1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
42 #include <asm/fsl_lbc.h>
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
52 struct nand_chip chip
;
53 struct fsl_lbc_ctrl
*ctrl
;
56 int bank
; /* Chip select bank number */
57 u8 __iomem
*vbase
; /* Chip select base virtual address */
58 int page_size
; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr
; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller information */
64 struct fsl_elbc_fcm_ctrl
{
65 struct nand_hw_control controller
;
66 struct fsl_elbc_mtd
*chips
[MAX_BANKS
];
68 u8 __iomem
*addr
; /* Address of assigned FCM buffer */
69 unsigned int page
; /* Last page written to / read from */
70 unsigned int read_bytes
; /* Number of bytes read during command */
71 unsigned int column
; /* Saved column from SEQIN */
72 unsigned int index
; /* Pointer to next byte to 'read' */
73 unsigned int status
; /* status read from LTESR after last op */
74 unsigned int mdr
; /* UPM/FCM Data Register value */
75 unsigned int use_mdr
; /* Non zero if the MDR is to be set */
76 unsigned int oob
; /* Non zero if operating on OOB data */
77 unsigned int counter
; /* counter for the initializations */
78 unsigned int max_bitflips
; /* Saved during READ0 cmd */
81 /* These map to the positions used by the FCM hardware ECC generator */
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0
= {
87 .oobfree
= { {0, 5}, {9, 7} },
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1
= {
94 .oobfree
= { {0, 5}, {6, 2}, {11, 5} },
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0
= {
100 .eccpos
= {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101 .oobfree
= { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1
= {
107 .eccpos
= {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108 .oobfree
= { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113 * 1, so we have to adjust bad block pattern. This pattern should be used for
114 * x8 chips only. So far hardware does not support x16 chips anyway.
116 static u8 scan_ff_pattern
[] = { 0xff, };
118 static struct nand_bbt_descr largepage_memorybased
= {
122 .pattern
= scan_ff_pattern
,
126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127 * interfere with ECC positions, that's why we implement our own descriptors.
128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
130 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
133 static struct nand_bbt_descr bbt_main_descr
= {
134 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
135 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
140 .pattern
= bbt_pattern
,
143 static struct nand_bbt_descr bbt_mirror_descr
= {
144 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
145 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
150 .pattern
= mirror_pattern
,
153 /*=================================*/
156 * Set up the FCM hardware block and page address fields, and the fcm
157 * structure addr field to point to the correct FCM buffer in memory
159 static void set_addr(struct mtd_info
*mtd
, int column
, int page_addr
, int oob
)
161 struct nand_chip
*chip
= mtd
->priv
;
162 struct fsl_elbc_mtd
*priv
= chip
->priv
;
163 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
164 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
165 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
168 elbc_fcm_ctrl
->page
= page_addr
;
170 if (priv
->page_size
) {
172 * large page size chip : FPAR[PI] save the lowest 6 bits,
173 * FBAR[BLK] save the other bits.
175 out_be32(&lbc
->fbar
, page_addr
>> 6);
177 ((page_addr
<< FPAR_LP_PI_SHIFT
) & FPAR_LP_PI
) |
178 (oob
? FPAR_LP_MS
: 0) | column
);
179 buf_num
= (page_addr
& 1) << 2;
182 * small page size chip : FPAR[PI] save the lowest 5 bits,
183 * FBAR[BLK] save the other bits.
185 out_be32(&lbc
->fbar
, page_addr
>> 5);
187 ((page_addr
<< FPAR_SP_PI_SHIFT
) & FPAR_SP_PI
) |
188 (oob
? FPAR_SP_MS
: 0) | column
);
189 buf_num
= page_addr
& 7;
192 elbc_fcm_ctrl
->addr
= priv
->vbase
+ buf_num
* 1024;
193 elbc_fcm_ctrl
->index
= column
;
195 /* for OOB data point to the second half of the buffer */
197 elbc_fcm_ctrl
->index
+= priv
->page_size
? 2048 : 512;
199 dev_vdbg(priv
->dev
, "set_addr: bank=%d, "
200 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
201 "index %x, pes %d ps %d\n",
202 buf_num
, elbc_fcm_ctrl
->addr
, priv
->vbase
,
203 elbc_fcm_ctrl
->index
,
204 chip
->phys_erase_shift
, chip
->page_shift
);
208 * execute FCM command and wait for it to complete
210 static int fsl_elbc_run_command(struct mtd_info
*mtd
)
212 struct nand_chip
*chip
= mtd
->priv
;
213 struct fsl_elbc_mtd
*priv
= chip
->priv
;
214 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
215 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
216 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
218 /* Setup the FMR[OP] to execute without write protection */
219 out_be32(&lbc
->fmr
, priv
->fmr
| 3);
220 if (elbc_fcm_ctrl
->use_mdr
)
221 out_be32(&lbc
->mdr
, elbc_fcm_ctrl
->mdr
);
224 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
225 in_be32(&lbc
->fmr
), in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
));
227 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
228 "fbcr=%08x bank=%d\n",
229 in_be32(&lbc
->fbar
), in_be32(&lbc
->fpar
),
230 in_be32(&lbc
->fbcr
), priv
->bank
);
232 ctrl
->irq_status
= 0;
233 /* execute special operation */
234 out_be32(&lbc
->lsor
, priv
->bank
);
236 /* wait for FCM complete flag or timeout */
237 wait_event_timeout(ctrl
->irq_wait
, ctrl
->irq_status
,
238 FCM_TIMEOUT_MSECS
* HZ
/1000);
239 elbc_fcm_ctrl
->status
= ctrl
->irq_status
;
240 /* store mdr value in case it was needed */
241 if (elbc_fcm_ctrl
->use_mdr
)
242 elbc_fcm_ctrl
->mdr
= in_be32(&lbc
->mdr
);
244 elbc_fcm_ctrl
->use_mdr
= 0;
246 if (elbc_fcm_ctrl
->status
!= LTESR_CC
) {
248 "command failed: fir %x fcr %x status %x mdr %x\n",
249 in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
),
250 elbc_fcm_ctrl
->status
, elbc_fcm_ctrl
->mdr
);
254 if (chip
->ecc
.mode
!= NAND_ECC_HW
)
257 elbc_fcm_ctrl
->max_bitflips
= 0;
259 if (elbc_fcm_ctrl
->read_bytes
== mtd
->writesize
+ mtd
->oobsize
) {
260 uint32_t lteccr
= in_be32(&lbc
->lteccr
);
262 * if command was a full page read and the ELBC
263 * has the LTECCR register, then bits 12-15 (ppc order) of
264 * LTECCR indicates which 512 byte sub-pages had fixed errors.
265 * bits 28-31 are uncorrectable errors, marked elsewhere.
266 * for small page nand only 1 bit is used.
267 * if the ELBC doesn't have the lteccr register it reads 0
268 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
269 * count the number of sub-pages with bitflips and update
270 * ecc_stats.corrected accordingly.
272 if (lteccr
& 0x000F000F)
273 out_be32(&lbc
->lteccr
, 0x000F000F); /* clear lteccr */
274 if (lteccr
& 0x000F0000) {
275 mtd
->ecc_stats
.corrected
++;
276 elbc_fcm_ctrl
->max_bitflips
= 1;
283 static void fsl_elbc_do_read(struct nand_chip
*chip
, int oob
)
285 struct fsl_elbc_mtd
*priv
= chip
->priv
;
286 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
287 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
289 if (priv
->page_size
) {
291 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
292 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
293 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
294 (FIR_OP_CM1
<< FIR_OP3_SHIFT
) |
295 (FIR_OP_RBW
<< FIR_OP4_SHIFT
));
297 out_be32(&lbc
->fcr
, (NAND_CMD_READ0
<< FCR_CMD0_SHIFT
) |
298 (NAND_CMD_READSTART
<< FCR_CMD1_SHIFT
));
301 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
302 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
303 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
304 (FIR_OP_RBW
<< FIR_OP3_SHIFT
));
307 out_be32(&lbc
->fcr
, NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
);
309 out_be32(&lbc
->fcr
, NAND_CMD_READ0
<< FCR_CMD0_SHIFT
);
313 /* cmdfunc send commands to the FCM */
314 static void fsl_elbc_cmdfunc(struct mtd_info
*mtd
, unsigned int command
,
315 int column
, int page_addr
)
317 struct nand_chip
*chip
= mtd
->priv
;
318 struct fsl_elbc_mtd
*priv
= chip
->priv
;
319 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
320 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
321 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
323 elbc_fcm_ctrl
->use_mdr
= 0;
325 /* clear the read buffer */
326 elbc_fcm_ctrl
->read_bytes
= 0;
327 if (command
!= NAND_CMD_PAGEPROG
)
328 elbc_fcm_ctrl
->index
= 0;
331 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
338 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
339 " 0x%x, column: 0x%x.\n", page_addr
, column
);
342 out_be32(&lbc
->fbcr
, 0); /* read entire page to enable ECC */
343 set_addr(mtd
, 0, page_addr
, 0);
345 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
346 elbc_fcm_ctrl
->index
+= column
;
348 fsl_elbc_do_read(chip
, 0);
349 fsl_elbc_run_command(mtd
);
352 /* READOOB reads only the OOB because no ECC is performed. */
353 case NAND_CMD_READOOB
:
355 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
356 " 0x%x, column: 0x%x.\n", page_addr
, column
);
358 out_be32(&lbc
->fbcr
, mtd
->oobsize
- column
);
359 set_addr(mtd
, column
, page_addr
, 1);
361 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
363 fsl_elbc_do_read(chip
, 1);
364 fsl_elbc_run_command(mtd
);
367 case NAND_CMD_READID
:
369 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command
);
371 out_be32(&lbc
->fir
, (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
372 (FIR_OP_UA
<< FIR_OP1_SHIFT
) |
373 (FIR_OP_RBW
<< FIR_OP2_SHIFT
));
374 out_be32(&lbc
->fcr
, command
<< FCR_CMD0_SHIFT
);
376 * although currently it's 8 bytes for READID, we always read
377 * the maximum 256 bytes(for PARAM)
379 out_be32(&lbc
->fbcr
, 256);
380 elbc_fcm_ctrl
->read_bytes
= 256;
381 elbc_fcm_ctrl
->use_mdr
= 1;
382 elbc_fcm_ctrl
->mdr
= column
;
383 set_addr(mtd
, 0, 0, 0);
384 fsl_elbc_run_command(mtd
);
387 /* ERASE1 stores the block and page address */
388 case NAND_CMD_ERASE1
:
390 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
391 "page_addr: 0x%x.\n", page_addr
);
392 set_addr(mtd
, 0, page_addr
, 0);
395 /* ERASE2 uses the block and page address from ERASE1 */
396 case NAND_CMD_ERASE2
:
397 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
400 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
401 (FIR_OP_PA
<< FIR_OP1_SHIFT
) |
402 (FIR_OP_CM2
<< FIR_OP2_SHIFT
) |
403 (FIR_OP_CW1
<< FIR_OP3_SHIFT
) |
404 (FIR_OP_RS
<< FIR_OP4_SHIFT
));
407 (NAND_CMD_ERASE1
<< FCR_CMD0_SHIFT
) |
408 (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
409 (NAND_CMD_ERASE2
<< FCR_CMD2_SHIFT
));
411 out_be32(&lbc
->fbcr
, 0);
412 elbc_fcm_ctrl
->read_bytes
= 0;
413 elbc_fcm_ctrl
->use_mdr
= 1;
415 fsl_elbc_run_command(mtd
);
418 /* SEQIN sets up the addr buffer and all registers except the length */
419 case NAND_CMD_SEQIN
: {
422 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
423 "page_addr: 0x%x, column: 0x%x.\n",
426 elbc_fcm_ctrl
->column
= column
;
427 elbc_fcm_ctrl
->use_mdr
= 1;
429 if (column
>= mtd
->writesize
) {
431 column
-= mtd
->writesize
;
432 elbc_fcm_ctrl
->oob
= 1;
434 WARN_ON(column
!= 0);
435 elbc_fcm_ctrl
->oob
= 0;
438 fcr
= (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
439 (NAND_CMD_SEQIN
<< FCR_CMD2_SHIFT
) |
440 (NAND_CMD_PAGEPROG
<< FCR_CMD3_SHIFT
);
442 if (priv
->page_size
) {
444 (FIR_OP_CM2
<< FIR_OP0_SHIFT
) |
445 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
446 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
447 (FIR_OP_WB
<< FIR_OP3_SHIFT
) |
448 (FIR_OP_CM3
<< FIR_OP4_SHIFT
) |
449 (FIR_OP_CW1
<< FIR_OP5_SHIFT
) |
450 (FIR_OP_RS
<< FIR_OP6_SHIFT
));
453 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
454 (FIR_OP_CM2
<< FIR_OP1_SHIFT
) |
455 (FIR_OP_CA
<< FIR_OP2_SHIFT
) |
456 (FIR_OP_PA
<< FIR_OP3_SHIFT
) |
457 (FIR_OP_WB
<< FIR_OP4_SHIFT
) |
458 (FIR_OP_CM3
<< FIR_OP5_SHIFT
) |
459 (FIR_OP_CW1
<< FIR_OP6_SHIFT
) |
460 (FIR_OP_RS
<< FIR_OP7_SHIFT
));
462 if (elbc_fcm_ctrl
->oob
)
463 /* OOB area --> READOOB */
464 fcr
|= NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
;
466 /* First 256 bytes --> READ0 */
467 fcr
|= NAND_CMD_READ0
<< FCR_CMD0_SHIFT
;
470 out_be32(&lbc
->fcr
, fcr
);
471 set_addr(mtd
, column
, page_addr
, elbc_fcm_ctrl
->oob
);
475 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
476 case NAND_CMD_PAGEPROG
: {
478 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
479 "writing %d bytes.\n", elbc_fcm_ctrl
->index
);
481 /* if the write did not start at 0 or is not a full page
482 * then set the exact length, otherwise use a full page
483 * write so the HW generates the ECC.
485 if (elbc_fcm_ctrl
->oob
|| elbc_fcm_ctrl
->column
!= 0 ||
486 elbc_fcm_ctrl
->index
!= mtd
->writesize
+ mtd
->oobsize
)
488 elbc_fcm_ctrl
->index
- elbc_fcm_ctrl
->column
);
490 out_be32(&lbc
->fbcr
, 0);
492 fsl_elbc_run_command(mtd
);
496 /* CMD_STATUS must read the status byte while CEB is active */
497 /* Note - it does not wait for the ready line */
498 case NAND_CMD_STATUS
:
500 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
501 (FIR_OP_RBW
<< FIR_OP1_SHIFT
));
502 out_be32(&lbc
->fcr
, NAND_CMD_STATUS
<< FCR_CMD0_SHIFT
);
503 out_be32(&lbc
->fbcr
, 1);
504 set_addr(mtd
, 0, 0, 0);
505 elbc_fcm_ctrl
->read_bytes
= 1;
507 fsl_elbc_run_command(mtd
);
509 /* The chip always seems to report that it is
510 * write-protected, even when it is not.
512 setbits8(elbc_fcm_ctrl
->addr
, NAND_STATUS_WP
);
515 /* RESET without waiting for the ready line */
517 dev_dbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
518 out_be32(&lbc
->fir
, FIR_OP_CM0
<< FIR_OP0_SHIFT
);
519 out_be32(&lbc
->fcr
, NAND_CMD_RESET
<< FCR_CMD0_SHIFT
);
520 fsl_elbc_run_command(mtd
);
525 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
530 static void fsl_elbc_select_chip(struct mtd_info
*mtd
, int chip
)
532 /* The hardware does not seem to support multiple
538 * Write buf to the FCM Controller Data Buffer
540 static void fsl_elbc_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
542 struct nand_chip
*chip
= mtd
->priv
;
543 struct fsl_elbc_mtd
*priv
= chip
->priv
;
544 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
545 unsigned int bufsize
= mtd
->writesize
+ mtd
->oobsize
;
548 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
549 elbc_fcm_ctrl
->status
= 0;
553 if ((unsigned int)len
> bufsize
- elbc_fcm_ctrl
->index
) {
555 "write_buf beyond end of buffer "
556 "(%d requested, %u available)\n",
557 len
, bufsize
- elbc_fcm_ctrl
->index
);
558 len
= bufsize
- elbc_fcm_ctrl
->index
;
561 memcpy_toio(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], buf
, len
);
563 * This is workaround for the weird elbc hangs during nand write,
564 * Scott Wood says: "...perhaps difference in how long it takes a
565 * write to make it through the localbus compared to a write to IMMR
566 * is causing problems, and sync isn't helping for some reason."
567 * Reading back the last byte helps though.
569 in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
] + len
- 1);
571 elbc_fcm_ctrl
->index
+= len
;
575 * read a byte from either the FCM hardware buffer if it has any data left
576 * otherwise issue a command to read a single byte.
578 static u8
fsl_elbc_read_byte(struct mtd_info
*mtd
)
580 struct nand_chip
*chip
= mtd
->priv
;
581 struct fsl_elbc_mtd
*priv
= chip
->priv
;
582 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
584 /* If there are still bytes in the FCM, then use the next byte. */
585 if (elbc_fcm_ctrl
->index
< elbc_fcm_ctrl
->read_bytes
)
586 return in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
++]);
588 dev_err(priv
->dev
, "read_byte beyond end of buffer\n");
593 * Read from the FCM Controller Data Buffer
595 static void fsl_elbc_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
597 struct nand_chip
*chip
= mtd
->priv
;
598 struct fsl_elbc_mtd
*priv
= chip
->priv
;
599 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
605 avail
= min((unsigned int)len
,
606 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
607 memcpy_fromio(buf
, &elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], avail
);
608 elbc_fcm_ctrl
->index
+= avail
;
612 "read_buf beyond end of buffer "
613 "(%d requested, %d available)\n",
618 * Verify buffer against the FCM Controller Data Buffer
620 static int fsl_elbc_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
622 struct nand_chip
*chip
= mtd
->priv
;
623 struct fsl_elbc_mtd
*priv
= chip
->priv
;
624 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
628 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
632 if ((unsigned int)len
>
633 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
) {
635 "verify_buf beyond end of buffer "
636 "(%d requested, %u available)\n",
637 len
, elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
639 elbc_fcm_ctrl
->index
= elbc_fcm_ctrl
->read_bytes
;
643 for (i
= 0; i
< len
; i
++)
644 if (in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
+ i
])
648 elbc_fcm_ctrl
->index
+= len
;
649 return i
== len
&& elbc_fcm_ctrl
->status
== LTESR_CC
? 0 : -EIO
;
652 /* This function is called after Program and Erase Operations to
653 * check for success or failure.
655 static int fsl_elbc_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
657 struct fsl_elbc_mtd
*priv
= chip
->priv
;
658 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
660 if (elbc_fcm_ctrl
->status
!= LTESR_CC
)
661 return NAND_STATUS_FAIL
;
663 /* The chip always seems to report that it is
664 * write-protected, even when it is not.
666 return (elbc_fcm_ctrl
->mdr
& 0xff) | NAND_STATUS_WP
;
669 static int fsl_elbc_chip_init_tail(struct mtd_info
*mtd
)
671 struct nand_chip
*chip
= mtd
->priv
;
672 struct fsl_elbc_mtd
*priv
= chip
->priv
;
673 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
674 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
677 /* calculate FMR Address Length field */
679 if (chip
->pagemask
& 0xffff0000)
681 if (chip
->pagemask
& 0xff000000)
684 priv
->fmr
|= al
<< FMR_AL_SHIFT
;
686 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->numchips = %d\n",
688 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chipsize = %lld\n",
690 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->pagemask = %8x\n",
692 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_delay = %d\n",
694 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->badblockpos = %d\n",
696 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_shift = %d\n",
698 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->page_shift = %d\n",
700 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
701 chip
->phys_erase_shift
);
702 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecclayout = %p\n",
704 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.mode = %d\n",
706 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.steps = %d\n",
708 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.bytes = %d\n",
710 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.total = %d\n",
712 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.layout = %p\n",
714 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->flags = %08x\n", mtd
->flags
);
715 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->size = %lld\n", mtd
->size
);
716 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->erasesize = %d\n",
718 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->writesize = %d\n",
720 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->oobsize = %d\n",
723 /* adjust Option Register and ECC to match Flash page size */
724 if (mtd
->writesize
== 512) {
726 clrbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
727 } else if (mtd
->writesize
== 2048) {
729 setbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
730 /* adjust ecc setup if needed */
731 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
733 chip
->ecc
.size
= 512;
734 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
735 &fsl_elbc_oob_lp_eccm1
:
736 &fsl_elbc_oob_lp_eccm0
;
737 chip
->badblock_pattern
= &largepage_memorybased
;
741 "fsl_elbc_init: page size %d is not supported\n",
749 static int fsl_elbc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
750 uint8_t *buf
, int oob_required
, int page
)
752 struct fsl_elbc_mtd
*priv
= chip
->priv
;
753 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
754 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
756 fsl_elbc_read_buf(mtd
, buf
, mtd
->writesize
);
758 fsl_elbc_read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
760 if (fsl_elbc_wait(mtd
, chip
) & NAND_STATUS_FAIL
)
761 mtd
->ecc_stats
.failed
++;
763 return elbc_fcm_ctrl
->max_bitflips
;
766 /* ECC will be calculated automatically, and errors will be detected in
769 static void fsl_elbc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
770 const uint8_t *buf
, int oob_required
)
772 fsl_elbc_write_buf(mtd
, buf
, mtd
->writesize
);
773 fsl_elbc_write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
776 static int fsl_elbc_chip_init(struct fsl_elbc_mtd
*priv
)
778 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
779 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
780 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
781 struct nand_chip
*chip
= &priv
->chip
;
783 dev_dbg(priv
->dev
, "eLBC Set Information for bank %d\n", priv
->bank
);
785 /* Fill in fsl_elbc_mtd structure */
786 priv
->mtd
.priv
= chip
;
787 priv
->mtd
.owner
= THIS_MODULE
;
789 /* set timeout to maximum */
790 priv
->fmr
= 15 << FMR_CWTO_SHIFT
;
791 if (in_be32(&lbc
->bank
[priv
->bank
].or) & OR_FCM_PGS
)
792 priv
->fmr
|= FMR_ECCM
;
794 /* fill in nand_chip structure */
795 /* set up function call table */
796 chip
->read_byte
= fsl_elbc_read_byte
;
797 chip
->write_buf
= fsl_elbc_write_buf
;
798 chip
->read_buf
= fsl_elbc_read_buf
;
799 chip
->verify_buf
= fsl_elbc_verify_buf
;
800 chip
->select_chip
= fsl_elbc_select_chip
;
801 chip
->cmdfunc
= fsl_elbc_cmdfunc
;
802 chip
->waitfunc
= fsl_elbc_wait
;
804 chip
->bbt_td
= &bbt_main_descr
;
805 chip
->bbt_md
= &bbt_mirror_descr
;
807 /* set up nand options */
808 chip
->options
= NAND_NO_READRDY
;
809 chip
->bbt_options
= NAND_BBT_USE_FLASH
;
811 chip
->controller
= &elbc_fcm_ctrl
->controller
;
814 chip
->ecc
.read_page
= fsl_elbc_read_page
;
815 chip
->ecc
.write_page
= fsl_elbc_write_page
;
817 /* If CS Base Register selects full hardware ECC then use it */
818 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
820 chip
->ecc
.mode
= NAND_ECC_HW
;
821 /* put in small page settings and adjust later if needed */
822 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
823 &fsl_elbc_oob_sp_eccm1
: &fsl_elbc_oob_sp_eccm0
;
824 chip
->ecc
.size
= 512;
826 chip
->ecc
.strength
= 1;
828 /* otherwise fall back to default software ECC */
829 chip
->ecc
.mode
= NAND_ECC_SOFT
;
835 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd
*priv
)
837 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
838 nand_release(&priv
->mtd
);
840 kfree(priv
->mtd
.name
);
843 iounmap(priv
->vbase
);
845 elbc_fcm_ctrl
->chips
[priv
->bank
] = NULL
;
850 static DEFINE_MUTEX(fsl_elbc_nand_mutex
);
852 static int __devinit
fsl_elbc_nand_probe(struct platform_device
*pdev
)
854 struct fsl_lbc_regs __iomem
*lbc
;
855 struct fsl_elbc_mtd
*priv
;
857 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
;
858 static const char *part_probe_types
[]
859 = { "cmdlinepart", "RedBoot", "ofpart", NULL
};
863 struct device_node
*node
= pdev
->dev
.of_node
;
864 struct mtd_part_parser_data ppdata
;
866 ppdata
.of_node
= pdev
->dev
.of_node
;
867 if (!fsl_lbc_ctrl_dev
|| !fsl_lbc_ctrl_dev
->regs
)
869 lbc
= fsl_lbc_ctrl_dev
->regs
;
870 dev
= fsl_lbc_ctrl_dev
->dev
;
872 /* get, allocate and map the memory resource */
873 ret
= of_address_to_resource(node
, 0, &res
);
875 dev_err(dev
, "failed to get resource\n");
879 /* find which chip select it is connected to */
880 for (bank
= 0; bank
< MAX_BANKS
; bank
++)
881 if ((in_be32(&lbc
->bank
[bank
].br
) & BR_V
) &&
882 (in_be32(&lbc
->bank
[bank
].br
) & BR_MSEL
) == BR_MS_FCM
&&
883 (in_be32(&lbc
->bank
[bank
].br
) &
884 in_be32(&lbc
->bank
[bank
].or) & BR_BA
)
885 == fsl_lbc_addr(res
.start
))
888 if (bank
>= MAX_BANKS
) {
889 dev_err(dev
, "address did not match any chip selects\n");
893 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
897 mutex_lock(&fsl_elbc_nand_mutex
);
898 if (!fsl_lbc_ctrl_dev
->nand
) {
899 elbc_fcm_ctrl
= kzalloc(sizeof(*elbc_fcm_ctrl
), GFP_KERNEL
);
900 if (!elbc_fcm_ctrl
) {
901 dev_err(dev
, "failed to allocate memory\n");
902 mutex_unlock(&fsl_elbc_nand_mutex
);
906 elbc_fcm_ctrl
->counter
++;
908 spin_lock_init(&elbc_fcm_ctrl
->controller
.lock
);
909 init_waitqueue_head(&elbc_fcm_ctrl
->controller
.wq
);
910 fsl_lbc_ctrl_dev
->nand
= elbc_fcm_ctrl
;
912 elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
914 mutex_unlock(&fsl_elbc_nand_mutex
);
916 elbc_fcm_ctrl
->chips
[bank
] = priv
;
918 priv
->ctrl
= fsl_lbc_ctrl_dev
;
921 priv
->vbase
= ioremap(res
.start
, resource_size(&res
));
923 dev_err(dev
, "failed to map chip region\n");
928 priv
->mtd
.name
= kasprintf(GFP_KERNEL
, "%x.flash", (unsigned)res
.start
);
929 if (!priv
->mtd
.name
) {
934 ret
= fsl_elbc_chip_init(priv
);
938 ret
= nand_scan_ident(&priv
->mtd
, 1, NULL
);
942 ret
= fsl_elbc_chip_init_tail(&priv
->mtd
);
946 ret
= nand_scan_tail(&priv
->mtd
);
950 /* First look for RedBoot table or partitions on the command
951 * line, these take precedence over device tree information */
952 mtd_device_parse_register(&priv
->mtd
, part_probe_types
, &ppdata
,
955 printk(KERN_INFO
"eLBC NAND device at 0x%llx, bank %d\n",
956 (unsigned long long)res
.start
, priv
->bank
);
960 fsl_elbc_chip_remove(priv
);
964 static int fsl_elbc_nand_remove(struct platform_device
*pdev
)
967 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
968 for (i
= 0; i
< MAX_BANKS
; i
++)
969 if (elbc_fcm_ctrl
->chips
[i
])
970 fsl_elbc_chip_remove(elbc_fcm_ctrl
->chips
[i
]);
972 mutex_lock(&fsl_elbc_nand_mutex
);
973 elbc_fcm_ctrl
->counter
--;
974 if (!elbc_fcm_ctrl
->counter
) {
975 fsl_lbc_ctrl_dev
->nand
= NULL
;
976 kfree(elbc_fcm_ctrl
);
978 mutex_unlock(&fsl_elbc_nand_mutex
);
984 static const struct of_device_id fsl_elbc_nand_match
[] = {
985 { .compatible
= "fsl,elbc-fcm-nand", },
989 static struct platform_driver fsl_elbc_nand_driver
= {
991 .name
= "fsl,elbc-fcm-nand",
992 .owner
= THIS_MODULE
,
993 .of_match_table
= fsl_elbc_nand_match
,
995 .probe
= fsl_elbc_nand_probe
,
996 .remove
= fsl_elbc_nand_remove
,
999 module_platform_driver(fsl_elbc_nand_driver
);
1001 MODULE_LICENSE("GPL");
1002 MODULE_AUTHOR("Freescale");
1003 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");