Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / mtd / nand / mxc_nand.c
blob6acc790c2fbb96880ec29642a1d2e7e2528dbee9
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
38 #include <asm/mach/flash.h>
39 #include <mach/mxc_nand.h>
40 #include <mach/hardware.h>
42 #define DRIVER_NAME "mxc_nand"
44 #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
45 #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
46 #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
47 #define nfc_is_v3() nfc_is_v3_2()
49 /* Addresses for NFC registers */
50 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
51 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
52 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
53 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
54 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
55 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
56 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
57 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
58 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
59 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
60 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
61 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
62 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
63 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
64 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
65 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
66 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
67 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
68 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
69 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
70 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
71 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
73 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
74 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
75 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
76 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
77 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
78 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
79 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
80 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
81 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
82 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
84 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
87 * Operation modes for the NFC. Valid for v1, v2 and v3
88 * type controllers.
90 #define NFC_CMD (1 << 0)
91 #define NFC_ADDR (1 << 1)
92 #define NFC_INPUT (1 << 2)
93 #define NFC_OUTPUT (1 << 3)
94 #define NFC_ID (1 << 4)
95 #define NFC_STATUS (1 << 5)
97 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
98 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
100 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
101 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
102 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
104 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
106 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
108 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
109 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
110 #define NFC_V3_WRPROT_LOCK (1 << 1)
111 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
112 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
114 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
116 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
117 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
118 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
119 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
120 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
121 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
122 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
123 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
124 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
125 #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
126 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
127 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
128 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
129 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
131 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
132 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
133 #define NFC_V3_CONFIG3_FW8 (1 << 3)
134 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
135 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
136 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
137 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
139 #define NFC_V3_IPC (host->regs_ip + 0x2C)
140 #define NFC_V3_IPC_CREQ (1 << 0)
141 #define NFC_V3_IPC_INT (1 << 31)
143 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
145 struct mxc_nand_host;
147 struct mxc_nand_devtype_data {
148 void (*preset)(struct mtd_info *);
149 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
150 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
151 void (*send_page)(struct mtd_info *, unsigned int);
152 void (*send_read_id)(struct mxc_nand_host *);
153 uint16_t (*get_dev_status)(struct mxc_nand_host *);
154 int (*check_int)(struct mxc_nand_host *);
155 void (*irq_control)(struct mxc_nand_host *, int);
156 u32 (*get_ecc_status)(struct mxc_nand_host *);
157 struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
158 void (*select_chip)(struct mtd_info *mtd, int chip);
159 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
160 u_char *read_ecc, u_char *calc_ecc);
163 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
164 * (CONFIG1:INT_MSK is set). To handle this the driver uses
165 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
167 int irqpending_quirk;
168 int needs_ip;
170 size_t regs_offset;
171 size_t spare0_offset;
172 size_t axi_offset;
174 int spare_len;
175 int eccbytes;
176 int eccsize;
179 struct mxc_nand_host {
180 struct mtd_info mtd;
181 struct nand_chip nand;
182 struct device *dev;
184 void __iomem *spare0;
185 void __iomem *main_area0;
187 void __iomem *base;
188 void __iomem *regs;
189 void __iomem *regs_axi;
190 void __iomem *regs_ip;
191 int status_request;
192 struct clk *clk;
193 int clk_act;
194 int irq;
195 int eccsize;
196 int active_cs;
198 struct completion op_completion;
200 uint8_t *data_buf;
201 unsigned int buf_start;
203 const struct mxc_nand_devtype_data *devtype_data;
204 struct mxc_nand_platform_data pdata;
207 /* OOB placement block for use with hardware ecc generation */
208 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
209 .eccbytes = 5,
210 .eccpos = {6, 7, 8, 9, 10},
211 .oobfree = {{0, 5}, {12, 4}, }
214 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
215 .eccbytes = 20,
216 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
217 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
218 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
221 /* OOB description for 512 byte pages with 16 byte OOB */
222 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
223 .eccbytes = 1 * 9,
224 .eccpos = {
225 7, 8, 9, 10, 11, 12, 13, 14, 15
227 .oobfree = {
228 {.offset = 0, .length = 5}
232 /* OOB description for 2048 byte pages with 64 byte OOB */
233 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
234 .eccbytes = 4 * 9,
235 .eccpos = {
236 7, 8, 9, 10, 11, 12, 13, 14, 15,
237 23, 24, 25, 26, 27, 28, 29, 30, 31,
238 39, 40, 41, 42, 43, 44, 45, 46, 47,
239 55, 56, 57, 58, 59, 60, 61, 62, 63
241 .oobfree = {
242 {.offset = 2, .length = 4},
243 {.offset = 16, .length = 7},
244 {.offset = 32, .length = 7},
245 {.offset = 48, .length = 7}
249 /* OOB description for 4096 byte pages with 128 byte OOB */
250 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
251 .eccbytes = 8 * 9,
252 .eccpos = {
253 7, 8, 9, 10, 11, 12, 13, 14, 15,
254 23, 24, 25, 26, 27, 28, 29, 30, 31,
255 39, 40, 41, 42, 43, 44, 45, 46, 47,
256 55, 56, 57, 58, 59, 60, 61, 62, 63,
257 71, 72, 73, 74, 75, 76, 77, 78, 79,
258 87, 88, 89, 90, 91, 92, 93, 94, 95,
259 103, 104, 105, 106, 107, 108, 109, 110, 111,
260 119, 120, 121, 122, 123, 124, 125, 126, 127,
262 .oobfree = {
263 {.offset = 2, .length = 4},
264 {.offset = 16, .length = 7},
265 {.offset = 32, .length = 7},
266 {.offset = 48, .length = 7},
267 {.offset = 64, .length = 7},
268 {.offset = 80, .length = 7},
269 {.offset = 96, .length = 7},
270 {.offset = 112, .length = 7},
274 static const char *part_probes[] = { "RedBoot", "cmdlinepart", "ofpart", NULL };
276 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
278 int i;
279 u32 *t = trg;
280 const __iomem u32 *s = src;
282 for (i = 0; i < (size >> 2); i++)
283 *t++ = __raw_readl(s++);
286 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
288 int i;
289 u32 __iomem *t = trg;
290 const u32 *s = src;
292 for (i = 0; i < (size >> 2); i++)
293 __raw_writel(*s++, t++);
296 static int check_int_v3(struct mxc_nand_host *host)
298 uint32_t tmp;
300 tmp = readl(NFC_V3_IPC);
301 if (!(tmp & NFC_V3_IPC_INT))
302 return 0;
304 tmp &= ~NFC_V3_IPC_INT;
305 writel(tmp, NFC_V3_IPC);
307 return 1;
310 static int check_int_v1_v2(struct mxc_nand_host *host)
312 uint32_t tmp;
314 tmp = readw(NFC_V1_V2_CONFIG2);
315 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
316 return 0;
318 if (!host->devtype_data->irqpending_quirk)
319 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
321 return 1;
324 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
326 uint16_t tmp;
328 tmp = readw(NFC_V1_V2_CONFIG1);
330 if (activate)
331 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
332 else
333 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
335 writew(tmp, NFC_V1_V2_CONFIG1);
338 static void irq_control_v3(struct mxc_nand_host *host, int activate)
340 uint32_t tmp;
342 tmp = readl(NFC_V3_CONFIG2);
344 if (activate)
345 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
346 else
347 tmp |= NFC_V3_CONFIG2_INT_MSK;
349 writel(tmp, NFC_V3_CONFIG2);
352 static void irq_control(struct mxc_nand_host *host, int activate)
354 if (host->devtype_data->irqpending_quirk) {
355 if (activate)
356 enable_irq(host->irq);
357 else
358 disable_irq_nosync(host->irq);
359 } else {
360 host->devtype_data->irq_control(host, activate);
364 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
366 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
369 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
371 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
374 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
376 return readl(NFC_V3_ECC_STATUS_RESULT);
379 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
381 struct mxc_nand_host *host = dev_id;
383 if (!host->devtype_data->check_int(host))
384 return IRQ_NONE;
386 irq_control(host, 0);
388 complete(&host->op_completion);
390 return IRQ_HANDLED;
393 /* This function polls the NANDFC to wait for the basic operation to
394 * complete by checking the INT bit of config2 register.
396 static void wait_op_done(struct mxc_nand_host *host, int useirq)
398 int max_retries = 8000;
400 if (useirq) {
401 if (!host->devtype_data->check_int(host)) {
402 INIT_COMPLETION(host->op_completion);
403 irq_control(host, 1);
404 wait_for_completion(&host->op_completion);
406 } else {
407 while (max_retries-- > 0) {
408 if (host->devtype_data->check_int(host))
409 break;
411 udelay(1);
413 if (max_retries < 0)
414 pr_debug("%s: INT not set\n", __func__);
418 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
420 /* fill command */
421 writel(cmd, NFC_V3_FLASH_CMD);
423 /* send out command */
424 writel(NFC_CMD, NFC_V3_LAUNCH);
426 /* Wait for operation to complete */
427 wait_op_done(host, useirq);
430 /* This function issues the specified command to the NAND device and
431 * waits for completion. */
432 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
434 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
436 writew(cmd, NFC_V1_V2_FLASH_CMD);
437 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
439 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
440 int max_retries = 100;
441 /* Reset completion is indicated by NFC_CONFIG2 */
442 /* being set to 0 */
443 while (max_retries-- > 0) {
444 if (readw(NFC_V1_V2_CONFIG2) == 0) {
445 break;
447 udelay(1);
449 if (max_retries < 0)
450 pr_debug("%s: RESET failed\n", __func__);
451 } else {
452 /* Wait for operation to complete */
453 wait_op_done(host, useirq);
457 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
459 /* fill address */
460 writel(addr, NFC_V3_FLASH_ADDR0);
462 /* send out address */
463 writel(NFC_ADDR, NFC_V3_LAUNCH);
465 wait_op_done(host, 0);
468 /* This function sends an address (or partial address) to the
469 * NAND device. The address is used to select the source/destination for
470 * a NAND command. */
471 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
473 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
475 writew(addr, NFC_V1_V2_FLASH_ADDR);
476 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
478 /* Wait for operation to complete */
479 wait_op_done(host, islast);
482 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
484 struct nand_chip *nand_chip = mtd->priv;
485 struct mxc_nand_host *host = nand_chip->priv;
486 uint32_t tmp;
488 tmp = readl(NFC_V3_CONFIG1);
489 tmp &= ~(7 << 4);
490 writel(tmp, NFC_V3_CONFIG1);
492 /* transfer data from NFC ram to nand */
493 writel(ops, NFC_V3_LAUNCH);
495 wait_op_done(host, false);
498 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
500 struct nand_chip *nand_chip = mtd->priv;
501 struct mxc_nand_host *host = nand_chip->priv;
503 /* NANDFC buffer 0 is used for page read/write */
504 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
506 writew(ops, NFC_V1_V2_CONFIG2);
508 /* Wait for operation to complete */
509 wait_op_done(host, true);
512 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
514 struct nand_chip *nand_chip = mtd->priv;
515 struct mxc_nand_host *host = nand_chip->priv;
516 int bufs, i;
518 if (mtd->writesize > 512)
519 bufs = 4;
520 else
521 bufs = 1;
523 for (i = 0; i < bufs; i++) {
525 /* NANDFC buffer 0 is used for page read/write */
526 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
528 writew(ops, NFC_V1_V2_CONFIG2);
530 /* Wait for operation to complete */
531 wait_op_done(host, true);
535 static void send_read_id_v3(struct mxc_nand_host *host)
537 /* Read ID into main buffer */
538 writel(NFC_ID, NFC_V3_LAUNCH);
540 wait_op_done(host, true);
542 memcpy32_fromio(host->data_buf, host->main_area0, 16);
545 /* Request the NANDFC to perform a read of the NAND device ID. */
546 static void send_read_id_v1_v2(struct mxc_nand_host *host)
548 struct nand_chip *this = &host->nand;
550 /* NANDFC buffer 0 is used for device ID output */
551 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
553 writew(NFC_ID, NFC_V1_V2_CONFIG2);
555 /* Wait for operation to complete */
556 wait_op_done(host, true);
558 memcpy32_fromio(host->data_buf, host->main_area0, 16);
560 if (this->options & NAND_BUSWIDTH_16) {
561 /* compress the ID info */
562 host->data_buf[1] = host->data_buf[2];
563 host->data_buf[2] = host->data_buf[4];
564 host->data_buf[3] = host->data_buf[6];
565 host->data_buf[4] = host->data_buf[8];
566 host->data_buf[5] = host->data_buf[10];
570 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
572 writew(NFC_STATUS, NFC_V3_LAUNCH);
573 wait_op_done(host, true);
575 return readl(NFC_V3_CONFIG1) >> 16;
578 /* This function requests the NANDFC to perform a read of the
579 * NAND device status and returns the current status. */
580 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
582 void __iomem *main_buf = host->main_area0;
583 uint32_t store;
584 uint16_t ret;
586 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
589 * The device status is stored in main_area0. To
590 * prevent corruption of the buffer save the value
591 * and restore it afterwards.
593 store = readl(main_buf);
595 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
596 wait_op_done(host, true);
598 ret = readw(main_buf);
600 writel(store, main_buf);
602 return ret;
605 /* This functions is used by upper layer to checks if device is ready */
606 static int mxc_nand_dev_ready(struct mtd_info *mtd)
609 * NFC handles R/B internally. Therefore, this function
610 * always returns status as ready.
612 return 1;
615 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
618 * If HW ECC is enabled, we turn it on during init. There is
619 * no need to enable again here.
623 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
624 u_char *read_ecc, u_char *calc_ecc)
626 struct nand_chip *nand_chip = mtd->priv;
627 struct mxc_nand_host *host = nand_chip->priv;
630 * 1-Bit errors are automatically corrected in HW. No need for
631 * additional correction. 2-Bit errors cannot be corrected by
632 * HW ECC, so we need to return failure
634 uint16_t ecc_status = get_ecc_status_v1(host);
636 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
637 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
638 return -1;
641 return 0;
644 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
645 u_char *read_ecc, u_char *calc_ecc)
647 struct nand_chip *nand_chip = mtd->priv;
648 struct mxc_nand_host *host = nand_chip->priv;
649 u32 ecc_stat, err;
650 int no_subpages = 1;
651 int ret = 0;
652 u8 ecc_bit_mask, err_limit;
654 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
655 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
657 no_subpages = mtd->writesize >> 9;
659 ecc_stat = host->devtype_data->get_ecc_status(host);
661 do {
662 err = ecc_stat & ecc_bit_mask;
663 if (err > err_limit) {
664 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
665 return -1;
666 } else {
667 ret += err;
669 ecc_stat >>= 4;
670 } while (--no_subpages);
672 mtd->ecc_stats.corrected += ret;
673 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
675 return ret;
678 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
679 u_char *ecc_code)
681 return 0;
684 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
686 struct nand_chip *nand_chip = mtd->priv;
687 struct mxc_nand_host *host = nand_chip->priv;
688 uint8_t ret;
690 /* Check for status request */
691 if (host->status_request)
692 return host->devtype_data->get_dev_status(host) & 0xFF;
694 ret = *(uint8_t *)(host->data_buf + host->buf_start);
695 host->buf_start++;
697 return ret;
700 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
702 struct nand_chip *nand_chip = mtd->priv;
703 struct mxc_nand_host *host = nand_chip->priv;
704 uint16_t ret;
706 ret = *(uint16_t *)(host->data_buf + host->buf_start);
707 host->buf_start += 2;
709 return ret;
712 /* Write data of length len to buffer buf. The data to be
713 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
714 * Operation by the NFC, the data is written to NAND Flash */
715 static void mxc_nand_write_buf(struct mtd_info *mtd,
716 const u_char *buf, int len)
718 struct nand_chip *nand_chip = mtd->priv;
719 struct mxc_nand_host *host = nand_chip->priv;
720 u16 col = host->buf_start;
721 int n = mtd->oobsize + mtd->writesize - col;
723 n = min(n, len);
725 memcpy(host->data_buf + col, buf, n);
727 host->buf_start += n;
730 /* Read the data buffer from the NAND Flash. To read the data from NAND
731 * Flash first the data output cycle is initiated by the NFC, which copies
732 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
734 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
736 struct nand_chip *nand_chip = mtd->priv;
737 struct mxc_nand_host *host = nand_chip->priv;
738 u16 col = host->buf_start;
739 int n = mtd->oobsize + mtd->writesize - col;
741 n = min(n, len);
743 memcpy(buf, host->data_buf + col, n);
745 host->buf_start += n;
748 /* Used by the upper layer to verify the data in NAND Flash
749 * with the data in the buf. */
750 static int mxc_nand_verify_buf(struct mtd_info *mtd,
751 const u_char *buf, int len)
753 return -EFAULT;
756 /* This function is used by upper layer for select and
757 * deselect of the NAND chip */
758 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
760 struct nand_chip *nand_chip = mtd->priv;
761 struct mxc_nand_host *host = nand_chip->priv;
763 if (chip == -1) {
764 /* Disable the NFC clock */
765 if (host->clk_act) {
766 clk_disable_unprepare(host->clk);
767 host->clk_act = 0;
769 return;
772 if (!host->clk_act) {
773 /* Enable the NFC clock */
774 clk_prepare_enable(host->clk);
775 host->clk_act = 1;
779 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
781 struct nand_chip *nand_chip = mtd->priv;
782 struct mxc_nand_host *host = nand_chip->priv;
784 if (chip == -1) {
785 /* Disable the NFC clock */
786 if (host->clk_act) {
787 clk_disable(host->clk);
788 host->clk_act = 0;
790 return;
793 if (!host->clk_act) {
794 /* Enable the NFC clock */
795 clk_enable(host->clk);
796 host->clk_act = 1;
799 host->active_cs = chip;
800 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
804 * Function to transfer data to/from spare area.
806 static void copy_spare(struct mtd_info *mtd, bool bfrom)
808 struct nand_chip *this = mtd->priv;
809 struct mxc_nand_host *host = this->priv;
810 u16 i, j;
811 u16 n = mtd->writesize >> 9;
812 u8 *d = host->data_buf + mtd->writesize;
813 u8 __iomem *s = host->spare0;
814 u16 t = host->devtype_data->spare_len;
816 j = (mtd->oobsize / n >> 1) << 1;
818 if (bfrom) {
819 for (i = 0; i < n - 1; i++)
820 memcpy32_fromio(d + i * j, s + i * t, j);
822 /* the last section */
823 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
824 } else {
825 for (i = 0; i < n - 1; i++)
826 memcpy32_toio(&s[i * t], &d[i * j], j);
828 /* the last section */
829 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
833 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
835 struct nand_chip *nand_chip = mtd->priv;
836 struct mxc_nand_host *host = nand_chip->priv;
838 /* Write out column address, if necessary */
839 if (column != -1) {
841 * MXC NANDFC can only perform full page+spare or
842 * spare-only read/write. When the upper layers
843 * perform a read/write buf operation, the saved column
844 * address is used to index into the full page.
846 host->devtype_data->send_addr(host, 0, page_addr == -1);
847 if (mtd->writesize > 512)
848 /* another col addr cycle for 2k page */
849 host->devtype_data->send_addr(host, 0, false);
852 /* Write out page address, if necessary */
853 if (page_addr != -1) {
854 /* paddr_0 - p_addr_7 */
855 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
857 if (mtd->writesize > 512) {
858 if (mtd->size >= 0x10000000) {
859 /* paddr_8 - paddr_15 */
860 host->devtype_data->send_addr(host,
861 (page_addr >> 8) & 0xff,
862 false);
863 host->devtype_data->send_addr(host,
864 (page_addr >> 16) & 0xff,
865 true);
866 } else
867 /* paddr_8 - paddr_15 */
868 host->devtype_data->send_addr(host,
869 (page_addr >> 8) & 0xff, true);
870 } else {
871 /* One more address cycle for higher density devices */
872 if (mtd->size >= 0x4000000) {
873 /* paddr_8 - paddr_15 */
874 host->devtype_data->send_addr(host,
875 (page_addr >> 8) & 0xff,
876 false);
877 host->devtype_data->send_addr(host,
878 (page_addr >> 16) & 0xff,
879 true);
880 } else
881 /* paddr_8 - paddr_15 */
882 host->devtype_data->send_addr(host,
883 (page_addr >> 8) & 0xff, true);
889 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
890 * on how much oob the nand chip has. For 8bit ecc we need at least
891 * 26 bytes of oob data per 512 byte block.
893 static int get_eccsize(struct mtd_info *mtd)
895 int oobbytes_per_512 = 0;
897 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
899 if (oobbytes_per_512 < 26)
900 return 4;
901 else
902 return 8;
905 static void preset_v1(struct mtd_info *mtd)
907 struct nand_chip *nand_chip = mtd->priv;
908 struct mxc_nand_host *host = nand_chip->priv;
909 uint16_t config1 = 0;
911 if (nand_chip->ecc.mode == NAND_ECC_HW)
912 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
914 if (!host->devtype_data->irqpending_quirk)
915 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
917 host->eccsize = 1;
919 writew(config1, NFC_V1_V2_CONFIG1);
920 /* preset operation */
922 /* Unlock the internal RAM Buffer */
923 writew(0x2, NFC_V1_V2_CONFIG);
925 /* Blocks to be unlocked */
926 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
927 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
929 /* Unlock Block Command for given address range */
930 writew(0x4, NFC_V1_V2_WRPROT);
933 static void preset_v2(struct mtd_info *mtd)
935 struct nand_chip *nand_chip = mtd->priv;
936 struct mxc_nand_host *host = nand_chip->priv;
937 uint16_t config1 = 0;
939 if (nand_chip->ecc.mode == NAND_ECC_HW)
940 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
942 config1 |= NFC_V2_CONFIG1_FP_INT;
944 if (!host->devtype_data->irqpending_quirk)
945 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
947 if (mtd->writesize) {
948 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
950 host->eccsize = get_eccsize(mtd);
951 if (host->eccsize == 4)
952 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
954 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
955 } else {
956 host->eccsize = 1;
959 writew(config1, NFC_V1_V2_CONFIG1);
960 /* preset operation */
962 /* Unlock the internal RAM Buffer */
963 writew(0x2, NFC_V1_V2_CONFIG);
965 /* Blocks to be unlocked */
966 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
967 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
968 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
969 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
970 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
971 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
972 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
973 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
975 /* Unlock Block Command for given address range */
976 writew(0x4, NFC_V1_V2_WRPROT);
979 static void preset_v3(struct mtd_info *mtd)
981 struct nand_chip *chip = mtd->priv;
982 struct mxc_nand_host *host = chip->priv;
983 uint32_t config2, config3;
984 int i, addr_phases;
986 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
987 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
989 /* Unlock the internal RAM Buffer */
990 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
991 NFC_V3_WRPROT);
993 /* Blocks to be unlocked */
994 for (i = 0; i < NAND_MAX_CHIPS; i++)
995 writel(0x0 | (0xffff << 16),
996 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
998 writel(0, NFC_V3_IPC);
1000 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1001 NFC_V3_CONFIG2_2CMD_PHASES |
1002 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1003 NFC_V3_CONFIG2_ST_CMD(0x70) |
1004 NFC_V3_CONFIG2_INT_MSK |
1005 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1007 if (chip->ecc.mode == NAND_ECC_HW)
1008 config2 |= NFC_V3_CONFIG2_ECC_EN;
1010 addr_phases = fls(chip->pagemask) >> 3;
1012 if (mtd->writesize == 2048) {
1013 config2 |= NFC_V3_CONFIG2_PS_2048;
1014 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1015 } else if (mtd->writesize == 4096) {
1016 config2 |= NFC_V3_CONFIG2_PS_4096;
1017 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1018 } else {
1019 config2 |= NFC_V3_CONFIG2_PS_512;
1020 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1023 if (mtd->writesize) {
1024 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
1025 host->eccsize = get_eccsize(mtd);
1026 if (host->eccsize == 8)
1027 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1030 writel(config2, NFC_V3_CONFIG2);
1032 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1033 NFC_V3_CONFIG3_NO_SDMA |
1034 NFC_V3_CONFIG3_RBB_MODE |
1035 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1036 NFC_V3_CONFIG3_ADD_OP(0);
1038 if (!(chip->options & NAND_BUSWIDTH_16))
1039 config3 |= NFC_V3_CONFIG3_FW8;
1041 writel(config3, NFC_V3_CONFIG3);
1043 writel(0, NFC_V3_DELAY_LINE);
1046 /* Used by the upper layer to write command to NAND Flash for
1047 * different operations to be carried out on NAND Flash */
1048 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1049 int column, int page_addr)
1051 struct nand_chip *nand_chip = mtd->priv;
1052 struct mxc_nand_host *host = nand_chip->priv;
1054 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1055 command, column, page_addr);
1057 /* Reset command state information */
1058 host->status_request = false;
1060 /* Command pre-processing step */
1061 switch (command) {
1062 case NAND_CMD_RESET:
1063 host->devtype_data->preset(mtd);
1064 host->devtype_data->send_cmd(host, command, false);
1065 break;
1067 case NAND_CMD_STATUS:
1068 host->buf_start = 0;
1069 host->status_request = true;
1071 host->devtype_data->send_cmd(host, command, true);
1072 mxc_do_addr_cycle(mtd, column, page_addr);
1073 break;
1075 case NAND_CMD_READ0:
1076 case NAND_CMD_READOOB:
1077 if (command == NAND_CMD_READ0)
1078 host->buf_start = column;
1079 else
1080 host->buf_start = column + mtd->writesize;
1082 command = NAND_CMD_READ0; /* only READ0 is valid */
1084 host->devtype_data->send_cmd(host, command, false);
1085 mxc_do_addr_cycle(mtd, column, page_addr);
1087 if (mtd->writesize > 512)
1088 host->devtype_data->send_cmd(host,
1089 NAND_CMD_READSTART, true);
1091 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093 memcpy32_fromio(host->data_buf, host->main_area0,
1094 mtd->writesize);
1095 copy_spare(mtd, true);
1096 break;
1098 case NAND_CMD_SEQIN:
1099 if (column >= mtd->writesize)
1100 /* call ourself to read a page */
1101 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103 host->buf_start = column;
1105 host->devtype_data->send_cmd(host, command, false);
1106 mxc_do_addr_cycle(mtd, column, page_addr);
1107 break;
1109 case NAND_CMD_PAGEPROG:
1110 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1111 copy_spare(mtd, false);
1112 host->devtype_data->send_page(mtd, NFC_INPUT);
1113 host->devtype_data->send_cmd(host, command, true);
1114 mxc_do_addr_cycle(mtd, column, page_addr);
1115 break;
1117 case NAND_CMD_READID:
1118 host->devtype_data->send_cmd(host, command, true);
1119 mxc_do_addr_cycle(mtd, column, page_addr);
1120 host->devtype_data->send_read_id(host);
1121 host->buf_start = column;
1122 break;
1124 case NAND_CMD_ERASE1:
1125 case NAND_CMD_ERASE2:
1126 host->devtype_data->send_cmd(host, command, false);
1127 mxc_do_addr_cycle(mtd, column, page_addr);
1129 break;
1134 * The generic flash bbt decriptors overlap with our ecc
1135 * hardware, so define some i.MX specific ones.
1137 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1138 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140 static struct nand_bbt_descr bbt_main_descr = {
1141 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1142 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1143 .offs = 0,
1144 .len = 4,
1145 .veroffs = 4,
1146 .maxblocks = 4,
1147 .pattern = bbt_pattern,
1150 static struct nand_bbt_descr bbt_mirror_descr = {
1151 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1152 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1153 .offs = 0,
1154 .len = 4,
1155 .veroffs = 4,
1156 .maxblocks = 4,
1157 .pattern = mirror_pattern,
1160 /* v1 + irqpending_quirk: i.MX21 */
1161 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1162 .preset = preset_v1,
1163 .send_cmd = send_cmd_v1_v2,
1164 .send_addr = send_addr_v1_v2,
1165 .send_page = send_page_v1,
1166 .send_read_id = send_read_id_v1_v2,
1167 .get_dev_status = get_dev_status_v1_v2,
1168 .check_int = check_int_v1_v2,
1169 .irq_control = irq_control_v1_v2,
1170 .get_ecc_status = get_ecc_status_v1,
1171 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1172 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1173 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1174 .select_chip = mxc_nand_select_chip_v1_v3,
1175 .correct_data = mxc_nand_correct_data_v1,
1176 .irqpending_quirk = 1,
1177 .needs_ip = 0,
1178 .regs_offset = 0xe00,
1179 .spare0_offset = 0x800,
1180 .spare_len = 16,
1181 .eccbytes = 3,
1182 .eccsize = 1,
1185 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1186 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1187 .preset = preset_v1,
1188 .send_cmd = send_cmd_v1_v2,
1189 .send_addr = send_addr_v1_v2,
1190 .send_page = send_page_v1,
1191 .send_read_id = send_read_id_v1_v2,
1192 .get_dev_status = get_dev_status_v1_v2,
1193 .check_int = check_int_v1_v2,
1194 .irq_control = irq_control_v1_v2,
1195 .get_ecc_status = get_ecc_status_v1,
1196 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1197 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1198 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1199 .select_chip = mxc_nand_select_chip_v1_v3,
1200 .correct_data = mxc_nand_correct_data_v1,
1201 .irqpending_quirk = 0,
1202 .needs_ip = 0,
1203 .regs_offset = 0xe00,
1204 .spare0_offset = 0x800,
1205 .axi_offset = 0,
1206 .spare_len = 16,
1207 .eccbytes = 3,
1208 .eccsize = 1,
1211 /* v21: i.MX25, i.MX35 */
1212 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1213 .preset = preset_v2,
1214 .send_cmd = send_cmd_v1_v2,
1215 .send_addr = send_addr_v1_v2,
1216 .send_page = send_page_v2,
1217 .send_read_id = send_read_id_v1_v2,
1218 .get_dev_status = get_dev_status_v1_v2,
1219 .check_int = check_int_v1_v2,
1220 .irq_control = irq_control_v1_v2,
1221 .get_ecc_status = get_ecc_status_v2,
1222 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1223 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1224 .ecclayout_4k = &nandv2_hw_eccoob_4k,
1225 .select_chip = mxc_nand_select_chip_v2,
1226 .correct_data = mxc_nand_correct_data_v2_v3,
1227 .irqpending_quirk = 0,
1228 .needs_ip = 0,
1229 .regs_offset = 0x1e00,
1230 .spare0_offset = 0x1000,
1231 .axi_offset = 0,
1232 .spare_len = 64,
1233 .eccbytes = 9,
1234 .eccsize = 0,
1237 /* v3: i.MX51, i.MX53 */
1238 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1239 .preset = preset_v3,
1240 .send_cmd = send_cmd_v3,
1241 .send_addr = send_addr_v3,
1242 .send_page = send_page_v3,
1243 .send_read_id = send_read_id_v3,
1244 .get_dev_status = get_dev_status_v3,
1245 .check_int = check_int_v3,
1246 .irq_control = irq_control_v3,
1247 .get_ecc_status = get_ecc_status_v3,
1248 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1249 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1250 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1251 .select_chip = mxc_nand_select_chip_v1_v3,
1252 .correct_data = mxc_nand_correct_data_v2_v3,
1253 .irqpending_quirk = 0,
1254 .needs_ip = 1,
1255 .regs_offset = 0,
1256 .spare0_offset = 0x1000,
1257 .axi_offset = 0x1e00,
1258 .spare_len = 64,
1259 .eccbytes = 0,
1260 .eccsize = 0,
1263 #ifdef CONFIG_OF_MTD
1264 static const struct of_device_id mxcnd_dt_ids[] = {
1266 .compatible = "fsl,imx21-nand",
1267 .data = &imx21_nand_devtype_data,
1268 }, {
1269 .compatible = "fsl,imx27-nand",
1270 .data = &imx27_nand_devtype_data,
1271 }, {
1272 .compatible = "fsl,imx25-nand",
1273 .data = &imx25_nand_devtype_data,
1274 }, {
1275 .compatible = "fsl,imx51-nand",
1276 .data = &imx51_nand_devtype_data,
1278 { /* sentinel */ }
1281 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1283 struct device_node *np = host->dev->of_node;
1284 struct mxc_nand_platform_data *pdata = &host->pdata;
1285 const struct of_device_id *of_id =
1286 of_match_device(mxcnd_dt_ids, host->dev);
1287 int buswidth;
1289 if (!np)
1290 return 1;
1292 if (of_get_nand_ecc_mode(np) >= 0)
1293 pdata->hw_ecc = 1;
1295 pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1297 buswidth = of_get_nand_bus_width(np);
1298 if (buswidth < 0)
1299 return buswidth;
1301 pdata->width = buswidth / 8;
1303 host->devtype_data = of_id->data;
1305 return 0;
1307 #else
1308 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1310 return 1;
1312 #endif
1314 static int __init mxcnd_probe_pdata(struct mxc_nand_host *host)
1316 struct mxc_nand_platform_data *pdata = host->dev->platform_data;
1318 if (!pdata)
1319 return -ENODEV;
1321 host->pdata = *pdata;
1323 if (nfc_is_v1()) {
1324 if (cpu_is_mx21())
1325 host->devtype_data = &imx21_nand_devtype_data;
1326 else
1327 host->devtype_data = &imx27_nand_devtype_data;
1328 } else if (nfc_is_v21()) {
1329 host->devtype_data = &imx25_nand_devtype_data;
1330 } else if (nfc_is_v3_2()) {
1331 host->devtype_data = &imx51_nand_devtype_data;
1332 } else
1333 BUG();
1335 return 0;
1338 static int __init mxcnd_probe(struct platform_device *pdev)
1340 struct nand_chip *this;
1341 struct mtd_info *mtd;
1342 struct mxc_nand_host *host;
1343 struct resource *res;
1344 int err = 0;
1346 /* Allocate memory for MTD device structure and private data */
1347 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1348 NAND_MAX_OOBSIZE, GFP_KERNEL);
1349 if (!host)
1350 return -ENOMEM;
1352 host->data_buf = (uint8_t *)(host + 1);
1354 host->dev = &pdev->dev;
1355 /* structures must be linked */
1356 this = &host->nand;
1357 mtd = &host->mtd;
1358 mtd->priv = this;
1359 mtd->owner = THIS_MODULE;
1360 mtd->dev.parent = &pdev->dev;
1361 mtd->name = DRIVER_NAME;
1363 /* 50 us command delay time */
1364 this->chip_delay = 5;
1366 this->priv = host;
1367 this->dev_ready = mxc_nand_dev_ready;
1368 this->cmdfunc = mxc_nand_command;
1369 this->read_byte = mxc_nand_read_byte;
1370 this->read_word = mxc_nand_read_word;
1371 this->write_buf = mxc_nand_write_buf;
1372 this->read_buf = mxc_nand_read_buf;
1373 this->verify_buf = mxc_nand_verify_buf;
1375 host->clk = clk_get(&pdev->dev, "nfc");
1376 if (IS_ERR(host->clk)) {
1377 err = PTR_ERR(host->clk);
1378 goto eclk;
1381 clk_prepare_enable(host->clk);
1382 host->clk_act = 1;
1384 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1385 if (!res) {
1386 err = -ENODEV;
1387 goto eres;
1390 host->base = ioremap(res->start, resource_size(res));
1391 if (!host->base) {
1392 err = -ENOMEM;
1393 goto eres;
1396 host->main_area0 = host->base;
1398 err = mxcnd_probe_dt(host);
1399 if (err > 0)
1400 err = mxcnd_probe_pdata(host);
1401 if (err < 0)
1402 goto eirq;
1404 if (host->devtype_data->regs_offset)
1405 host->regs = host->base + host->devtype_data->regs_offset;
1406 host->spare0 = host->base + host->devtype_data->spare0_offset;
1407 if (host->devtype_data->axi_offset)
1408 host->regs_axi = host->base + host->devtype_data->axi_offset;
1410 this->ecc.bytes = host->devtype_data->eccbytes;
1411 host->eccsize = host->devtype_data->eccsize;
1413 this->select_chip = host->devtype_data->select_chip;
1414 this->ecc.size = 512;
1415 this->ecc.layout = host->devtype_data->ecclayout_512;
1417 if (host->devtype_data->needs_ip) {
1418 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1419 if (!res) {
1420 err = -ENODEV;
1421 goto eirq;
1423 host->regs_ip = ioremap(res->start, resource_size(res));
1424 if (!host->regs_ip) {
1425 err = -ENOMEM;
1426 goto eirq;
1430 if (host->pdata.hw_ecc) {
1431 this->ecc.calculate = mxc_nand_calculate_ecc;
1432 this->ecc.hwctl = mxc_nand_enable_hwecc;
1433 this->ecc.correct = host->devtype_data->correct_data;
1434 this->ecc.mode = NAND_ECC_HW;
1435 } else {
1436 this->ecc.mode = NAND_ECC_SOFT;
1439 /* NAND bus width determines access functions used by upper layer */
1440 if (host->pdata.width == 2)
1441 this->options |= NAND_BUSWIDTH_16;
1443 if (host->pdata.flash_bbt) {
1444 this->bbt_td = &bbt_main_descr;
1445 this->bbt_md = &bbt_mirror_descr;
1446 /* update flash based bbt */
1447 this->bbt_options |= NAND_BBT_USE_FLASH;
1450 init_completion(&host->op_completion);
1452 host->irq = platform_get_irq(pdev, 0);
1455 * Use host->devtype_data->irq_control() here instead of irq_control()
1456 * because we must not disable_irq_nosync without having requested the
1457 * irq.
1459 host->devtype_data->irq_control(host, 0);
1461 err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1462 if (err)
1463 goto eirq;
1466 * Now that we "own" the interrupt make sure the interrupt mask bit is
1467 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1468 * on this machine.
1470 if (host->devtype_data->irqpending_quirk) {
1471 disable_irq_nosync(host->irq);
1472 host->devtype_data->irq_control(host, 1);
1475 /* first scan to find the device and get the page size */
1476 if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1477 err = -ENXIO;
1478 goto escan;
1481 /* Call preset again, with correct writesize this time */
1482 host->devtype_data->preset(mtd);
1484 if (mtd->writesize == 2048)
1485 this->ecc.layout = host->devtype_data->ecclayout_2k;
1486 else if (mtd->writesize == 4096)
1487 this->ecc.layout = host->devtype_data->ecclayout_4k;
1489 if (this->ecc.mode == NAND_ECC_HW) {
1490 if (nfc_is_v1())
1491 this->ecc.strength = 1;
1492 else
1493 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1496 /* second phase scan */
1497 if (nand_scan_tail(mtd)) {
1498 err = -ENXIO;
1499 goto escan;
1502 /* Register the partitions */
1503 mtd_device_parse_register(mtd, part_probes,
1504 &(struct mtd_part_parser_data){
1505 .of_node = pdev->dev.of_node,
1507 host->pdata.parts,
1508 host->pdata.nr_parts);
1510 platform_set_drvdata(pdev, host);
1512 return 0;
1514 escan:
1515 free_irq(host->irq, host);
1516 eirq:
1517 if (host->regs_ip)
1518 iounmap(host->regs_ip);
1519 iounmap(host->base);
1520 eres:
1521 clk_put(host->clk);
1522 eclk:
1523 kfree(host);
1525 return err;
1528 static int __devexit mxcnd_remove(struct platform_device *pdev)
1530 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1532 clk_put(host->clk);
1534 platform_set_drvdata(pdev, NULL);
1536 nand_release(&host->mtd);
1537 free_irq(host->irq, host);
1538 if (host->regs_ip)
1539 iounmap(host->regs_ip);
1540 iounmap(host->base);
1541 kfree(host);
1543 return 0;
1546 static struct platform_driver mxcnd_driver = {
1547 .driver = {
1548 .name = DRIVER_NAME,
1549 .owner = THIS_MODULE,
1550 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1552 .remove = __devexit_p(mxcnd_remove),
1555 static int __init mxc_nd_init(void)
1557 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1560 static void __exit mxc_nd_cleanup(void)
1562 /* Unregister the device structure */
1563 platform_driver_unregister(&mxcnd_driver);
1566 module_init(mxc_nd_init);
1567 module_exit(mxc_nd_cleanup);
1569 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1570 MODULE_DESCRIPTION("MXC NAND MTD driver");
1571 MODULE_LICENSE("GPL");