129 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
131 struct mmc_blk_data *md;
133 mutex_lock(&open_lock);
134 md = disk->private_data;
135 if (md && md->usage == 0)
136 md = NULL;
137 if (md)
138 md->usage++;
139 mutex_unlock(&open_lock);
141 return md;
144 static inline int mmc_get_devidx(struct gendisk *disk)
146 int devmaj = MAJOR(disk_devt(disk));
147 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
149 if (!devmaj)
150 devidx = disk->first_minor / perdev_minors;
151 return devidx;
154 static void mmc_blk_put(struct mmc_blk_data *md)
156 mutex_lock(&open_lock);
157 md->usage--;
158 if (md->usage == 0) {
159 int devidx = mmc_get_devidx(md->disk);
160 blk_cleanup_queue(md->queue.queue);
162 __clear_bit(devidx, dev_use);
164 put_disk(md->disk);
165 kfree(md);
167 mutex_unlock(&open_lock);
170 static ssize_t power_ro_lock_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
173 int ret;
174 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
175 struct mmc_card *card = md->queue.card;
176 int locked = 0;
178 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
179 locked = 2;
180 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
181 locked = 1;
183 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
185 return ret;
188 static ssize_t power_ro_lock_store(struct device *dev,
189 struct device_attribute *attr, const char *buf, size_t count)
191 int ret;
192 struct mmc_blk_data *md, *part_md;
193 struct mmc_card *card;
194 unsigned long set;
196 if (kstrtoul(buf, 0, &set))
197 return -EINVAL;
199 if (set != 1)
200 return count;
202 md = mmc_blk_get(dev_to_disk(dev));
203 card = md->queue.card;
205 mmc_claim_host(card->host);
207 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
208 card->ext_csd.boot_ro_lock |
209 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
210 card->ext_csd.part_time);
211 if (ret)
212 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
213 else
214 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
216 mmc_release_host(card->host);
218 if (!ret) {
219 pr_info("%s: Locking boot partition ro until next power on\n",
220 md->disk->disk_name);
221 set_disk_ro(md->disk, 1);
223 list_for_each_entry(part_md, &md->part, part)
224 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
225 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
226 set_disk_ro(part_md->disk, 1);
230 mmc_blk_put(md);
231 return count;
234 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
235 char *buf)
237 int ret;
238 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
240 ret = snprintf(buf, PAGE_SIZE, "%d",
241 get_disk_ro(dev_to_disk(dev)) ^
242 md->read_only);
243 mmc_blk_put(md);
244 return ret;
247 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
248 const char *buf, size_t count)
250 int ret;
251 char *end;
252 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
253 unsigned long set = simple_strtoul(buf, &end, 0);
254 if (end == buf) {
255 ret = -EINVAL;
256 goto out;
259 set_disk_ro(dev_to_disk(dev), set || md->read_only);
260 ret = count;
261 out:
262 mmc_blk_put(md);
263 return ret;
266 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
268 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
269 int ret = -ENXIO;
271 mutex_lock(&block_mutex);
272 if (md) {
273 if (md->usage == 2)
274 check_disk_change(bdev);
275 ret = 0;
277 if ((mode & FMODE_WRITE) && md->read_only) {
278 mmc_blk_put(md);
279 ret = -EROFS;
282 mutex_unlock(&block_mutex);
284 return ret;
287 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
289 struct mmc_blk_data *md = disk->private_data;
291 mutex_lock(&block_mutex);
292 mmc_blk_put(md);
293 mutex_unlock(&block_mutex);
294 return 0;
297 static int
298 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
300 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
301 geo->heads = 4;
302 geo->sectors = 16;
303 return 0;
306 struct mmc_blk_ioc_data {
307 struct mmc_ioc_cmd ic;
308 unsigned char *buf;
309 u64 buf_bytes;
312 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
313 struct mmc_ioc_cmd __user *user)
315 struct mmc_blk_ioc_data *idata;
316 int err;
318 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
319 if (!idata) {
320 err = -ENOMEM;
321 goto out;
324 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
325 err = -EFAULT;
326 goto idata_err;
329 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
330 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
331 err = -EOVERFLOW;
332 goto idata_err;
335 if (!idata->buf_bytes)
336 return idata;
338 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
339 if (!idata->buf) {
340 err = -ENOMEM;
341 goto idata_err;
344 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345 idata->ic.data_ptr, idata->buf_bytes)) {
346 err = -EFAULT;
347 goto copy_err;
350 return idata;
352 copy_err:
353 kfree(idata->buf);
354 idata_err:
355 kfree(idata);
356 out:
357 return ERR_PTR(err);
360 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
361 struct mmc_ioc_cmd __user *ic_ptr)
363 struct mmc_blk_ioc_data *idata;
364 struct mmc_blk_data *md;
365 struct mmc_card *card;
366 struct mmc_command cmd = {0};
367 struct mmc_data data = {0};
368 struct mmc_request mrq = {NULL};
369 struct scatterlist sg;
370 int err;
373 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
374 * whole block device, not on a partition. This prevents overspray
375 * between sibling partitions.
377 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
378 return -EPERM;
380 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
381 if (IS_ERR(idata))
382 return PTR_ERR(idata);
384 md = mmc_blk_get(bdev->bd_disk);
385 if (!md) {
386 err = -EINVAL;
387 goto cmd_err;
390 card = md->queue.card;
391 if (IS_ERR(card)) {
392 err = PTR_ERR(card);
393 goto cmd_done;
396 cmd.opcode = idata->ic.opcode;
397 cmd.arg = idata->ic.arg;
398 cmd.flags = idata->ic.flags;
400 if (idata->buf_bytes) {
401 data.sg = &sg;
402 data.sg_len = 1;
403 data.blksz = idata->ic.blksz;
404 data.blocks = idata->ic.blocks;
406 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
408 if (idata->ic.write_flag)
409 data.flags = MMC_DATA_WRITE;
410 else
411 data.flags = MMC_DATA_READ;
413 /* data.flags must already be set before doing this. */
414 mmc_set_data_timeout(&data, card);
416 /* Allow overriding the timeout_ns for empirical tuning. */
417 if (idata->ic.data_timeout_ns)
418 data.timeout_ns = idata->ic.data_timeout_ns;
420 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
422 * Pretend this is a data transfer and rely on the
423 * host driver to compute timeout. When all host
424 * drivers support cmd.cmd_timeout for R1B, this
425 * can be changed to:
427 * mrq.data = NULL;
428 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
430 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
433 mrq.data = &data;
436 mrq.cmd = &cmd;
438 mmc_claim_host(card->host);
440 if (idata->ic.is_acmd) {
441 err = mmc_app_cmd(card->host, card);
442 if (err)
443 goto cmd_rel_host;
446 mmc_wait_for_req(card->host, &mrq);
448 if (cmd.error) {
449 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
450 __func__, cmd.error);
451 err = cmd.error;
452 goto cmd_rel_host;
454 if (data.error) {
455 dev_err(mmc_dev(card->host), "%s: data error %d\n",
456 __func__, data.error);
457 err = data.error;
458 goto cmd_rel_host;
462 * According to the SD specs, some commands require a delay after
463 * issuing the command.
465 if (idata->ic.postsleep_min_us)
466 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
468 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
469 err = -EFAULT;
470 goto cmd_rel_host;
473 if (!idata->ic.write_flag) {
474 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
475 idata->buf, idata->buf_bytes)) {
476 err = -EFAULT;
477 goto cmd_rel_host;
481 cmd_rel_host:
482 mmc_release_host(card->host);
484 cmd_done:
485 mmc_blk_put(md);
486 cmd_err:
487 kfree(idata->buf);
488 kfree(idata);
489 return err;
492 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493 unsigned int cmd, unsigned long arg)
495 int ret = -EINVAL;
496 if (cmd == MMC_IOC_CMD)
497 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498 return ret;
501 #ifdef CONFIG_COMPAT
502 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
505 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
507 #endif
509 static const struct block_device_operations mmc_bdops = {
510 .open = mmc_blk_open,
511 .release = mmc_blk_release,
512 .getgeo = mmc_blk_getgeo,
513 .owner = THIS_MODULE,
514 .ioctl = mmc_blk_ioctl,
515 #ifdef CONFIG_COMPAT
516 .compat_ioctl = mmc_blk_compat_ioctl,
517 #endif
520 static inline int mmc_blk_part_switch(struct mmc_card *card,
521 struct mmc_blk_data *md)
523 int ret;
524 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
526 if (main_md->part_curr == md->part_type)
527 return 0;
529 if (mmc_card_mmc(card)) {
530 u8 part_config = card->ext_csd.part_config;
532 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533 part_config |= md->part_type;
535 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
536 EXT_CSD_PART_CONFIG, part_config,
537 card->ext_csd.part_time);
538 if (ret)
539 return ret;
541 card->ext_csd.part_config = part_config;
544 main_md->part_curr = md->part_type;
545 return 0;
548 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
550 int err;
551 u32 result;
552 __be32 *blocks;
554 struct mmc_request mrq = {NULL};
555 struct mmc_command cmd = {0};
556 struct mmc_data data = {0};
558 struct scatterlist sg;
560 cmd.opcode = MMC_APP_CMD;
561 cmd.arg = card->rca << 16;
562 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
564 err = mmc_wait_for_cmd(card->host, &cmd, 0);
565 if (err)
566 return (u32)-1;
567 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
568 return (u32)-1;
570 memset(&cmd, 0, sizeof(struct mmc_command));
572 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
573 cmd.arg = 0;
574 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
576 data.blksz = 4;
577 data.blocks = 1;
578 data.flags = MMC_DATA_READ;
579 data.sg = &sg;
580 data.sg_len = 1;
581 mmc_set_data_timeout(&data, card);
583 mrq.cmd = &cmd;
584 mrq.data = &data;
586 blocks = kmalloc(4, GFP_KERNEL);
587 if (!blocks)
588 return (u32)-1;
590 sg_init_one(&sg, blocks, 4);
592 mmc_wait_for_req(card->host, &mrq);
594 result = ntohl(*blocks);
595 kfree(blocks);
597 if (cmd.error || data.error)
598 result = (u32)-1;
600 return result;
603 static int send_stop(struct mmc_card *card, u32 *status)
605 struct mmc_command cmd = {0};
606 int err;
608 cmd.opcode = MMC_STOP_TRANSMISSION;
609 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
610 err = mmc_wait_for_cmd(card->host, &cmd, 5);
611 if (err == 0)
612 *status = cmd.resp[0];
613 return err;
616 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
618 struct mmc_command cmd = {0};
619 int err;
621 cmd.opcode = MMC_SEND_STATUS;
622 if (!mmc_host_is_spi(card->host))
623 cmd.arg = card->rca << 16;
624 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
625 err = mmc_wait_for_cmd(card->host, &cmd, retries);
626 if (err == 0)
627 *status = cmd.resp[0];
628 return err;
631 #define ERR_NOMEDIUM 3
632 #define ERR_RETRY 2
633 #define ERR_ABORT 1
634 #define ERR_CONTINUE 0
636 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
637 bool status_valid, u32 status)
639 switch (error) {
640 case -EILSEQ:
641 /* response crc error, retry the r/w cmd */
642 pr_err("%s: %s sending %s command, card status %#x\n",
643 req->rq_disk->disk_name, "response CRC error",
644 name, status);
645 return ERR_RETRY;
647 case -ETIMEDOUT:
648 pr_err("%s: %s sending %s command, card status %#x\n",
649 req->rq_disk->disk_name, "timed out", name, status);
651 /* If the status cmd initially failed, retry the r/w cmd */
652 if (!status_valid)
653 return ERR_RETRY;
656 * If it was a r/w cmd crc error, or illegal command
657 * (eg, issued in wrong state) then retry - we should
658 * have corrected the state problem above.
660 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
661 return ERR_RETRY;
663 /* Otherwise abort the command */
664 return ERR_ABORT;
666 default:
667 /* We don't understand the error code the driver gave us */
668 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
669 req->rq_disk->disk_name, error, status);
670 return ERR_ABORT;
675 * Initial r/w and stop cmd error recovery.
676 * We don't know whether the card received the r/w cmd or not, so try to
677 * restore things back to a sane state. Essentially, we do this as follows:
678 * - Obtain card status. If the first attempt to obtain card status fails,
679 * the status word will reflect the failed status cmd, not the failed
680 * r/w cmd. If we fail to obtain card status, it suggests we can no
681 * longer communicate with the card.
682 * - Check the card state. If the card received the cmd but there was a
683 * transient problem with the response, it might still be in a data transfer
684 * mode. Try to send it a stop command. If this fails, we can't recover.
685 * - If the r/w cmd failed due to a response CRC error, it was probably
686 * transient, so retry the cmd.
687 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
688 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
689 * illegal cmd, retry.
690 * Otherwise we don't understand what happened, so abort.
692 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
693 struct mmc_blk_request *brq, int *ecc_err)
695 bool prev_cmd_status_valid = true;
696 u32 status, stop_status = 0;
697 int err, retry;
699 if (mmc_card_removed(card))
700 return ERR_NOMEDIUM;
703 * Try to get card status which indicates both the card state
704 * and why there was no response. If the first attempt fails,
705 * we can't be sure the returned status is for the r/w command.
707 for (retry = 2; retry >= 0; retry--) {
708 err = get_card_status(card, &status, 0);
709 if (!err)
710 break;
712 prev_cmd_status_valid = false;
713 pr_err("%s: error %d sending status command, %sing\n",
714 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
717 /* We couldn't get a response from the card. Give up. */
718 if (err) {
719 /* Check if the card is removed */
720 if (mmc_detect_card_removed(card->host))
721 return ERR_NOMEDIUM;
722 return ERR_ABORT;
725 /* Flag ECC errors */
726 if ((status & R1_CARD_ECC_FAILED) ||
727 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
728 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
729 *ecc_err = 1;
732 * Check the current card state. If it is in some data transfer
733 * mode, tell it to stop (and hopefully transition back to TRAN.)
735 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
736 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
737 err = send_stop(card, &stop_status);
738 if (err)
739 pr_err("%s: error %d sending stop command\n",
740 req->rq_disk->disk_name, err);
743 * If the stop cmd also timed out, the card is probably
744 * not present, so abort. Other errors are bad news too.
746 if (err)
747 return ERR_ABORT;
748 if (stop_status & R1_CARD_ECC_FAILED)
749 *ecc_err = 1;
752 /* Check for set block count errors */
753 if (brq->sbc.error)
754 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
755 prev_cmd_status_valid, status);
757 /* Check for r/w command errors */
758 if (brq->cmd.error)
759 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
760 prev_cmd_status_valid, status);
762 /* Data errors */
763 if (!brq->stop.error)
764 return ERR_CONTINUE;
766 /* Now for stop errors. These aren't fatal to the transfer. */
767 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
768 req->rq_disk->disk_name, brq->stop.error,
769 brq->cmd.resp[0], status);
772 * Subsitute in our own stop status as this will give the error
773 * state which happened during the execution of the r/w command.
775 if (stop_status) {
776 brq->stop.resp[0] = stop_status;
777 brq->stop.error = 0;
779 return ERR_CONTINUE;
782 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
783 int type)
785 int err;
787 if (md->reset_done & type)
788 return -EEXIST;
790 md->reset_done |= type;
791 err = mmc_hw_reset(host);
792 /* Ensure we switch back to the correct partition */
793 if (err != -EOPNOTSUPP) {
794 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
795 int part_err;
797 main_md->part_curr = main_md->part_type;
798 part_err = mmc_blk_part_switch(host->card, md);
799 if (part_err) {
801 * We have failed to get back into the correct
802 * partition, so we need to abort the whole request.
804 return -ENODEV;
807 return err;
810 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
812 md->reset_done &= ~type;
815 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
817 struct mmc_blk_data *md = mq->data;
818 struct mmc_card *card = md->queue.card;
819 unsigned int from, nr, arg;
820 int err = 0, type = MMC_BLK_DISCARD;
822 if (!mmc_can_erase(card)) {
823 err = -EOPNOTSUPP;
824 goto out;
827 from = blk_rq_pos(req);
828 nr = blk_rq_sectors(req);
830 if (mmc_can_discard(card))
831 arg = MMC_DISCARD_ARG;
832 else if (mmc_can_trim(card))
833 arg = MMC_TRIM_ARG;
834 else
835 arg = MMC_ERASE_ARG;
836 retry:
837 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
838 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
839 INAND_CMD38_ARG_EXT_CSD,
840 arg == MMC_TRIM_ARG ?
841 INAND_CMD38_ARG_TRIM :
842 INAND_CMD38_ARG_ERASE,
844 if (err)
845 goto out;
847 err = mmc_erase(card, from, nr, arg);
848 out:
849 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
850 goto retry;
851 if (!err)
852 mmc_blk_reset_success(md, type);
853 blk_end_request(req, err, blk_rq_bytes(req));
855 return err ? 0 : 1;
858 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
859 struct request *req)
861 struct mmc_blk_data *md = mq->data;
862 struct mmc_card *card = md->queue.card;
863 unsigned int from, nr, arg, trim_arg, erase_arg;
864 int err = 0, type = MMC_BLK_SECDISCARD;
866 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
867 err = -EOPNOTSUPP;
868 goto out;
871 from = blk_rq_pos(req);
872 nr = blk_rq_sectors(req);
874 /* The sanitize operation is supported at v4.5 only */
875 if (mmc_can_sanitize(card)) {
876 erase_arg = MMC_ERASE_ARG;
877 trim_arg = MMC_TRIM_ARG;
878 } else {
879 erase_arg = MMC_SECURE_ERASE_ARG;
880 trim_arg = MMC_SECURE_TRIM1_ARG;
883 if (mmc_erase_group_aligned(card, from, nr))
884 arg = erase_arg;
885 else if (mmc_can_trim(card))
886 arg = trim_arg;
887 else {
888 err = -EINVAL;
889 goto out;
891 retry:
892 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
893 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
894 INAND_CMD38_ARG_EXT_CSD,
895 arg == MMC_SECURE_TRIM1_ARG ?
896 INAND_CMD38_ARG_SECTRIM1 :
897 INAND_CMD38_ARG_SECERASE,
899 if (err)
900 goto out_retry;
903 err = mmc_erase(card, from, nr, arg);
904 if (err == -EIO)
905 goto out_retry;
906 if (err)
907 goto out;
909 if (arg == MMC_SECURE_TRIM1_ARG) {
910 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
911 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
912 INAND_CMD38_ARG_EXT_CSD,
913 INAND_CMD38_ARG_SECTRIM2,
915 if (err)
916 goto out_retry;
919 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
920 if (err == -EIO)
921 goto out_retry;
922 if (err)
923 goto out;
926 if (mmc_can_sanitize(card))
927 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
928 EXT_CSD_SANITIZE_START, 1, 0);
929 out_retry:
930 if (err && !mmc_blk_reset(md, card->host, type))
931 goto retry;
932 if (!err)
933 mmc_blk_reset_success(md, type);
934 out:
935 blk_end_request(req, err, blk_rq_bytes(req));
937 return err ? 0 : 1;
940 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
942 struct mmc_blk_data *md = mq->data;
943 struct mmc_card *card = md->queue.card;
944 int ret = 0;
946 ret = mmc_flush_cache(card);
947 if (ret)
948 ret = -EIO;
950 blk_end_request_all(req, ret);
952 return ret ? 0 : 1;
956 * Reformat current write as a reliable write, supporting
957 * both legacy and the enhanced reliable write MMC cards.
958 * In each transfer we'll handle only as much as a single
959 * reliable write can handle, thus finish the request in
960 * partial completions.
962 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
963 struct mmc_card *card,
964 struct request *req)
966 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
967 /* Legacy mode imposes restrictions on transfers. */
968 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
969 brq->data.blocks = 1;
971 if (brq->data.blocks > card->ext_csd.rel_sectors)
972 brq->data.blocks = card->ext_csd.rel_sectors;
973 else if (brq->data.blocks < card->ext_csd.rel_sectors)
974 brq->data.blocks = 1;
978 #define CMD_ERRORS \
979 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
980 R1_ADDRESS_ERROR | /* Misaligned address */ \
981 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
982 R1_WP_VIOLATION | /* Tried to write to protected block */ \
983 R1_CC_ERROR | /* Card controller error */ \
984 R1_ERROR) /* General/unknown error */
986 static int mmc_blk_err_check(struct mmc_card *card,
987 struct mmc_async_req *areq)
989 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
990 mmc_active);
991 struct mmc_blk_request *brq = &mq_mrq->brq;
992 struct request *req = mq_mrq->req;
993 int ecc_err = 0;
996 * sbc.error indicates a problem with the set block count
997 * command. No data will have been transferred.
999 * cmd.error indicates a problem with the r/w command. No
1000 * data will have been transferred.
1002 * stop.error indicates a problem with the stop command. Data
1003 * may have been transferred, or may still be transferring.
1005 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1006 brq->data.error) {
1007 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1008 case ERR_RETRY:
1009 return MMC_BLK_RETRY;
1010 case ERR_ABORT:
1011 return MMC_BLK_ABORT;
1012 case ERR_NOMEDIUM:
1013 return MMC_BLK_NOMEDIUM;
1014 case ERR_CONTINUE:
1015 break;
1020 * Check for errors relating to the execution of the
1021 * initial command - such as address errors. No data
1022 * has been transferred.
1024 if (brq->cmd.resp[0] & CMD_ERRORS) {
1025 pr_err("%s: r/w command failed, status = %#x\n",
1026 req->rq_disk->disk_name, brq->cmd.resp[0]);
1027 return MMC_BLK_ABORT;
1031 * Everything else is either success, or a data error of some
1032 * kind. If it was a write, we may have transitioned to
1033 * program mode, which we have to wait for it to complete.
1035 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1036 u32 status;
1037 do {
1038 int err = get_card_status(card, &status, 5);
1039 if (err) {
1040 pr_err("%s: error %d requesting status\n",
1041 req->rq_disk->disk_name, err);
1042 return MMC_BLK_CMD_ERR;
1045 * Some cards mishandle the status bits,
1046 * so make sure to check both the busy
1047 * indication and the card state.
1049 } while (!(status & R1_READY_FOR_DATA) ||
1050 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1053 if (brq->data.error) {
1054 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1055 req->rq_disk->disk_name, brq->data.error,
1056 (unsigned)blk_rq_pos(req),
1057 (unsigned)blk_rq_sectors(req),
1058 brq->cmd.resp[0], brq->stop.resp[0]);
1060 if (rq_data_dir(req) == READ) {
1061 if (ecc_err)
1062 return MMC_BLK_ECC_ERR;
1063 return MMC_BLK_DATA_ERR;
1064 } else {
1065 return MMC_BLK_CMD_ERR;
1069 if (!brq->data.bytes_xfered)
1070 return MMC_BLK_RETRY;
1072 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1073 return MMC_BLK_PARTIAL;
1075 return MMC_BLK_SUCCESS;
1078 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1079 struct mmc_card *card,
1080 int disable_multi,
1081 struct mmc_queue *mq)
1083 u32 readcmd, writecmd;
1084 struct mmc_blk_request *brq = &mqrq->brq;
1085 struct request *req = mqrq->req;
1086 struct mmc_blk_data *md = mq->data;
1087 bool do_data_tag;
1090 * Reliable writes are used to implement Forced Unit Access and
1091 * REQ_META accesses, and are supported only on MMCs.
1093 * XXX: this really needs a good explanation of why REQ_META
1094 * is treated special.
1096 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1097 (req->cmd_flags & REQ_META)) &&
1098 (rq_data_dir(req) == WRITE) &&
1099 (md->flags & MMC_BLK_REL_WR);
1101 memset(brq, 0, sizeof(struct mmc_blk_request));
1102 brq->mrq.cmd = &brq->cmd;
1103 brq->mrq.data = &brq->data;
1105 brq->cmd.arg = blk_rq_pos(req);
1106 if (!mmc_card_blockaddr(card))
1107 brq->cmd.arg <<= 9;
1108 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1109 brq->data.blksz = 512;
1110 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1111 brq->stop.arg = 0;
1112 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1113 brq->data.blocks = blk_rq_sectors(req);
1116 * The block layer doesn't support all sector count
1117 * restrictions, so we need to be prepared for too big
1118 * requests.
1120 if (brq->data.blocks > card->host->max_blk_count)
1121 brq->data.blocks = card->host->max_blk_count;
1123 if (brq->data.blocks > 1) {
1125 * After a read error, we redo the request one sector
1126 * at a time in order to accurately determine which
1127 * sectors can be read successfully.
1129 if (disable_multi)
1130 brq->data.blocks = 1;
1132 /* Some controllers can't do multiblock reads due to hw bugs */
1133 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1134 rq_data_dir(req) == READ)
1135 brq->data.blocks = 1;
1138 if (brq->data.blocks > 1 || do_rel_wr) {
1139 /* SPI multiblock writes terminate using a special
1140 * token, not a STOP_TRANSMISSION request.
1142 if (!mmc_host_is_spi(card->host) ||
1143 rq_data_dir(req) == READ)
1144 brq->mrq.stop = &brq->stop;
1145 readcmd = MMC_READ_MULTIPLE_BLOCK;
1146 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1147 } else {
1148 brq->mrq.stop = NULL;
1149 readcmd = MMC_READ_SINGLE_BLOCK;
1150 writecmd = MMC_WRITE_BLOCK;
1152 if (rq_data_dir(req) == READ) {
1153 brq->cmd.opcode = readcmd;
1154 brq->data.flags |= MMC_DATA_READ;
1155 } else {
1156 brq->cmd.opcode = writecmd;
1157 brq->data.flags |= MMC_DATA_WRITE;
1160 if (do_rel_wr)
1161 mmc_apply_rel_rw(brq, card, req);
1164 * Data tag is used only during writing meta data to speed
1165 * up write and any subsequent read of this meta data
1167 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1168 (req->cmd_flags & REQ_META) &&
1169 (rq_data_dir(req) == WRITE) &&
1170 ((brq->data.blocks * brq->data.blksz) >=
1171 card->ext_csd.data_tag_unit_size);
1174 * Pre-defined multi-block transfers are preferable to
1175 * open ended-ones (and necessary for reliable writes).
1176 * However, it is not sufficient to just send CMD23,
1177 * and avoid the final CMD12, as on an error condition
1178 * CMD12 (stop) needs to be sent anyway. This, coupled
1179 * with Auto-CMD23 enhancements provided by some
1180 * hosts, means that the complexity of dealing
1181 * with this is best left to the host. If CMD23 is
1182 * supported by card and host, we'll fill sbc in and let
1183 * the host deal with handling it correctly. This means
1184 * that for hosts that don't expose MMC_CAP_CMD23, no
1185 * change of behavior will be observed.
1187 * N.B: Some MMC cards experience perf degradation.
1188 * We'll avoid using CMD23-bounded multiblock writes for
1189 * these, while retaining features like reliable writes.
1191 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1192 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1193 do_data_tag)) {
1194 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1195 brq->sbc.arg = brq->data.blocks |
1196 (do_rel_wr ? (1 << 31) : 0) |
1197 (do_data_tag ? (1 << 29) : 0);
1198 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1199 brq->mrq.sbc = &brq->sbc;
1202 mmc_set_data_timeout(&brq->data, card);
1204 brq->data.sg = mqrq->sg;
1205 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1208 * Adjust the sg list so it is the same size as the
1209 * request.
1211 if (brq->data.blocks != blk_rq_sectors(req)) {
1212 int i, data_size = brq->data.blocks << 9;
1213 struct scatterlist *sg;
1215 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1216 data_size -= sg->length;
1217 if (data_size <= 0) {
1218 sg->length += data_size;
1219 i++;
1220 break;
1223 brq->data.sg_len = i;
1226 mqrq->mmc_active.mrq = &brq->mrq;
1227 mqrq->mmc_active.err_check = mmc_blk_err_check;
1229 mmc_queue_bounce_pre(mqrq);
1232 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1233 struct mmc_blk_request *brq, struct request *req,
1234 int ret)
1237 * If this is an SD card and we're writing, we can first
1238 * mark the known good sectors as ok.
1240 * If the card is not SD, we can still ok written sectors
1241 * as reported by the controller (which might be less than
1242 * the real number of written sectors, but never more).
1244 if (mmc_card_sd(card)) {
1245 u32 blocks;
1247 blocks = mmc_sd_num_wr_blocks(card);
1248 if (blocks != (u32)-1) {
1249 ret = blk_end_request(req, 0, blocks << 9);
1251 } else {
1252 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1254 return ret;
1257 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1259 struct mmc_blk_data *md = mq->data;
1260 struct mmc_card *card = md->queue.card;
1261 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1262 int ret = 1, disable_multi = 0, retry = 0, type;
1263 enum mmc_blk_status status;
1264 struct mmc_queue_req *mq_rq;
1265 struct request *req = rqc;
1266 struct mmc_async_req *areq;
1268 if (!rqc && !mq->mqrq_prev->req)
1269 return 0;
1271 do {
1272 if (rqc) {
1274 * When 4KB native sector is enabled, only 8 blocks
1275 * multiple read or write is allowed
1277 if ((brq->data.blocks & 0x07) &&
1278 (card->ext_csd.data_sector_size == 4096)) {
1279 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1280 req->rq_disk->disk_name);
1281 goto cmd_abort;
1283 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1284 areq = &mq->mqrq_cur->mmc_active;
1285 } else
1286 areq = NULL;
1287 areq = mmc_start_req(card->host, areq, (int *) &status);
1288 if (!areq)
1289 return 0;
1291 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1292 brq = &mq_rq->brq;
1293 req = mq_rq->req;
1294 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1295 mmc_queue_bounce_post(mq_rq);
1297 switch (status) {
1298 case MMC_BLK_SUCCESS:
1299 case MMC_BLK_PARTIAL:
1301 * A block was successfully transferred.
1303 mmc_blk_reset_success(md, type);
1304 ret = blk_end_request(req, 0,
1305 brq->data.bytes_xfered);
1307 * If the blk_end_request function returns non-zero even
1308 * though all data has been transferred and no errors
1309 * were returned by the host controller, it's a bug.
1311 if (status == MMC_BLK_SUCCESS && ret) {
1312 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1313 __func__, blk_rq_bytes(req),
1314 brq->data.bytes_xfered);
1315 rqc = NULL;
1316 goto cmd_abort;
1318 break;
1319 case MMC_BLK_CMD_ERR:
1320 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1321 if (!mmc_blk_reset(md, card->host, type))
1322 break;
1323 goto cmd_abort;
1324 case MMC_BLK_RETRY:
1325 if (retry++ < 5)
1326 break;
1327 /* Fall through */
1328 case MMC_BLK_ABORT:
1329 if (!mmc_blk_reset(md, card->host, type))
1330 break;
1331 goto cmd_abort;
1332 case MMC_BLK_DATA_ERR: {
1333 int err;
1335 err = mmc_blk_reset(md, card->host, type);
1336 if (!err)
1337 break;
1338 if (err == -ENODEV)
1339 goto cmd_abort;
1340 /* Fall through */
1342 case MMC_BLK_ECC_ERR:
1343 if (brq->data.blocks > 1) {
1344 /* Redo read one sector at a time */
1345 pr_warning("%s: retrying using single block read\n",
1346 req->rq_disk->disk_name);
1347 disable_multi = 1;
1348 break;
1351 * After an error, we redo I/O one sector at a
1352 * time, so we only reach here after trying to
1353 * read a single sector.
1355 ret = blk_end_request(req, -EIO,
1356 brq->data.blksz);
1357 if (!ret)
1358 goto start_new_req;
1359 break;
1360 case MMC_BLK_NOMEDIUM:
1361 goto cmd_abort;
1364 if (ret) {
1366 * In case of a incomplete request
1367 * prepare it again and resend.
1369 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1370 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1372 } while (ret);
1374 return 1;
1376 cmd_abort:
1377 if (mmc_card_removed(card))
1378 req->cmd_flags |= REQ_QUIET;
1379 while (ret)
1380 ret = blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1382 start_new_req:
1383 if (rqc) {
1384 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1385 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1388 return 0;
1391 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1393 int ret;
1394 struct mmc_blk_data *md = mq->data;
1395 struct mmc_card *card = md->queue.card;
1397 if (req && !mq->mqrq_prev->req)
1398 /* claim host only for the first request */
1399 mmc_claim_host(card->host);
1401 ret = mmc_blk_part_switch(card, md);
1402 if (ret) {
1403 if (req) {
1404 blk_end_request_all(req, -EIO);
1406 ret = 0;
1407 goto out;
1410 if (req && req->cmd_flags & REQ_DISCARD) {
1411 /* complete ongoing async transfer before issuing discard */
1412 if (card->host->areq)
1413 mmc_blk_issue_rw_rq(mq, NULL);
1414 if (req->cmd_flags & REQ_SECURE &&
1415 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1416 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1417 else
1418 ret = mmc_blk_issue_discard_rq(mq, req);
1419 } else if (req && req->cmd_flags & REQ_FLUSH) {
1420 /* complete ongoing async transfer before issuing flush */
1421 if (card->host->areq)
1422 mmc_blk_issue_rw_rq(mq, NULL);
1423 ret = mmc_blk_issue_flush(mq, req);
1424 } else {
1425 ret = mmc_blk_issue_rw_rq(mq, req);
1428 out:
1429 if (!req)
1430 /* release host only when there are no more requests */
1431 mmc_release_host(card->host);
1432 return ret;
1435 static inline int mmc_blk_readonly(struct mmc_card *card)
1437 return mmc_card_readonly(card) ||
1438 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1441 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1442 struct device *parent,
1443 sector_t size,
1444 bool default_ro,
1445 const char *subname,
1446 int area_type)
1448 struct mmc_blk_data *md;
1449 int devidx, ret;
1451 devidx = find_first_zero_bit(dev_use, max_devices);
1452 if (devidx >= max_devices)
1453 return ERR_PTR(-ENOSPC);
1454 __set_bit(devidx, dev_use);
1456 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1457 if (!md) {
1458 ret = -ENOMEM;
1459 goto out;
1463 * !subname implies we are creating main mmc_blk_data that will be
1464 * associated with mmc_card with mmc_set_drvdata. Due to device
1465 * partitions, devidx will not coincide with a per-physical card
1466 * index anymore so we keep track of a name index.
1468 if (!subname) {
1469 md->name_idx = find_first_zero_bit(name_use, max_devices);
1470 __set_bit(md->name_idx, name_use);
1471 } else
1472 md->name_idx = ((struct mmc_blk_data *)
1473 dev_to_disk(parent)->private_data)->name_idx;
1475 md->area_type = area_type;
1478 * Set the read-only status based on the supported commands
1479 * and the write protect switch.
1481 md->read_only = mmc_blk_readonly(card);
1483 md->disk = alloc_disk(perdev_minors);
1484 if (md->disk == NULL) {
1485 ret = -ENOMEM;
1486 goto err_kfree;
1489 spin_lock_init(&md->lock);
1490 INIT_LIST_HEAD(&md->part);
1491 md->usage = 1;
1493 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1494 if (ret)
1495 goto err_putdisk;
1497 md->queue.issue_fn = mmc_blk_issue_rq;
1498 md->queue.data = md;
1500 md->disk->major = MMC_BLOCK_MAJOR;
1501 md->disk->first_minor = devidx * perdev_minors;
1502 md->disk->fops = &mmc_bdops;
1503 md->disk->private_data = md;
1504 md->disk->queue = md->queue.queue;
1505 md->disk->driverfs_dev = parent;
1506 set_disk_ro(md->disk, md->read_only || default_ro);
1509 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1511 * - be set for removable media with permanent block devices
1512 * - be unset for removable block devices with permanent media
1514 * Since MMC block devices clearly fall under the second
1515 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1516 * should use the block device creation/destruction hotplug
1517 * messages to tell when the card is present.
1520 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1521 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1523 if (mmc_card_mmc(card))
1524 blk_queue_logical_block_size(md->queue.queue,
1525 card->ext_csd.data_sector_size);
1526 else
1527 blk_queue_logical_block_size(md->queue.queue, 512);
1529 set_capacity(md->disk, size);
1531 if (mmc_host_cmd23(card->host)) {
1532 if (mmc_card_mmc(card) ||
1533 (mmc_card_sd(card) &&
1534 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1535 md->flags |= MMC_BLK_CMD23;
1538 if (mmc_card_mmc(card) &&
1539 md->flags & MMC_BLK_CMD23 &&
1540 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1541 card->ext_csd.rel_sectors)) {
1542 md->flags |= MMC_BLK_REL_WR;
1543 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1546 return md;
1548 err_putdisk:
1549 put_disk(md->disk);
1550 err_kfree:
1551 kfree(md);
1552 out:
1553 return ERR_PTR(ret);
1556 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1558 sector_t size;
1559 struct mmc_blk_data *md;
1561 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1563 * The EXT_CSD sector count is in number or 512 byte
1564 * sectors.
1566 size = card->ext_csd.sectors;
1567 } else {
1569 * The CSD capacity field is in units of read_blkbits.
1570 * set_capacity takes units of 512 bytes.
1572 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1575 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1576 MMC_BLK_DATA_AREA_MAIN);
1577 return md;
1580 static int mmc_blk_alloc_part(struct mmc_card *card,
1581 struct mmc_blk_data *md,
1582 unsigned int part_type,
1583 sector_t size,
1584 bool default_ro,
1585 const char *subname,
1586 int area_type)
1588 char cap_str[10];
1589 struct mmc_blk_data *part_md;
1591 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1592 subname, area_type);
1593 if (IS_ERR(part_md))
1594 return PTR_ERR(part_md);
1595 part_md->part_type = part_type;
1596 list_add(&part_md->part, &md->part);
1598 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1599 cap_str, sizeof(cap_str));
1600 pr_info("%s: %s %s partition %u %s\n",
1601 part_md->disk->disk_name, mmc_card_id(card),
1602 mmc_card_name(card), part_md->part_type, cap_str);
1603 return 0;
1606 /* MMC Physical partitions consist of two boot partitions and
1607 * up to four general purpose partitions.
1608 * For each partition enabled in EXT_CSD a block device will be allocatedi
1609 * to provide access to the partition.
1612 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1614 int idx, ret = 0;
1616 if (!mmc_card_mmc(card))
1617 return 0;
1619 for (idx = 0; idx < card->nr_parts; idx++) {
1620 if (card->part[idx].size) {
1621 ret = mmc_blk_alloc_part(card, md,
1622 card->part[idx].part_cfg,
1623 card->part[idx].size >> 9,
1624 card->part[idx].force_ro,
1625 card->part[idx].name,
1626 card->part[idx].area_type);
1627 if (ret)
1628 return ret;
1632 return ret;
1635 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1637 struct mmc_card *card;
1639 if (md) {
1640 card = md->queue.card;
1641 if (md->disk->flags & GENHD_FL_UP) {
1642 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1643 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1644 card->ext_csd.boot_ro_lockable)
1645 device_remove_file(disk_to_dev(md->disk),
1646 &md->power_ro_lock);
1648 /* Stop new requests from getting into the queue */
1649 del_gendisk(md->disk);
1652 /* Then flush out any already in there */
1653 mmc_cleanup_queue(&md->queue);
1654 mmc_blk_put(md);
1658 static void mmc_blk_remove_parts(struct mmc_card *card,
1659 struct mmc_blk_data *md)
1661 struct list_head *pos, *q;
1662 struct mmc_blk_data *part_md;
1664 __clear_bit(md->name_idx, name_use);
1665 list_for_each_safe(pos, q, &md->part) {
1666 part_md = list_entry(pos, struct mmc_blk_data, part);
1667 list_del(pos);
1668 mmc_blk_remove_req(part_md);
1672 static int mmc_add_disk(struct mmc_blk_data *md)
1674 int ret;
1675 struct mmc_card *card = md->queue.card;
1677 add_disk(md->disk);
1678 md->force_ro.show = force_ro_show;
1679 md->force_ro.store = force_ro_store;
1680 sysfs_attr_init(&md->force_ro.attr);
1681 md->force_ro.attr.name = "force_ro";
1682 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1683 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1684 if (ret)
1685 goto force_ro_fail;
1687 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1688 card->ext_csd.boot_ro_lockable) {
1689 umode_t mode;
1691 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1692 mode = S_IRUGO;
1693 else
1694 mode = S_IRUGO | S_IWUSR;
1696 md->power_ro_lock.show = power_ro_lock_show;
1697 md->power_ro_lock.store = power_ro_lock_store;
1698 sysfs_attr_init(&md->power_ro_lock.attr);
1699 md->power_ro_lock.attr.mode = mode;
1700 md->power_ro_lock.attr.name =
1701 "ro_lock_until_next_power_on";
1702 ret = device_create_file(disk_to_dev(md->disk),
1703 &md->power_ro_lock);
1704 if (ret)
1705 goto power_ro_lock_fail;
1707 return ret;
1709 power_ro_lock_fail:
1710 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1711 force_ro_fail:
1712 del_gendisk(md->disk);
1714 return ret;
1717 #define CID_MANFID_SANDISK 0x2
1718 #define CID_MANFID_TOSHIBA 0x11
1719 #define CID_MANFID_MICRON 0x13
1720 #define CID_MANFID_SAMSUNG 0x15
1722 static const struct mmc_fixup blk_fixups[] =
1724 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1725 MMC_QUIRK_INAND_CMD38),
1726 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1727 MMC_QUIRK_INAND_CMD38),
1728 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1729 MMC_QUIRK_INAND_CMD38),
1730 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1731 MMC_QUIRK_INAND_CMD38),
1732 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1733 MMC_QUIRK_INAND_CMD38),
1736 * Some MMC cards experience performance degradation with CMD23
1737 * instead of CMD12-bounded multiblock transfers. For now we'll
1738 * black list what's bad...
1739 * - Certain Toshiba cards.
1741 * N.B. This doesn't affect SD cards.
1743 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1744 MMC_QUIRK_BLK_NO_CMD23),
1745 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1746 MMC_QUIRK_BLK_NO_CMD23),
1747 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1748 MMC_QUIRK_BLK_NO_CMD23),
1751 * Some Micron MMC cards needs longer data read timeout than
1752 * indicated in CSD.
1754 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1755 MMC_QUIRK_LONG_READ_TIME),
1758 * On these Samsung MoviNAND parts, performing secure erase or
1759 * secure trim can result in unrecoverable corruption due to a
1760 * firmware bug.
1762 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1763 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1764 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1765 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1766 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1767 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1768 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1769 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1770 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1771 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1772 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1773 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1774 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1775 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1776 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1777 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1779 END_FIXUP
1782 static int mmc_blk_probe(struct mmc_card *card)
1784 struct mmc_blk_data *md, *part_md;
1785 char cap_str[10];
1788 * Check that the card supports the command class(es) we need.
1790 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1791 return -ENODEV;
1793 md = mmc_blk_alloc(card);
1794 if (IS_ERR(md))
1795 return PTR_ERR(md);
1797 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1798 cap_str, sizeof(cap_str));
1799 pr_info("%s: %s %s %s %s\n",
1800 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1801 cap_str, md->read_only ? "(ro)" : "");
1803 if (mmc_blk_alloc_parts(card, md))
1804 goto out;
1806 mmc_set_drvdata(card, md);
1807 mmc_fixup_device(card, blk_fixups);
1809 if (mmc_add_disk(md))
1810 goto out;
1812 list_for_each_entry(part_md, &md->part, part) {
1813 if (mmc_add_disk(part_md))
1814 goto out;
1816 return 0;
1818 out:
1819 mmc_blk_remove_parts(card, md);
1820 mmc_blk_remove_req(md);
1821 return 0;
1824 static void mmc_blk_remove(struct mmc_card *card)
1826 struct mmc_blk_data *md = mmc_get_drvdata(card);
1828 mmc_blk_remove_parts(card, md);
1829 mmc_claim_host(card->host);
1830 mmc_blk_part_switch(card, md);
1831 mmc_release_host(card->host);
1832 mmc_blk_remove_req(md);
1833 mmc_set_drvdata(card, NULL);
1836 #ifdef CONFIG_PM
1837 static int mmc_blk_suspend(struct mmc_card *card)
1839 struct mmc_blk_data *part_md;
1840 struct mmc_blk_data *md = mmc_get_drvdata(card);
1842 if (md) {
1843 mmc_queue_suspend(&md->queue);
1844 list_for_each_entry(part_md, &md->part, part) {
1845 mmc_queue_suspend(&part_md->queue);
1848 return 0;
1851 static int mmc_blk_resume(struct mmc_card *card)
1853 struct mmc_blk_data *part_md;
1854 struct mmc_blk_data *md = mmc_get_drvdata(card);
1856 if (md) {
1858 * Resume involves the card going into idle state,
1859 * so current partition is always the main one.
1861 md->part_curr = md->part_type;
1862 mmc_queue_resume(&md->queue);
1863 list_for_each_entry(part_md, &md->part, part) {
1864 mmc_queue_resume(&part_md->queue);
1867 return 0;
1869 #else
1870 #define mmc_blk_suspend NULL
1871 #define mmc_blk_resume NULL
1872 #endif
1874 static struct mmc_driver mmc_driver = {
1875 .drv = {
1876 .name = "mmcblk",
1878 .probe = mmc_blk_probe,
1879 .remove = mmc_blk_remove,
1880 .suspend = mmc_blk_suspend,
1881 .resume = mmc_blk_resume,
1884 static int __init mmc_blk_init(void)
1886 int res;
1888 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1889 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1891 max_devices = 256 / perdev_minors;
1893 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1894 if (res)
1895 goto out;
1897 res = mmc_register_driver(&mmc_driver);
1898 if (res)
1899 goto out2;
1901 return 0;
1902 out2:
1903 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1904 out:
1905 return res;
1908 static void __exit mmc_blk_exit(void)
1910 mmc_unregister_driver(&mmc_driver);
1911 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1914 module_init(mmc_blk_init);
1915 module_exit(mmc_blk_exit);
1917 MODULE_LICENSE("GPL");
1918 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");