2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mtd/gpmi-nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/pinctrl/consumer.h>
29 #include <linux/of_device.h>
30 #include "gpmi-nand.h"
32 /* add our owner bbt descriptor */
33 static uint8_t scan_ff_pattern
[] = { 0xff };
34 static struct nand_bbt_descr gpmi_bbt_descr
= {
38 .pattern
= scan_ff_pattern
41 /* We will use all the (page + OOB). */
42 static struct nand_ecclayout gpmi_hw_ecclayout
= {
45 .oobfree
= { {.offset
= 0, .length
= 0} }
48 static irqreturn_t
bch_irq(int irq
, void *cookie
)
50 struct gpmi_nand_data
*this = cookie
;
53 complete(&this->bch_done
);
58 * Calculate the ECC strength by hand:
59 * E : The ECC strength.
60 * G : the length of Galois Field.
61 * N : The chunk count of per page.
62 * O : the oobsize of the NAND chip.
63 * M : the metasize of per page.
67 * ------------ <= (O - M)
75 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
77 struct bch_geometry
*geo
= &this->bch_geometry
;
78 struct mtd_info
*mtd
= &this->mtd
;
81 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
82 / (geo
->gf_len
* geo
->ecc_chunk_count
);
84 /* We need the minor even number. */
85 return round_down(ecc_strength
, 2);
88 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
90 struct bch_geometry
*geo
= &this->bch_geometry
;
91 struct mtd_info
*mtd
= &this->mtd
;
92 unsigned int metadata_size
;
93 unsigned int status_size
;
94 unsigned int block_mark_bit_offset
;
97 * The size of the metadata can be changed, though we set it to 10
98 * bytes now. But it can't be too large, because we have to save
99 * enough space for BCH.
101 geo
->metadata_size
= 10;
103 /* The default for the length of Galois Field. */
106 /* The default for chunk size. There is no oobsize greater then 512. */
107 geo
->ecc_chunk_size
= 512;
108 while (geo
->ecc_chunk_size
< mtd
->oobsize
)
109 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
111 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
113 /* We use the same ECC strength for all chunks. */
114 geo
->ecc_strength
= get_ecc_strength(this);
115 if (!geo
->ecc_strength
) {
116 pr_err("We get a wrong ECC strength.\n");
120 geo
->page_size
= mtd
->writesize
+ mtd
->oobsize
;
121 geo
->payload_size
= mtd
->writesize
;
124 * The auxiliary buffer contains the metadata and the ECC status. The
125 * metadata is padded to the nearest 32-bit boundary. The ECC status
126 * contains one byte for every ECC chunk, and is also padded to the
127 * nearest 32-bit boundary.
129 metadata_size
= ALIGN(geo
->metadata_size
, 4);
130 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
132 geo
->auxiliary_size
= metadata_size
+ status_size
;
133 geo
->auxiliary_status_offset
= metadata_size
;
135 if (!this->swap_block_mark
)
139 * We need to compute the byte and bit offsets of
140 * the physical block mark within the ECC-based view of the page.
142 * NAND chip with 2K page shows below:
148 * +---+----------+-+----------+-+----------+-+----------+-+
149 * | M | data |E| data |E| data |E| data |E|
150 * +---+----------+-+----------+-+----------+-+----------+-+
152 * The position of block mark moves forward in the ECC-based view
153 * of page, and the delta is:
156 * D = (---------------- + M)
159 * With the formula to compute the ECC strength, and the condition
160 * : C >= O (C is the ecc chunk size)
162 * It's easy to deduce to the following result:
164 * E * G (O - M) C - M C - M
165 * ----------- <= ------- <= -------- < ---------
171 * D = (---------------- + M) < C
174 * The above inequality means the position of block mark
175 * within the ECC-based view of the page is still in the data chunk,
176 * and it's NOT in the ECC bits of the chunk.
178 * Use the following to compute the bit position of the
179 * physical block mark within the ECC-based view of the page:
180 * (page_size - D) * 8
184 block_mark_bit_offset
= mtd
->writesize
* 8 -
185 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
186 + geo
->metadata_size
* 8);
188 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
189 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
193 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
195 int chipnr
= this->current_chip
;
197 return this->dma_chans
[chipnr
];
200 /* Can we use the upper's buffer directly for DMA? */
201 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
203 struct scatterlist
*sgl
= &this->data_sgl
;
206 this->direct_dma_map_ok
= true;
208 /* first try to map the upper buffer directly */
209 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
210 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
212 /* We have to use our own DMA buffer. */
213 sg_init_one(sgl
, this->data_buffer_dma
, PAGE_SIZE
);
215 if (dr
== DMA_TO_DEVICE
)
216 memcpy(this->data_buffer_dma
, this->upper_buf
,
219 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
221 pr_err("map failed.\n");
223 this->direct_dma_map_ok
= false;
227 /* This will be called after the DMA operation is finished. */
228 static void dma_irq_callback(void *param
)
230 struct gpmi_nand_data
*this = param
;
231 struct completion
*dma_c
= &this->dma_done
;
235 switch (this->dma_type
) {
236 case DMA_FOR_COMMAND
:
237 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
240 case DMA_FOR_READ_DATA
:
241 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
242 if (this->direct_dma_map_ok
== false)
243 memcpy(this->upper_buf
, this->data_buffer_dma
,
247 case DMA_FOR_WRITE_DATA
:
248 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
251 case DMA_FOR_READ_ECC_PAGE
:
252 case DMA_FOR_WRITE_ECC_PAGE
:
253 /* We have to wait the BCH interrupt to finish. */
257 pr_err("in wrong DMA operation.\n");
261 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
262 struct dma_async_tx_descriptor
*desc
)
264 struct completion
*dma_c
= &this->dma_done
;
267 init_completion(dma_c
);
269 desc
->callback
= dma_irq_callback
;
270 desc
->callback_param
= this;
271 dmaengine_submit(desc
);
272 dma_async_issue_pending(get_dma_chan(this));
274 /* Wait for the interrupt from the DMA block. */
275 err
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
277 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type
);
278 gpmi_dump_info(this);
285 * This function is used in BCH reading or BCH writing pages.
286 * It will wait for the BCH interrupt as long as ONE second.
287 * Actually, we must wait for two interrupts :
288 * [1] firstly the DMA interrupt and
289 * [2] secondly the BCH interrupt.
291 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
292 struct dma_async_tx_descriptor
*desc
)
294 struct completion
*bch_c
= &this->bch_done
;
297 /* Prepare to receive an interrupt from the BCH block. */
298 init_completion(bch_c
);
301 start_dma_without_bch_irq(this, desc
);
303 /* Wait for the interrupt from the BCH block. */
304 err
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
306 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type
);
307 gpmi_dump_info(this);
314 acquire_register_block(struct gpmi_nand_data
*this, const char *res_name
)
316 struct platform_device
*pdev
= this->pdev
;
317 struct resources
*res
= &this->resources
;
321 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
323 pr_err("Can't get resource for %s\n", res_name
);
327 p
= ioremap(r
->start
, resource_size(r
));
329 pr_err("Can't remap %s\n", res_name
);
333 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
335 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
338 pr_err("unknown resource name : %s\n", res_name
);
343 static void release_register_block(struct gpmi_nand_data
*this)
345 struct resources
*res
= &this->resources
;
347 iounmap(res
->gpmi_regs
);
349 iounmap(res
->bch_regs
);
350 res
->gpmi_regs
= NULL
;
351 res
->bch_regs
= NULL
;
355 acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
357 struct platform_device
*pdev
= this->pdev
;
358 struct resources
*res
= &this->resources
;
359 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
363 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
365 pr_err("Can't get resource for %s\n", res_name
);
369 err
= request_irq(r
->start
, irq_h
, 0, res_name
, this);
371 pr_err("Can't own %s\n", res_name
);
375 res
->bch_low_interrupt
= r
->start
;
376 res
->bch_high_interrupt
= r
->end
;
380 static void release_bch_irq(struct gpmi_nand_data
*this)
382 struct resources
*res
= &this->resources
;
383 int i
= res
->bch_low_interrupt
;
385 for (; i
<= res
->bch_high_interrupt
; i
++)
389 static bool gpmi_dma_filter(struct dma_chan
*chan
, void *param
)
391 struct gpmi_nand_data
*this = param
;
392 int dma_channel
= (int)this->private;
394 if (!mxs_dma_is_apbh(chan
))
397 * only catch the GPMI dma channels :
398 * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
399 * (These four channels share the same IRQ!)
401 * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
402 * (These eight channels share the same IRQ!)
404 if (dma_channel
== chan
->chan_id
) {
405 chan
->private = &this->dma_data
;
411 static void release_dma_channels(struct gpmi_nand_data
*this)
414 for (i
= 0; i
< DMA_CHANS
; i
++)
415 if (this->dma_chans
[i
]) {
416 dma_release_channel(this->dma_chans
[i
]);
417 this->dma_chans
[i
] = NULL
;
421 static int __devinit
acquire_dma_channels(struct gpmi_nand_data
*this)
423 struct platform_device
*pdev
= this->pdev
;
424 struct resource
*r_dma
;
425 struct device_node
*dn
;
428 struct dma_chan
*dma_chan
;
431 /* dma channel, we only use the first one. */
432 dn
= pdev
->dev
.of_node
;
433 ret
= of_property_read_u32(dn
, "fsl,gpmi-dma-channel", &dma_channel
);
435 pr_err("unable to get DMA channel from dt.\n");
438 this->private = (void *)dma_channel
;
440 /* gpmi dma interrupt */
441 r_dma
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
,
442 GPMI_NAND_DMA_INTERRUPT_RES_NAME
);
444 pr_err("Can't get resource for DMA\n");
447 this->dma_data
.chan_irq
= r_dma
->start
;
449 /* request dma channel */
451 dma_cap_set(DMA_SLAVE
, mask
);
453 dma_chan
= dma_request_channel(mask
, gpmi_dma_filter
, this);
455 pr_err("dma_request_channel failed.\n");
459 this->dma_chans
[0] = dma_chan
;
463 release_dma_channels(this);
467 static int __devinit
acquire_resources(struct gpmi_nand_data
*this)
469 struct resources
*res
= &this->resources
;
470 struct pinctrl
*pinctrl
;
473 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
477 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
481 ret
= acquire_bch_irq(this, bch_irq
);
485 ret
= acquire_dma_channels(this);
487 goto exit_dma_channels
;
489 pinctrl
= devm_pinctrl_get_select_default(&this->pdev
->dev
);
490 if (IS_ERR(pinctrl
)) {
491 ret
= PTR_ERR(pinctrl
);
495 res
->clock
= clk_get(&this->pdev
->dev
, NULL
);
496 if (IS_ERR(res
->clock
)) {
497 pr_err("can not get the clock\n");
505 release_dma_channels(this);
507 release_bch_irq(this);
509 release_register_block(this);
513 static void release_resources(struct gpmi_nand_data
*this)
515 struct resources
*r
= &this->resources
;
518 release_register_block(this);
519 release_bch_irq(this);
520 release_dma_channels(this);
523 static int __devinit
init_hardware(struct gpmi_nand_data
*this)
528 * This structure contains the "safe" GPMI timing that should succeed
529 * with any NAND Flash device
530 * (although, with less-than-optimal performance).
532 struct nand_timing safe_timing
= {
533 .data_setup_in_ns
= 80,
534 .data_hold_in_ns
= 60,
535 .address_setup_in_ns
= 25,
536 .gpmi_sample_delay_in_ns
= 6,
542 /* Initialize the hardwares. */
543 ret
= gpmi_init(this);
547 this->timing
= safe_timing
;
551 static int read_page_prepare(struct gpmi_nand_data
*this,
552 void *destination
, unsigned length
,
553 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
554 void **use_virt
, dma_addr_t
*use_phys
)
556 struct device
*dev
= this->dev
;
558 if (virt_addr_valid(destination
)) {
559 dma_addr_t dest_phys
;
561 dest_phys
= dma_map_single(dev
, destination
,
562 length
, DMA_FROM_DEVICE
);
563 if (dma_mapping_error(dev
, dest_phys
)) {
564 if (alt_size
< length
) {
565 pr_err("Alternate buffer is too small\n");
570 *use_virt
= destination
;
571 *use_phys
= dest_phys
;
572 this->direct_dma_map_ok
= true;
577 *use_virt
= alt_virt
;
578 *use_phys
= alt_phys
;
579 this->direct_dma_map_ok
= false;
583 static inline void read_page_end(struct gpmi_nand_data
*this,
584 void *destination
, unsigned length
,
585 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
586 void *used_virt
, dma_addr_t used_phys
)
588 if (this->direct_dma_map_ok
)
589 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
592 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
593 void *destination
, unsigned length
,
594 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
595 void *used_virt
, dma_addr_t used_phys
)
597 if (!this->direct_dma_map_ok
)
598 memcpy(destination
, alt_virt
, length
);
601 static int send_page_prepare(struct gpmi_nand_data
*this,
602 const void *source
, unsigned length
,
603 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
604 const void **use_virt
, dma_addr_t
*use_phys
)
606 struct device
*dev
= this->dev
;
608 if (virt_addr_valid(source
)) {
609 dma_addr_t source_phys
;
611 source_phys
= dma_map_single(dev
, (void *)source
, length
,
613 if (dma_mapping_error(dev
, source_phys
)) {
614 if (alt_size
< length
) {
615 pr_err("Alternate buffer is too small\n");
621 *use_phys
= source_phys
;
626 * Copy the content of the source buffer into the alternate
627 * buffer and set up the return values accordingly.
629 memcpy(alt_virt
, source
, length
);
631 *use_virt
= alt_virt
;
632 *use_phys
= alt_phys
;
636 static void send_page_end(struct gpmi_nand_data
*this,
637 const void *source
, unsigned length
,
638 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
639 const void *used_virt
, dma_addr_t used_phys
)
641 struct device
*dev
= this->dev
;
642 if (used_virt
== source
)
643 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
646 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
648 struct device
*dev
= this->dev
;
650 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
651 dma_free_coherent(dev
, this->page_buffer_size
,
652 this->page_buffer_virt
,
653 this->page_buffer_phys
);
654 kfree(this->cmd_buffer
);
655 kfree(this->data_buffer_dma
);
657 this->cmd_buffer
= NULL
;
658 this->data_buffer_dma
= NULL
;
659 this->page_buffer_virt
= NULL
;
660 this->page_buffer_size
= 0;
663 /* Allocate the DMA buffers */
664 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
666 struct bch_geometry
*geo
= &this->bch_geometry
;
667 struct device
*dev
= this->dev
;
669 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
670 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
);
671 if (this->cmd_buffer
== NULL
)
674 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
675 this->data_buffer_dma
= kzalloc(PAGE_SIZE
, GFP_DMA
);
676 if (this->data_buffer_dma
== NULL
)
680 * [3] Allocate the page buffer.
682 * Both the payload buffer and the auxiliary buffer must appear on
683 * 32-bit boundaries. We presume the size of the payload buffer is a
684 * power of two and is much larger than four, which guarantees the
685 * auxiliary buffer will appear on a 32-bit boundary.
687 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
688 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
689 &this->page_buffer_phys
, GFP_DMA
);
690 if (!this->page_buffer_virt
)
694 /* Slice up the page buffer. */
695 this->payload_virt
= this->page_buffer_virt
;
696 this->payload_phys
= this->page_buffer_phys
;
697 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
698 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
702 gpmi_free_dma_buffer(this);
703 pr_err("allocate DMA buffer ret!!\n");
707 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
709 struct nand_chip
*chip
= mtd
->priv
;
710 struct gpmi_nand_data
*this = chip
->priv
;
714 * Every operation begins with a command byte and a series of zero or
715 * more address bytes. These are distinguished by either the Address
716 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
717 * asserted. When MTD is ready to execute the command, it will deassert
718 * both latch enables.
720 * Rather than run a separate DMA operation for every single byte, we
721 * queue them up and run a single DMA operation for the entire series
722 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
724 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
725 if (data
!= NAND_CMD_NONE
)
726 this->cmd_buffer
[this->command_length
++] = data
;
730 if (!this->command_length
)
733 ret
= gpmi_send_command(this);
735 pr_err("Chip: %u, Error %d\n", this->current_chip
, ret
);
737 this->command_length
= 0;
740 static int gpmi_dev_ready(struct mtd_info
*mtd
)
742 struct nand_chip
*chip
= mtd
->priv
;
743 struct gpmi_nand_data
*this = chip
->priv
;
745 return gpmi_is_ready(this, this->current_chip
);
748 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
750 struct nand_chip
*chip
= mtd
->priv
;
751 struct gpmi_nand_data
*this = chip
->priv
;
753 if ((this->current_chip
< 0) && (chipnr
>= 0))
755 else if ((this->current_chip
>= 0) && (chipnr
< 0))
758 this->current_chip
= chipnr
;
761 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
763 struct nand_chip
*chip
= mtd
->priv
;
764 struct gpmi_nand_data
*this = chip
->priv
;
766 pr_debug("len is %d\n", len
);
767 this->upper_buf
= buf
;
768 this->upper_len
= len
;
770 gpmi_read_data(this);
773 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
775 struct nand_chip
*chip
= mtd
->priv
;
776 struct gpmi_nand_data
*this = chip
->priv
;
778 pr_debug("len is %d\n", len
);
779 this->upper_buf
= (uint8_t *)buf
;
780 this->upper_len
= len
;
782 gpmi_send_data(this);
785 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
787 struct nand_chip
*chip
= mtd
->priv
;
788 struct gpmi_nand_data
*this = chip
->priv
;
789 uint8_t *buf
= this->data_buffer_dma
;
791 gpmi_read_buf(mtd
, buf
, 1);
796 * Handles block mark swapping.
797 * It can be called in swapping the block mark, or swapping it back,
798 * because the the operations are the same.
800 static void block_mark_swapping(struct gpmi_nand_data
*this,
801 void *payload
, void *auxiliary
)
803 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
808 unsigned char from_data
;
809 unsigned char from_oob
;
811 if (!this->swap_block_mark
)
815 * If control arrives here, we're swapping. Make some convenience
818 bit
= nfc_geo
->block_mark_bit_offset
;
819 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
823 * Get the byte from the data area that overlays the block mark. Since
824 * the ECC engine applies its own view to the bits in the page, the
825 * physical block mark won't (in general) appear on a byte boundary in
828 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
830 /* Get the byte from the OOB. */
836 mask
= (0x1 << bit
) - 1;
837 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
840 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
843 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
844 uint8_t *buf
, int oob_required
, int page
)
846 struct gpmi_nand_data
*this = chip
->priv
;
847 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
849 dma_addr_t payload_phys
;
850 void *auxiliary_virt
;
851 dma_addr_t auxiliary_phys
;
853 unsigned char *status
;
855 unsigned int corrected
;
858 pr_debug("page number is : %d\n", page
);
859 ret
= read_page_prepare(this, buf
, mtd
->writesize
,
860 this->payload_virt
, this->payload_phys
,
861 nfc_geo
->payload_size
,
862 &payload_virt
, &payload_phys
);
864 pr_err("Inadequate DMA buffer\n");
868 auxiliary_virt
= this->auxiliary_virt
;
869 auxiliary_phys
= this->auxiliary_phys
;
872 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
873 read_page_end(this, buf
, mtd
->writesize
,
874 this->payload_virt
, this->payload_phys
,
875 nfc_geo
->payload_size
,
876 payload_virt
, payload_phys
);
878 pr_err("Error in ECC-based read: %d\n", ret
);
882 /* handle the block mark swapping */
883 block_mark_swapping(this, payload_virt
, auxiliary_virt
);
885 /* Loop over status bytes, accumulating ECC status. */
888 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
890 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
891 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
894 if (*status
== STATUS_UNCORRECTABLE
) {
898 corrected
+= *status
;
902 * Propagate ECC status to the owning MTD only when failed or
903 * corrected times nearly reaches our ECC correction threshold.
905 if (failed
|| corrected
>= (nfc_geo
->ecc_strength
- 1)) {
906 mtd
->ecc_stats
.failed
+= failed
;
907 mtd
->ecc_stats
.corrected
+= corrected
;
912 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
913 * for details about our policy for delivering the OOB.
915 * We fill the caller's buffer with set bits, and then copy the
916 * block mark to th caller's buffer. Note that, if block mark
917 * swapping was necessary, it has already been done, so we can
918 * rely on the first byte of the auxiliary buffer to contain
921 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
922 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
925 read_page_swap_end(this, buf
, mtd
->writesize
,
926 this->payload_virt
, this->payload_phys
,
927 nfc_geo
->payload_size
,
928 payload_virt
, payload_phys
);
933 static void gpmi_ecc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
934 const uint8_t *buf
, int oob_required
)
936 struct gpmi_nand_data
*this = chip
->priv
;
937 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
938 const void *payload_virt
;
939 dma_addr_t payload_phys
;
940 const void *auxiliary_virt
;
941 dma_addr_t auxiliary_phys
;
944 pr_debug("ecc write page.\n");
945 if (this->swap_block_mark
) {
947 * If control arrives here, we're doing block mark swapping.
948 * Since we can't modify the caller's buffers, we must copy them
951 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
952 payload_virt
= this->payload_virt
;
953 payload_phys
= this->payload_phys
;
955 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
956 nfc_geo
->auxiliary_size
);
957 auxiliary_virt
= this->auxiliary_virt
;
958 auxiliary_phys
= this->auxiliary_phys
;
960 /* Handle block mark swapping. */
961 block_mark_swapping(this,
962 (void *) payload_virt
, (void *) auxiliary_virt
);
965 * If control arrives here, we're not doing block mark swapping,
966 * so we can to try and use the caller's buffers.
968 ret
= send_page_prepare(this,
970 this->payload_virt
, this->payload_phys
,
971 nfc_geo
->payload_size
,
972 &payload_virt
, &payload_phys
);
974 pr_err("Inadequate payload DMA buffer\n");
978 ret
= send_page_prepare(this,
979 chip
->oob_poi
, mtd
->oobsize
,
980 this->auxiliary_virt
, this->auxiliary_phys
,
981 nfc_geo
->auxiliary_size
,
982 &auxiliary_virt
, &auxiliary_phys
);
984 pr_err("Inadequate auxiliary DMA buffer\n");
990 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
992 pr_err("Error in ECC-based write: %d\n", ret
);
994 if (!this->swap_block_mark
) {
995 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
996 this->auxiliary_virt
, this->auxiliary_phys
,
997 nfc_geo
->auxiliary_size
,
998 auxiliary_virt
, auxiliary_phys
);
1000 send_page_end(this, buf
, mtd
->writesize
,
1001 this->payload_virt
, this->payload_phys
,
1002 nfc_geo
->payload_size
,
1003 payload_virt
, payload_phys
);
1008 * There are several places in this driver where we have to handle the OOB and
1009 * block marks. This is the function where things are the most complicated, so
1010 * this is where we try to explain it all. All the other places refer back to
1013 * These are the rules, in order of decreasing importance:
1015 * 1) Nothing the caller does can be allowed to imperil the block mark.
1017 * 2) In read operations, the first byte of the OOB we return must reflect the
1018 * true state of the block mark, no matter where that block mark appears in
1019 * the physical page.
1021 * 3) ECC-based read operations return an OOB full of set bits (since we never
1022 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1025 * 4) "Raw" read operations return a direct view of the physical bytes in the
1026 * page, using the conventional definition of which bytes are data and which
1027 * are OOB. This gives the caller a way to see the actual, physical bytes
1028 * in the page, without the distortions applied by our ECC engine.
1031 * What we do for this specific read operation depends on two questions:
1033 * 1) Are we doing a "raw" read, or an ECC-based read?
1035 * 2) Are we using block mark swapping or transcription?
1037 * There are four cases, illustrated by the following Karnaugh map:
1039 * | Raw | ECC-based |
1040 * -------------+-------------------------+-------------------------+
1041 * | Read the conventional | |
1042 * | OOB at the end of the | |
1043 * Swapping | page and return it. It | |
1044 * | contains exactly what | |
1045 * | we want. | Read the block mark and |
1046 * -------------+-------------------------+ return it in a buffer |
1047 * | Read the conventional | full of set bits. |
1048 * | OOB at the end of the | |
1049 * | page and also the block | |
1050 * Transcribing | mark in the metadata. | |
1051 * | Copy the block mark | |
1052 * | into the first byte of | |
1054 * -------------+-------------------------+-------------------------+
1056 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1057 * giving an accurate view of the actual, physical bytes in the page (we're
1058 * overwriting the block mark). That's OK because it's more important to follow
1061 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1062 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1063 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1064 * ECC-based or raw view of the page is implicit in which function it calls
1065 * (there is a similar pair of ECC-based/raw functions for writing).
1067 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1068 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1069 * caller wants an ECC-based or raw view of the page is not propagated down to
1072 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1075 struct gpmi_nand_data
*this = chip
->priv
;
1077 pr_debug("page number is %d\n", page
);
1078 /* clear the OOB buffer */
1079 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1081 /* Read out the conventional OOB. */
1082 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1083 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1086 * Now, we want to make sure the block mark is correct. In the
1087 * Swapping/Raw case, we already have it. Otherwise, we need to
1088 * explicitly read it.
1090 if (!this->swap_block_mark
) {
1091 /* Read the block mark into the first byte of the OOB buffer. */
1092 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1093 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1100 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1103 * The BCH will use all the (page + oob).
1104 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1105 * But it can not stop some ioctls such MEMWRITEOOB which uses
1106 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1112 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1114 struct nand_chip
*chip
= mtd
->priv
;
1115 struct gpmi_nand_data
*this = chip
->priv
;
1117 uint8_t *block_mark
;
1118 int column
, page
, status
, chipnr
;
1120 /* Get block number */
1121 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
1123 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
1125 /* Do we have a flash based bad block table ? */
1126 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
1127 ret
= nand_update_bbt(mtd
, ofs
);
1129 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1130 chip
->select_chip(mtd
, chipnr
);
1132 column
= this->swap_block_mark
? mtd
->writesize
: 0;
1134 /* Write the block mark. */
1135 block_mark
= this->data_buffer_dma
;
1136 block_mark
[0] = 0; /* bad block marker */
1138 /* Shift to get page */
1139 page
= (int)(ofs
>> chip
->page_shift
);
1141 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, column
, page
);
1142 chip
->write_buf(mtd
, block_mark
, 1);
1143 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1145 status
= chip
->waitfunc(mtd
, chip
);
1146 if (status
& NAND_STATUS_FAIL
)
1149 chip
->select_chip(mtd
, -1);
1152 mtd
->ecc_stats
.badblocks
++;
1157 static int nand_boot_set_geometry(struct gpmi_nand_data
*this)
1159 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1162 * Set the boot block stride size.
1164 * In principle, we should be reading this from the OTP bits, since
1165 * that's where the ROM is going to get it. In fact, we don't have any
1166 * way to read the OTP bits, so we go with the default and hope for the
1169 geometry
->stride_size_in_pages
= 64;
1172 * Set the search area stride exponent.
1174 * In principle, we should be reading this from the OTP bits, since
1175 * that's where the ROM is going to get it. In fact, we don't have any
1176 * way to read the OTP bits, so we go with the default and hope for the
1179 geometry
->search_area_stride_exponent
= 2;
1183 static const char *fingerprint
= "STMP";
1184 static int mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1186 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1187 struct device
*dev
= this->dev
;
1188 struct mtd_info
*mtd
= &this->mtd
;
1189 struct nand_chip
*chip
= &this->nand
;
1190 unsigned int search_area_size_in_strides
;
1191 unsigned int stride
;
1194 uint8_t *buffer
= chip
->buffers
->databuf
;
1195 int saved_chip_number
;
1196 int found_an_ncb_fingerprint
= false;
1198 /* Compute the number of strides in a search area. */
1199 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1201 saved_chip_number
= this->current_chip
;
1202 chip
->select_chip(mtd
, 0);
1205 * Loop through the first search area, looking for the NCB fingerprint.
1207 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1209 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1210 /* Compute the page and byte addresses. */
1211 page
= stride
* rom_geo
->stride_size_in_pages
;
1212 byte
= page
* mtd
->writesize
;
1214 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1217 * Read the NCB fingerprint. The fingerprint is four bytes long
1218 * and starts in the 12th byte of the page.
1220 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 12, page
);
1221 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1223 /* Look for the fingerprint. */
1224 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1225 found_an_ncb_fingerprint
= true;
1231 chip
->select_chip(mtd
, saved_chip_number
);
1233 if (found_an_ncb_fingerprint
)
1234 dev_dbg(dev
, "\tFound a fingerprint\n");
1236 dev_dbg(dev
, "\tNo fingerprint found\n");
1237 return found_an_ncb_fingerprint
;
1240 /* Writes a transcription stamp. */
1241 static int mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1243 struct device
*dev
= this->dev
;
1244 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1245 struct mtd_info
*mtd
= &this->mtd
;
1246 struct nand_chip
*chip
= &this->nand
;
1247 unsigned int block_size_in_pages
;
1248 unsigned int search_area_size_in_strides
;
1249 unsigned int search_area_size_in_pages
;
1250 unsigned int search_area_size_in_blocks
;
1252 unsigned int stride
;
1255 uint8_t *buffer
= chip
->buffers
->databuf
;
1256 int saved_chip_number
;
1259 /* Compute the search area geometry. */
1260 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1261 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1262 search_area_size_in_pages
= search_area_size_in_strides
*
1263 rom_geo
->stride_size_in_pages
;
1264 search_area_size_in_blocks
=
1265 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1266 block_size_in_pages
;
1268 dev_dbg(dev
, "Search Area Geometry :\n");
1269 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1270 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1271 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1273 /* Select chip 0. */
1274 saved_chip_number
= this->current_chip
;
1275 chip
->select_chip(mtd
, 0);
1277 /* Loop over blocks in the first search area, erasing them. */
1278 dev_dbg(dev
, "Erasing the search area...\n");
1280 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1281 /* Compute the page address. */
1282 page
= block
* block_size_in_pages
;
1284 /* Erase this block. */
1285 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1286 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1287 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1289 /* Wait for the erase to finish. */
1290 status
= chip
->waitfunc(mtd
, chip
);
1291 if (status
& NAND_STATUS_FAIL
)
1292 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1295 /* Write the NCB fingerprint into the page buffer. */
1296 memset(buffer
, ~0, mtd
->writesize
);
1297 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1298 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1300 /* Loop through the first search area, writing NCB fingerprints. */
1301 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1302 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1303 /* Compute the page and byte addresses. */
1304 page
= stride
* rom_geo
->stride_size_in_pages
;
1305 byte
= page
* mtd
->writesize
;
1307 /* Write the first page of the current stride. */
1308 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1309 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1310 chip
->ecc
.write_page_raw(mtd
, chip
, buffer
, 0);
1311 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1313 /* Wait for the write to finish. */
1314 status
= chip
->waitfunc(mtd
, chip
);
1315 if (status
& NAND_STATUS_FAIL
)
1316 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1319 /* Deselect chip 0. */
1320 chip
->select_chip(mtd
, saved_chip_number
);
1324 static int mx23_boot_init(struct gpmi_nand_data
*this)
1326 struct device
*dev
= this->dev
;
1327 struct nand_chip
*chip
= &this->nand
;
1328 struct mtd_info
*mtd
= &this->mtd
;
1329 unsigned int block_count
;
1338 * If control arrives here, we can't use block mark swapping, which
1339 * means we're forced to use transcription. First, scan for the
1340 * transcription stamp. If we find it, then we don't have to do
1341 * anything -- the block marks are already transcribed.
1343 if (mx23_check_transcription_stamp(this))
1347 * If control arrives here, we couldn't find a transcription stamp, so
1348 * so we presume the block marks are in the conventional location.
1350 dev_dbg(dev
, "Transcribing bad block marks...\n");
1352 /* Compute the number of blocks in the entire medium. */
1353 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1356 * Loop over all the blocks in the medium, transcribing block marks as
1359 for (block
= 0; block
< block_count
; block
++) {
1361 * Compute the chip, page and byte addresses for this block's
1362 * conventional mark.
1364 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1365 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1366 byte
= block
<< chip
->phys_erase_shift
;
1368 /* Send the command to read the conventional block mark. */
1369 chip
->select_chip(mtd
, chipnr
);
1370 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1371 block_mark
= chip
->read_byte(mtd
);
1372 chip
->select_chip(mtd
, -1);
1375 * Check if the block is marked bad. If so, we need to mark it
1376 * again, but this time the result will be a mark in the
1377 * location where we transcribe block marks.
1379 if (block_mark
!= 0xff) {
1380 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1381 ret
= chip
->block_markbad(mtd
, byte
);
1383 dev_err(dev
, "Failed to mark block bad with "
1388 /* Write the stamp that indicates we've transcribed the block marks. */
1389 mx23_write_transcription_stamp(this);
1393 static int nand_boot_init(struct gpmi_nand_data
*this)
1395 nand_boot_set_geometry(this);
1397 /* This is ROM arch-specific initilization before the BBT scanning. */
1398 if (GPMI_IS_MX23(this))
1399 return mx23_boot_init(this);
1403 static int gpmi_set_geometry(struct gpmi_nand_data
*this)
1407 /* Free the temporary DMA memory for reading ID. */
1408 gpmi_free_dma_buffer(this);
1410 /* Set up the NFC geometry which is used by BCH. */
1411 ret
= bch_set_geometry(this);
1413 pr_err("set geometry ret : %d\n", ret
);
1417 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1418 return gpmi_alloc_dma_buffer(this);
1421 static int gpmi_pre_bbt_scan(struct gpmi_nand_data
*this)
1425 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1426 if (GPMI_IS_MX23(this))
1427 this->swap_block_mark
= false;
1429 this->swap_block_mark
= true;
1431 /* Set up the medium geometry */
1432 ret
= gpmi_set_geometry(this);
1436 /* Adjust the ECC strength according to the chip. */
1437 this->nand
.ecc
.strength
= this->bch_geometry
.ecc_strength
;
1438 this->mtd
.ecc_strength
= this->bch_geometry
.ecc_strength
;
1440 /* NAND boot init, depends on the gpmi_set_geometry(). */
1441 return nand_boot_init(this);
1444 static int gpmi_scan_bbt(struct mtd_info
*mtd
)
1446 struct nand_chip
*chip
= mtd
->priv
;
1447 struct gpmi_nand_data
*this = chip
->priv
;
1450 /* Prepare for the BBT scan. */
1451 ret
= gpmi_pre_bbt_scan(this);
1455 /* use the default BBT implementation */
1456 return nand_default_bbt(mtd
);
1459 void gpmi_nfc_exit(struct gpmi_nand_data
*this)
1461 nand_release(&this->mtd
);
1462 gpmi_free_dma_buffer(this);
1465 static int __devinit
gpmi_nfc_init(struct gpmi_nand_data
*this)
1467 struct mtd_info
*mtd
= &this->mtd
;
1468 struct nand_chip
*chip
= &this->nand
;
1469 struct mtd_part_parser_data ppdata
= {};
1472 /* init current chip */
1473 this->current_chip
= -1;
1475 /* init the MTD data structures */
1477 mtd
->name
= "gpmi-nand";
1478 mtd
->owner
= THIS_MODULE
;
1480 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1482 chip
->select_chip
= gpmi_select_chip
;
1483 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1484 chip
->dev_ready
= gpmi_dev_ready
;
1485 chip
->read_byte
= gpmi_read_byte
;
1486 chip
->read_buf
= gpmi_read_buf
;
1487 chip
->write_buf
= gpmi_write_buf
;
1488 chip
->ecc
.read_page
= gpmi_ecc_read_page
;
1489 chip
->ecc
.write_page
= gpmi_ecc_write_page
;
1490 chip
->ecc
.read_oob
= gpmi_ecc_read_oob
;
1491 chip
->ecc
.write_oob
= gpmi_ecc_write_oob
;
1492 chip
->scan_bbt
= gpmi_scan_bbt
;
1493 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1494 chip
->block_markbad
= gpmi_block_markbad
;
1495 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1496 chip
->ecc
.mode
= NAND_ECC_HW
;
1498 chip
->ecc
.strength
= 8;
1499 chip
->ecc
.layout
= &gpmi_hw_ecclayout
;
1501 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1502 this->bch_geometry
.payload_size
= 1024;
1503 this->bch_geometry
.auxiliary_size
= 128;
1504 ret
= gpmi_alloc_dma_buffer(this);
1508 ret
= nand_scan(mtd
, 1);
1510 pr_err("Chip scan failed\n");
1514 ppdata
.of_node
= this->pdev
->dev
.of_node
;
1515 ret
= mtd_device_parse_register(mtd
, NULL
, &ppdata
, NULL
, 0);
1521 gpmi_nfc_exit(this);
1525 static const struct platform_device_id gpmi_ids
[] = {
1526 { .name
= "imx23-gpmi-nand", .driver_data
= IS_MX23
, },
1527 { .name
= "imx28-gpmi-nand", .driver_data
= IS_MX28
, },
1528 { .name
= "imx6q-gpmi-nand", .driver_data
= IS_MX6Q
, },
1532 static const struct of_device_id gpmi_nand_id_table
[] = {
1534 .compatible
= "fsl,imx23-gpmi-nand",
1535 .data
= (void *)&gpmi_ids
[IS_MX23
]
1537 .compatible
= "fsl,imx28-gpmi-nand",
1538 .data
= (void *)&gpmi_ids
[IS_MX28
]
1540 .compatible
= "fsl,imx6q-gpmi-nand",
1541 .data
= (void *)&gpmi_ids
[IS_MX6Q
]
1544 MODULE_DEVICE_TABLE(of
, gpmi_nand_id_table
);
1546 static int __devinit
gpmi_nand_probe(struct platform_device
*pdev
)
1548 struct gpmi_nand_data
*this;
1549 const struct of_device_id
*of_id
;
1552 of_id
= of_match_device(gpmi_nand_id_table
, &pdev
->dev
);
1554 pdev
->id_entry
= of_id
->data
;
1556 pr_err("Failed to find the right device id.\n");
1560 this = kzalloc(sizeof(*this), GFP_KERNEL
);
1562 pr_err("Failed to allocate per-device memory\n");
1566 platform_set_drvdata(pdev
, this);
1568 this->dev
= &pdev
->dev
;
1570 ret
= acquire_resources(this);
1572 goto exit_acquire_resources
;
1574 ret
= init_hardware(this);
1578 ret
= gpmi_nfc_init(this);
1585 release_resources(this);
1586 exit_acquire_resources
:
1587 platform_set_drvdata(pdev
, NULL
);
1592 static int __exit
gpmi_nand_remove(struct platform_device
*pdev
)
1594 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
1596 gpmi_nfc_exit(this);
1597 release_resources(this);
1598 platform_set_drvdata(pdev
, NULL
);
1603 static struct platform_driver gpmi_nand_driver
= {
1605 .name
= "gpmi-nand",
1606 .of_match_table
= gpmi_nand_id_table
,
1608 .probe
= gpmi_nand_probe
,
1609 .remove
= __exit_p(gpmi_nand_remove
),
1610 .id_table
= gpmi_ids
,
1613 static int __init
gpmi_nand_init(void)
1617 err
= platform_driver_register(&gpmi_nand_driver
);
1619 printk(KERN_INFO
"GPMI NAND driver registered. (IMX)\n");
1621 pr_err("i.MX GPMI NAND driver registration failed\n");
1625 static void __exit
gpmi_nand_exit(void)
1627 platform_driver_unregister(&gpmi_nand_driver
);
1630 module_init(gpmi_nand_init
);
1631 module_exit(gpmi_nand_exit
);
1633 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1634 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1635 MODULE_LICENSE("GPL");