Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / mtd / ubi / attach.c
blob68d4d1f76d1eaf47608147aa3a9e4355841d6073
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI attaching sub-system.
24 * This sub-system is responsible for attaching MTD devices and it also
25 * implements flash media scanning.
27 * The attaching information is represented by a &struct ubi_attach_info'
28 * object. Information about volumes is represented by &struct ubi_ainf_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33 * objects are kept in per-volume RB-trees with the root at the corresponding
34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35 * per-volume objects and each of these objects is the root of RB-tree of
36 * per-LEB objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
42 * About corruptions
43 * ~~~~~~~~~~~~~~~~~
45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46 * whether the headers are corrupted or not. Sometimes UBI also protects the
47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48 * when it moves the contents of a PEB for wear-leveling purposes.
50 * UBI tries to distinguish between 2 types of corruptions.
52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53 * tries to handle them gracefully, without printing too many warnings and
54 * error messages. The idea is that we do not lose important data in these
55 * cases - we may lose only the data which were being written to the media just
56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
57 * supposed to handle such data losses (e.g., by using the FS journal).
59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61 * PEBs in the @erase list are scheduled for erasure later.
63 * 2. Unexpected corruptions which are not caused by power cuts. During
64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
65 * Obviously, this lessens the amount of available PEBs, and if at some point
66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67 * about such PEBs every time the MTD device is attached.
69 * However, it is difficult to reliably distinguish between these types of
70 * corruptions and UBI's strategy is as follows (in case of attaching by
71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72 * the data area does not contain all 0xFFs, and there were no bit-flips or
73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
75 * are as follows.
76 * o If the data area contains only 0xFFs, there are no data, and it is safe
77 * to just erase this PEB - this is corruption type 1.
78 * o If the data area has bit-flips or data integrity errors (ECC errors on
79 * NAND), it is probably a PEB which was being erased when power cut
80 * happened, so this is corruption type 1. However, this is just a guess,
81 * which might be wrong.
82 * o Otherwise this it corruption type 2.
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
98 /**
99 * add_to_list - add physical eraseblock to a list.
100 * @ai: attaching information
101 * @pnum: physical eraseblock number to add
102 * @vol_id: the last used volume id for the PEB
103 * @lnum: the last used LEB number for the PEB
104 * @ec: erase counter of the physical eraseblock
105 * @to_head: if not zero, add to the head of the list
106 * @list: the list to add to
108 * This function allocates a 'struct ubi_ainf_peb' object for physical
109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110 * It stores the @lnum and @vol_id alongside, which can both be
111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112 * If @to_head is not zero, PEB will be added to the head of the list, which
113 * basically means it will be processed first later. E.g., we add corrupted
114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
115 * sure we erase them first and get rid of corruptions ASAP. This function
116 * returns zero in case of success and a negative error code in case of
117 * failure.
119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 int lnum, int ec, int to_head, struct list_head *list)
122 struct ubi_ainf_peb *aeb;
124 if (list == &ai->free) {
125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 } else if (list == &ai->erase) {
127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 } else if (list == &ai->alien) {
129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 ai->alien_peb_count += 1;
131 } else
132 BUG();
134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 if (!aeb)
136 return -ENOMEM;
138 aeb->pnum = pnum;
139 aeb->vol_id = vol_id;
140 aeb->lnum = lnum;
141 aeb->ec = ec;
142 if (to_head)
143 list_add(&aeb->u.list, list);
144 else
145 list_add_tail(&aeb->u.list, list);
146 return 0;
150 * add_corrupted - add a corrupted physical eraseblock.
151 * @ai: attaching information
152 * @pnum: physical eraseblock number to add
153 * @ec: erase counter of the physical eraseblock
155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
157 * was presumably not caused by a power cut. Returns zero in case of success
158 * and a negative error code in case of failure.
160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
162 struct ubi_ainf_peb *aeb;
164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 if (!aeb)
168 return -ENOMEM;
170 ai->corr_peb_count += 1;
171 aeb->pnum = pnum;
172 aeb->ec = ec;
173 list_add(&aeb->u.list, &ai->corr);
174 return 0;
178 * validate_vid_hdr - check volume identifier header.
179 * @vid_hdr: the volume identifier header to check
180 * @av: information about the volume this logical eraseblock belongs to
181 * @pnum: physical eraseblock number the VID header came from
183 * This function checks that data stored in @vid_hdr is consistent. Returns
184 * non-zero if an inconsistency was found and zero if not.
186 * Note, UBI does sanity check of everything it reads from the flash media.
187 * Most of the checks are done in the I/O sub-system. Here we check that the
188 * information in the VID header is consistent to the information in other VID
189 * headers of the same volume.
191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
192 const struct ubi_ainf_volume *av, int pnum)
194 int vol_type = vid_hdr->vol_type;
195 int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 int data_pad = be32_to_cpu(vid_hdr->data_pad);
199 if (av->leb_count != 0) {
200 int av_vol_type;
203 * This is not the first logical eraseblock belonging to this
204 * volume. Ensure that the data in its VID header is consistent
205 * to the data in previous logical eraseblock headers.
208 if (vol_id != av->vol_id) {
209 ubi_err("inconsistent vol_id");
210 goto bad;
213 if (av->vol_type == UBI_STATIC_VOLUME)
214 av_vol_type = UBI_VID_STATIC;
215 else
216 av_vol_type = UBI_VID_DYNAMIC;
218 if (vol_type != av_vol_type) {
219 ubi_err("inconsistent vol_type");
220 goto bad;
223 if (used_ebs != av->used_ebs) {
224 ubi_err("inconsistent used_ebs");
225 goto bad;
228 if (data_pad != av->data_pad) {
229 ubi_err("inconsistent data_pad");
230 goto bad;
234 return 0;
236 bad:
237 ubi_err("inconsistent VID header at PEB %d", pnum);
238 ubi_dump_vid_hdr(vid_hdr);
239 ubi_dump_av(av);
240 return -EINVAL;
244 * add_volume - add volume to the attaching information.
245 * @ai: attaching information
246 * @vol_id: ID of the volume to add
247 * @pnum: physical eraseblock number
248 * @vid_hdr: volume identifier header
250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
251 * present in the attaching information, this function does nothing. Otherwise
252 * it adds corresponding volume to the attaching information. Returns a pointer
253 * to the allocated "av" object in case of success and a negative error code in
254 * case of failure.
256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257 int vol_id, int pnum,
258 const struct ubi_vid_hdr *vid_hdr)
260 struct ubi_ainf_volume *av;
261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
265 /* Walk the volume RB-tree to look if this volume is already present */
266 while (*p) {
267 parent = *p;
268 av = rb_entry(parent, struct ubi_ainf_volume, rb);
270 if (vol_id == av->vol_id)
271 return av;
273 if (vol_id > av->vol_id)
274 p = &(*p)->rb_left;
275 else
276 p = &(*p)->rb_right;
279 /* The volume is absent - add it */
280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 if (!av)
282 return ERR_PTR(-ENOMEM);
284 av->highest_lnum = av->leb_count = 0;
285 av->vol_id = vol_id;
286 av->root = RB_ROOT;
287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 av->compat = vid_hdr->compat;
290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291 : UBI_STATIC_VOLUME;
292 if (vol_id > ai->highest_vol_id)
293 ai->highest_vol_id = vol_id;
295 rb_link_node(&av->rb, parent, p);
296 rb_insert_color(&av->rb, &ai->volumes);
297 ai->vols_found += 1;
298 dbg_bld("added volume %d", vol_id);
299 return av;
303 * compare_lebs - find out which logical eraseblock is newer.
304 * @ubi: UBI device description object
305 * @aeb: first logical eraseblock to compare
306 * @pnum: physical eraseblock number of the second logical eraseblock to
307 * compare
308 * @vid_hdr: volume identifier header of the second logical eraseblock
310 * This function compares 2 copies of a LEB and informs which one is newer. In
311 * case of success this function returns a positive value, in case of failure, a
312 * negative error code is returned. The success return codes use the following
313 * bits:
314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315 * second PEB (described by @pnum and @vid_hdr);
316 * o bit 0 is set: the second PEB is newer;
317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318 * o bit 1 is set: bit-flips were detected in the newer LEB;
319 * o bit 2 is cleared: the older LEB is not corrupted;
320 * o bit 2 is set: the older LEB is corrupted.
322 static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323 int pnum, const struct ubi_vid_hdr *vid_hdr)
325 void *buf;
326 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 uint32_t data_crc, crc;
328 struct ubi_vid_hdr *vh = NULL;
329 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
331 if (sqnum2 == aeb->sqnum) {
333 * This must be a really ancient UBI image which has been
334 * created before sequence numbers support has been added. At
335 * that times we used 32-bit LEB versions stored in logical
336 * eraseblocks. That was before UBI got into mainline. We do not
337 * support these images anymore. Well, those images still work,
338 * but only if no unclean reboots happened.
340 ubi_err("unsupported on-flash UBI format\n");
341 return -EINVAL;
344 /* Obviously the LEB with lower sequence counter is older */
345 second_is_newer = (sqnum2 > aeb->sqnum);
348 * Now we know which copy is newer. If the copy flag of the PEB with
349 * newer version is not set, then we just return, otherwise we have to
350 * check data CRC. For the second PEB we already have the VID header,
351 * for the first one - we'll need to re-read it from flash.
353 * Note: this may be optimized so that we wouldn't read twice.
356 if (second_is_newer) {
357 if (!vid_hdr->copy_flag) {
358 /* It is not a copy, so it is newer */
359 dbg_bld("second PEB %d is newer, copy_flag is unset",
360 pnum);
361 return 1;
363 } else {
364 if (!aeb->copy_flag) {
365 /* It is not a copy, so it is newer */
366 dbg_bld("first PEB %d is newer, copy_flag is unset",
367 pnum);
368 return bitflips << 1;
371 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
372 if (!vh)
373 return -ENOMEM;
375 pnum = aeb->pnum;
376 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
377 if (err) {
378 if (err == UBI_IO_BITFLIPS)
379 bitflips = 1;
380 else {
381 ubi_err("VID of PEB %d header is bad, but it "
382 "was OK earlier, err %d", pnum, err);
383 if (err > 0)
384 err = -EIO;
386 goto out_free_vidh;
390 vid_hdr = vh;
393 /* Read the data of the copy and check the CRC */
395 len = be32_to_cpu(vid_hdr->data_size);
396 buf = vmalloc(len);
397 if (!buf) {
398 err = -ENOMEM;
399 goto out_free_vidh;
402 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
403 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
404 goto out_free_buf;
406 data_crc = be32_to_cpu(vid_hdr->data_crc);
407 crc = crc32(UBI_CRC32_INIT, buf, len);
408 if (crc != data_crc) {
409 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
410 pnum, crc, data_crc);
411 corrupted = 1;
412 bitflips = 0;
413 second_is_newer = !second_is_newer;
414 } else {
415 dbg_bld("PEB %d CRC is OK", pnum);
416 bitflips = !!err;
419 vfree(buf);
420 ubi_free_vid_hdr(ubi, vh);
422 if (second_is_newer)
423 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
424 else
425 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
427 return second_is_newer | (bitflips << 1) | (corrupted << 2);
429 out_free_buf:
430 vfree(buf);
431 out_free_vidh:
432 ubi_free_vid_hdr(ubi, vh);
433 return err;
437 * ubi_add_to_av - add used physical eraseblock to the attaching information.
438 * @ubi: UBI device description object
439 * @ai: attaching information
440 * @pnum: the physical eraseblock number
441 * @ec: erase counter
442 * @vid_hdr: the volume identifier header
443 * @bitflips: if bit-flips were detected when this physical eraseblock was read
445 * This function adds information about a used physical eraseblock to the
446 * 'used' tree of the corresponding volume. The function is rather complex
447 * because it has to handle cases when this is not the first physical
448 * eraseblock belonging to the same logical eraseblock, and the newer one has
449 * to be picked, while the older one has to be dropped. This function returns
450 * zero in case of success and a negative error code in case of failure.
452 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
453 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
455 int err, vol_id, lnum;
456 unsigned long long sqnum;
457 struct ubi_ainf_volume *av;
458 struct ubi_ainf_peb *aeb;
459 struct rb_node **p, *parent = NULL;
461 vol_id = be32_to_cpu(vid_hdr->vol_id);
462 lnum = be32_to_cpu(vid_hdr->lnum);
463 sqnum = be64_to_cpu(vid_hdr->sqnum);
465 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
466 pnum, vol_id, lnum, ec, sqnum, bitflips);
468 av = add_volume(ai, vol_id, pnum, vid_hdr);
469 if (IS_ERR(av))
470 return PTR_ERR(av);
472 if (ai->max_sqnum < sqnum)
473 ai->max_sqnum = sqnum;
476 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
477 * if this is the first instance of this logical eraseblock or not.
479 p = &av->root.rb_node;
480 while (*p) {
481 int cmp_res;
483 parent = *p;
484 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
485 if (lnum != aeb->lnum) {
486 if (lnum < aeb->lnum)
487 p = &(*p)->rb_left;
488 else
489 p = &(*p)->rb_right;
490 continue;
494 * There is already a physical eraseblock describing the same
495 * logical eraseblock present.
498 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
499 aeb->pnum, aeb->sqnum, aeb->ec);
502 * Make sure that the logical eraseblocks have different
503 * sequence numbers. Otherwise the image is bad.
505 * However, if the sequence number is zero, we assume it must
506 * be an ancient UBI image from the era when UBI did not have
507 * sequence numbers. We still can attach these images, unless
508 * there is a need to distinguish between old and new
509 * eraseblocks, in which case we'll refuse the image in
510 * 'compare_lebs()'. In other words, we attach old clean
511 * images, but refuse attaching old images with duplicated
512 * logical eraseblocks because there was an unclean reboot.
514 if (aeb->sqnum == sqnum && sqnum != 0) {
515 ubi_err("two LEBs with same sequence number %llu",
516 sqnum);
517 ubi_dump_aeb(aeb, 0);
518 ubi_dump_vid_hdr(vid_hdr);
519 return -EINVAL;
523 * Now we have to drop the older one and preserve the newer
524 * one.
526 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
527 if (cmp_res < 0)
528 return cmp_res;
530 if (cmp_res & 1) {
532 * This logical eraseblock is newer than the one
533 * found earlier.
535 err = validate_vid_hdr(vid_hdr, av, pnum);
536 if (err)
537 return err;
539 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
540 aeb->lnum, aeb->ec, cmp_res & 4,
541 &ai->erase);
542 if (err)
543 return err;
545 aeb->ec = ec;
546 aeb->pnum = pnum;
547 aeb->vol_id = vol_id;
548 aeb->lnum = lnum;
549 aeb->scrub = ((cmp_res & 2) || bitflips);
550 aeb->copy_flag = vid_hdr->copy_flag;
551 aeb->sqnum = sqnum;
553 if (av->highest_lnum == lnum)
554 av->last_data_size =
555 be32_to_cpu(vid_hdr->data_size);
557 return 0;
558 } else {
560 * This logical eraseblock is older than the one found
561 * previously.
563 return add_to_list(ai, pnum, vol_id, lnum, ec,
564 cmp_res & 4, &ai->erase);
569 * We've met this logical eraseblock for the first time, add it to the
570 * attaching information.
573 err = validate_vid_hdr(vid_hdr, av, pnum);
574 if (err)
575 return err;
577 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
578 if (!aeb)
579 return -ENOMEM;
581 aeb->ec = ec;
582 aeb->pnum = pnum;
583 aeb->vol_id = vol_id;
584 aeb->lnum = lnum;
585 aeb->scrub = bitflips;
586 aeb->copy_flag = vid_hdr->copy_flag;
587 aeb->sqnum = sqnum;
589 if (av->highest_lnum <= lnum) {
590 av->highest_lnum = lnum;
591 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
594 av->leb_count += 1;
595 rb_link_node(&aeb->u.rb, parent, p);
596 rb_insert_color(&aeb->u.rb, &av->root);
597 return 0;
601 * ubi_find_av - find volume in the attaching information.
602 * @ai: attaching information
603 * @vol_id: the requested volume ID
605 * This function returns a pointer to the volume description or %NULL if there
606 * are no data about this volume in the attaching information.
608 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
609 int vol_id)
611 struct ubi_ainf_volume *av;
612 struct rb_node *p = ai->volumes.rb_node;
614 while (p) {
615 av = rb_entry(p, struct ubi_ainf_volume, rb);
617 if (vol_id == av->vol_id)
618 return av;
620 if (vol_id > av->vol_id)
621 p = p->rb_left;
622 else
623 p = p->rb_right;
626 return NULL;
630 * ubi_remove_av - delete attaching information about a volume.
631 * @ai: attaching information
632 * @av: the volume attaching information to delete
634 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
636 struct rb_node *rb;
637 struct ubi_ainf_peb *aeb;
639 dbg_bld("remove attaching information about volume %d", av->vol_id);
641 while ((rb = rb_first(&av->root))) {
642 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
643 rb_erase(&aeb->u.rb, &av->root);
644 list_add_tail(&aeb->u.list, &ai->erase);
647 rb_erase(&av->rb, &ai->volumes);
648 kfree(av);
649 ai->vols_found -= 1;
653 * early_erase_peb - erase a physical eraseblock.
654 * @ubi: UBI device description object
655 * @ai: attaching information
656 * @pnum: physical eraseblock number to erase;
657 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
659 * This function erases physical eraseblock 'pnum', and writes the erase
660 * counter header to it. This function should only be used on UBI device
661 * initialization stages, when the EBA sub-system had not been yet initialized.
662 * This function returns zero in case of success and a negative error code in
663 * case of failure.
665 static int early_erase_peb(struct ubi_device *ubi,
666 const struct ubi_attach_info *ai, int pnum, int ec)
668 int err;
669 struct ubi_ec_hdr *ec_hdr;
671 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
673 * Erase counter overflow. Upgrade UBI and use 64-bit
674 * erase counters internally.
676 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
677 return -EINVAL;
680 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
681 if (!ec_hdr)
682 return -ENOMEM;
684 ec_hdr->ec = cpu_to_be64(ec);
686 err = ubi_io_sync_erase(ubi, pnum, 0);
687 if (err < 0)
688 goto out_free;
690 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
692 out_free:
693 kfree(ec_hdr);
694 return err;
698 * ubi_early_get_peb - get a free physical eraseblock.
699 * @ubi: UBI device description object
700 * @ai: attaching information
702 * This function returns a free physical eraseblock. It is supposed to be
703 * called on the UBI initialization stages when the wear-leveling sub-system is
704 * not initialized yet. This function picks a physical eraseblocks from one of
705 * the lists, writes the EC header if it is needed, and removes it from the
706 * list.
708 * This function returns a pointer to the "aeb" of the found free PEB in case
709 * of success and an error code in case of failure.
711 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
712 struct ubi_attach_info *ai)
714 int err = 0;
715 struct ubi_ainf_peb *aeb, *tmp_aeb;
717 if (!list_empty(&ai->free)) {
718 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
719 list_del(&aeb->u.list);
720 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
721 return aeb;
725 * We try to erase the first physical eraseblock from the erase list
726 * and pick it if we succeed, or try to erase the next one if not. And
727 * so forth. We don't want to take care about bad eraseblocks here -
728 * they'll be handled later.
730 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
731 if (aeb->ec == UBI_UNKNOWN)
732 aeb->ec = ai->mean_ec;
734 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
735 if (err)
736 continue;
738 aeb->ec += 1;
739 list_del(&aeb->u.list);
740 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
741 return aeb;
744 ubi_err("no free eraseblocks");
745 return ERR_PTR(-ENOSPC);
749 * check_corruption - check the data area of PEB.
750 * @ubi: UBI device description object
751 * @vid_hrd: the (corrupted) VID header of this PEB
752 * @pnum: the physical eraseblock number to check
754 * This is a helper function which is used to distinguish between VID header
755 * corruptions caused by power cuts and other reasons. If the PEB contains only
756 * 0xFF bytes in the data area, the VID header is most probably corrupted
757 * because of a power cut (%0 is returned in this case). Otherwise, it was
758 * probably corrupted for some other reasons (%1 is returned in this case). A
759 * negative error code is returned if a read error occurred.
761 * If the corruption reason was a power cut, UBI can safely erase this PEB.
762 * Otherwise, it should preserve it to avoid possibly destroying important
763 * information.
765 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
766 int pnum)
768 int err;
770 mutex_lock(&ubi->buf_mutex);
771 memset(ubi->peb_buf, 0x00, ubi->leb_size);
773 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
774 ubi->leb_size);
775 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
777 * Bit-flips or integrity errors while reading the data area.
778 * It is difficult to say for sure what type of corruption is
779 * this, but presumably a power cut happened while this PEB was
780 * erased, so it became unstable and corrupted, and should be
781 * erased.
783 err = 0;
784 goto out_unlock;
787 if (err)
788 goto out_unlock;
790 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
791 goto out_unlock;
793 ubi_err("PEB %d contains corrupted VID header, and the data does not "
794 "contain all 0xFF, this may be a non-UBI PEB or a severe VID "
795 "header corruption which requires manual inspection", pnum);
796 ubi_dump_vid_hdr(vid_hdr);
797 dbg_msg("hexdump of PEB %d offset %d, length %d",
798 pnum, ubi->leb_start, ubi->leb_size);
799 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
800 ubi->peb_buf, ubi->leb_size, 1);
801 err = 1;
803 out_unlock:
804 mutex_unlock(&ubi->buf_mutex);
805 return err;
809 * scan_peb - scan and process UBI headers of a PEB.
810 * @ubi: UBI device description object
811 * @ai: attaching information
812 * @pnum: the physical eraseblock number
814 * This function reads UBI headers of PEB @pnum, checks them, and adds
815 * information about this PEB to the corresponding list or RB-tree in the
816 * "attaching info" structure. Returns zero if the physical eraseblock was
817 * successfully handled and a negative error code in case of failure.
819 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
820 int pnum)
822 long long uninitialized_var(ec);
823 int err, bitflips = 0, vol_id, ec_err = 0;
825 dbg_bld("scan PEB %d", pnum);
827 /* Skip bad physical eraseblocks */
828 err = ubi_io_is_bad(ubi, pnum);
829 if (err < 0)
830 return err;
831 else if (err) {
832 ai->bad_peb_count += 1;
833 return 0;
836 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
837 if (err < 0)
838 return err;
839 switch (err) {
840 case 0:
841 break;
842 case UBI_IO_BITFLIPS:
843 bitflips = 1;
844 break;
845 case UBI_IO_FF:
846 ai->empty_peb_count += 1;
847 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
848 UBI_UNKNOWN, 0, &ai->erase);
849 case UBI_IO_FF_BITFLIPS:
850 ai->empty_peb_count += 1;
851 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
852 UBI_UNKNOWN, 1, &ai->erase);
853 case UBI_IO_BAD_HDR_EBADMSG:
854 case UBI_IO_BAD_HDR:
856 * We have to also look at the VID header, possibly it is not
857 * corrupted. Set %bitflips flag in order to make this PEB be
858 * moved and EC be re-created.
860 ec_err = err;
861 ec = UBI_UNKNOWN;
862 bitflips = 1;
863 break;
864 default:
865 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
866 return -EINVAL;
869 if (!ec_err) {
870 int image_seq;
872 /* Make sure UBI version is OK */
873 if (ech->version != UBI_VERSION) {
874 ubi_err("this UBI version is %d, image version is %d",
875 UBI_VERSION, (int)ech->version);
876 return -EINVAL;
879 ec = be64_to_cpu(ech->ec);
880 if (ec > UBI_MAX_ERASECOUNTER) {
882 * Erase counter overflow. The EC headers have 64 bits
883 * reserved, but we anyway make use of only 31 bit
884 * values, as this seems to be enough for any existing
885 * flash. Upgrade UBI and use 64-bit erase counters
886 * internally.
888 ubi_err("erase counter overflow, max is %d",
889 UBI_MAX_ERASECOUNTER);
890 ubi_dump_ec_hdr(ech);
891 return -EINVAL;
895 * Make sure that all PEBs have the same image sequence number.
896 * This allows us to detect situations when users flash UBI
897 * images incorrectly, so that the flash has the new UBI image
898 * and leftovers from the old one. This feature was added
899 * relatively recently, and the sequence number was always
900 * zero, because old UBI implementations always set it to zero.
901 * For this reasons, we do not panic if some PEBs have zero
902 * sequence number, while other PEBs have non-zero sequence
903 * number.
905 image_seq = be32_to_cpu(ech->image_seq);
906 if (!ubi->image_seq && image_seq)
907 ubi->image_seq = image_seq;
908 if (ubi->image_seq && image_seq &&
909 ubi->image_seq != image_seq) {
910 ubi_err("bad image sequence number %d in PEB %d, "
911 "expected %d", image_seq, pnum, ubi->image_seq);
912 ubi_dump_ec_hdr(ech);
913 return -EINVAL;
917 /* OK, we've done with the EC header, let's look at the VID header */
919 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
920 if (err < 0)
921 return err;
922 switch (err) {
923 case 0:
924 break;
925 case UBI_IO_BITFLIPS:
926 bitflips = 1;
927 break;
928 case UBI_IO_BAD_HDR_EBADMSG:
929 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
931 * Both EC and VID headers are corrupted and were read
932 * with data integrity error, probably this is a bad
933 * PEB, bit it is not marked as bad yet. This may also
934 * be a result of power cut during erasure.
936 ai->maybe_bad_peb_count += 1;
937 case UBI_IO_BAD_HDR:
938 if (ec_err)
940 * Both headers are corrupted. There is a possibility
941 * that this a valid UBI PEB which has corresponding
942 * LEB, but the headers are corrupted. However, it is
943 * impossible to distinguish it from a PEB which just
944 * contains garbage because of a power cut during erase
945 * operation. So we just schedule this PEB for erasure.
947 * Besides, in case of NOR flash, we deliberately
948 * corrupt both headers because NOR flash erasure is
949 * slow and can start from the end.
951 err = 0;
952 else
954 * The EC was OK, but the VID header is corrupted. We
955 * have to check what is in the data area.
957 err = check_corruption(ubi, vidh, pnum);
959 if (err < 0)
960 return err;
961 else if (!err)
962 /* This corruption is caused by a power cut */
963 err = add_to_list(ai, pnum, UBI_UNKNOWN,
964 UBI_UNKNOWN, ec, 1, &ai->erase);
965 else
966 /* This is an unexpected corruption */
967 err = add_corrupted(ai, pnum, ec);
968 if (err)
969 return err;
970 goto adjust_mean_ec;
971 case UBI_IO_FF_BITFLIPS:
972 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
973 ec, 1, &ai->erase);
974 if (err)
975 return err;
976 goto adjust_mean_ec;
977 case UBI_IO_FF:
978 if (ec_err || bitflips)
979 err = add_to_list(ai, pnum, UBI_UNKNOWN,
980 UBI_UNKNOWN, ec, 1, &ai->erase);
981 else
982 err = add_to_list(ai, pnum, UBI_UNKNOWN,
983 UBI_UNKNOWN, ec, 0, &ai->free);
984 if (err)
985 return err;
986 goto adjust_mean_ec;
987 default:
988 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
989 err);
990 return -EINVAL;
993 vol_id = be32_to_cpu(vidh->vol_id);
994 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
995 int lnum = be32_to_cpu(vidh->lnum);
997 /* Unsupported internal volume */
998 switch (vidh->compat) {
999 case UBI_COMPAT_DELETE:
1000 ubi_msg("\"delete\" compatible internal volume %d:%d"
1001 " found, will remove it", vol_id, lnum);
1002 err = add_to_list(ai, pnum, vol_id, lnum,
1003 ec, 1, &ai->erase);
1004 if (err)
1005 return err;
1006 return 0;
1008 case UBI_COMPAT_RO:
1009 ubi_msg("read-only compatible internal volume %d:%d"
1010 " found, switch to read-only mode",
1011 vol_id, lnum);
1012 ubi->ro_mode = 1;
1013 break;
1015 case UBI_COMPAT_PRESERVE:
1016 ubi_msg("\"preserve\" compatible internal volume %d:%d"
1017 " found", vol_id, lnum);
1018 err = add_to_list(ai, pnum, vol_id, lnum,
1019 ec, 0, &ai->alien);
1020 if (err)
1021 return err;
1022 return 0;
1024 case UBI_COMPAT_REJECT:
1025 ubi_err("incompatible internal volume %d:%d found",
1026 vol_id, lnum);
1027 return -EINVAL;
1031 if (ec_err)
1032 ubi_warn("valid VID header but corrupted EC header at PEB %d",
1033 pnum);
1034 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1035 if (err)
1036 return err;
1038 adjust_mean_ec:
1039 if (!ec_err) {
1040 ai->ec_sum += ec;
1041 ai->ec_count += 1;
1042 if (ec > ai->max_ec)
1043 ai->max_ec = ec;
1044 if (ec < ai->min_ec)
1045 ai->min_ec = ec;
1048 return 0;
1052 * late_analysis - analyze the overall situation with PEB.
1053 * @ubi: UBI device description object
1054 * @ai: attaching information
1056 * This is a helper function which takes a look what PEBs we have after we
1057 * gather information about all of them ("ai" is compete). It decides whether
1058 * the flash is empty and should be formatted of whether there are too many
1059 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1060 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1062 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1064 struct ubi_ainf_peb *aeb;
1065 int max_corr, peb_count;
1067 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1068 max_corr = peb_count / 20 ?: 8;
1071 * Few corrupted PEBs is not a problem and may be just a result of
1072 * unclean reboots. However, many of them may indicate some problems
1073 * with the flash HW or driver.
1075 if (ai->corr_peb_count) {
1076 ubi_err("%d PEBs are corrupted and preserved",
1077 ai->corr_peb_count);
1078 printk(KERN_ERR "Corrupted PEBs are:");
1079 list_for_each_entry(aeb, &ai->corr, u.list)
1080 printk(KERN_CONT " %d", aeb->pnum);
1081 printk(KERN_CONT "\n");
1084 * If too many PEBs are corrupted, we refuse attaching,
1085 * otherwise, only print a warning.
1087 if (ai->corr_peb_count >= max_corr) {
1088 ubi_err("too many corrupted PEBs, refusing");
1089 return -EINVAL;
1093 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1095 * All PEBs are empty, or almost all - a couple PEBs look like
1096 * they may be bad PEBs which were not marked as bad yet.
1098 * This piece of code basically tries to distinguish between
1099 * the following situations:
1101 * 1. Flash is empty, but there are few bad PEBs, which are not
1102 * marked as bad so far, and which were read with error. We
1103 * want to go ahead and format this flash. While formatting,
1104 * the faulty PEBs will probably be marked as bad.
1106 * 2. Flash contains non-UBI data and we do not want to format
1107 * it and destroy possibly important information.
1109 if (ai->maybe_bad_peb_count <= 2) {
1110 ai->is_empty = 1;
1111 ubi_msg("empty MTD device detected");
1112 get_random_bytes(&ubi->image_seq,
1113 sizeof(ubi->image_seq));
1114 } else {
1115 ubi_err("MTD device is not UBI-formatted and possibly "
1116 "contains non-UBI data - refusing it");
1117 return -EINVAL;
1122 return 0;
1126 * scan_all - scan entire MTD device.
1127 * @ubi: UBI device description object
1129 * This function does full scanning of an MTD device and returns complete
1130 * information about it in form of a "struct ubi_attach_info" object. In case
1131 * of failure, an error code is returned.
1133 static struct ubi_attach_info *scan_all(struct ubi_device *ubi)
1135 int err, pnum;
1136 struct rb_node *rb1, *rb2;
1137 struct ubi_ainf_volume *av;
1138 struct ubi_ainf_peb *aeb;
1139 struct ubi_attach_info *ai;
1141 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1142 if (!ai)
1143 return ERR_PTR(-ENOMEM);
1145 INIT_LIST_HEAD(&ai->corr);
1146 INIT_LIST_HEAD(&ai->free);
1147 INIT_LIST_HEAD(&ai->erase);
1148 INIT_LIST_HEAD(&ai->alien);
1149 ai->volumes = RB_ROOT;
1151 err = -ENOMEM;
1152 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1153 sizeof(struct ubi_ainf_peb),
1154 0, 0, NULL);
1155 if (!ai->aeb_slab_cache)
1156 goto out_ai;
1158 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1159 if (!ech)
1160 goto out_ai;
1162 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1163 if (!vidh)
1164 goto out_ech;
1166 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1167 cond_resched();
1169 dbg_gen("process PEB %d", pnum);
1170 err = scan_peb(ubi, ai, pnum);
1171 if (err < 0)
1172 goto out_vidh;
1175 dbg_msg("scanning is finished");
1177 /* Calculate mean erase counter */
1178 if (ai->ec_count)
1179 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1181 err = late_analysis(ubi, ai);
1182 if (err)
1183 goto out_vidh;
1186 * In case of unknown erase counter we use the mean erase counter
1187 * value.
1189 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1190 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1191 if (aeb->ec == UBI_UNKNOWN)
1192 aeb->ec = ai->mean_ec;
1195 list_for_each_entry(aeb, &ai->free, u.list) {
1196 if (aeb->ec == UBI_UNKNOWN)
1197 aeb->ec = ai->mean_ec;
1200 list_for_each_entry(aeb, &ai->corr, u.list)
1201 if (aeb->ec == UBI_UNKNOWN)
1202 aeb->ec = ai->mean_ec;
1204 list_for_each_entry(aeb, &ai->erase, u.list)
1205 if (aeb->ec == UBI_UNKNOWN)
1206 aeb->ec = ai->mean_ec;
1208 err = self_check_ai(ubi, ai);
1209 if (err)
1210 goto out_vidh;
1212 ubi_free_vid_hdr(ubi, vidh);
1213 kfree(ech);
1215 return ai;
1217 out_vidh:
1218 ubi_free_vid_hdr(ubi, vidh);
1219 out_ech:
1220 kfree(ech);
1221 out_ai:
1222 ubi_destroy_ai(ai);
1223 return ERR_PTR(err);
1227 * ubi_attach - attach an MTD device.
1228 * @ubi: UBI device descriptor
1230 * This function returns zero in case of success and a negative error code in
1231 * case of failure.
1233 int ubi_attach(struct ubi_device *ubi)
1235 int err;
1236 struct ubi_attach_info *ai;
1238 ai = scan_all(ubi);
1239 if (IS_ERR(ai))
1240 return PTR_ERR(ai);
1242 ubi->bad_peb_count = ai->bad_peb_count;
1243 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1244 ubi->corr_peb_count = ai->corr_peb_count;
1245 ubi->max_ec = ai->max_ec;
1246 ubi->mean_ec = ai->mean_ec;
1247 ubi_msg("max. sequence number: %llu", ai->max_sqnum);
1249 err = ubi_read_volume_table(ubi, ai);
1250 if (err)
1251 goto out_ai;
1253 err = ubi_wl_init(ubi, ai);
1254 if (err)
1255 goto out_vtbl;
1257 err = ubi_eba_init(ubi, ai);
1258 if (err)
1259 goto out_wl;
1261 ubi_destroy_ai(ai);
1262 return 0;
1264 out_wl:
1265 ubi_wl_close(ubi);
1266 out_vtbl:
1267 ubi_free_internal_volumes(ubi);
1268 vfree(ubi->vtbl);
1269 out_ai:
1270 ubi_destroy_ai(ai);
1271 return err;
1275 * destroy_av - free volume attaching information.
1276 * @av: volume attaching information
1277 * @ai: attaching information
1279 * This function destroys the volume attaching information.
1281 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1283 struct ubi_ainf_peb *aeb;
1284 struct rb_node *this = av->root.rb_node;
1286 while (this) {
1287 if (this->rb_left)
1288 this = this->rb_left;
1289 else if (this->rb_right)
1290 this = this->rb_right;
1291 else {
1292 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1293 this = rb_parent(this);
1294 if (this) {
1295 if (this->rb_left == &aeb->u.rb)
1296 this->rb_left = NULL;
1297 else
1298 this->rb_right = NULL;
1301 kmem_cache_free(ai->aeb_slab_cache, aeb);
1304 kfree(av);
1308 * ubi_destroy_ai - destroy attaching information.
1309 * @ai: attaching information
1311 void ubi_destroy_ai(struct ubi_attach_info *ai)
1313 struct ubi_ainf_peb *aeb, *aeb_tmp;
1314 struct ubi_ainf_volume *av;
1315 struct rb_node *rb;
1317 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1318 list_del(&aeb->u.list);
1319 kmem_cache_free(ai->aeb_slab_cache, aeb);
1321 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1322 list_del(&aeb->u.list);
1323 kmem_cache_free(ai->aeb_slab_cache, aeb);
1325 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1326 list_del(&aeb->u.list);
1327 kmem_cache_free(ai->aeb_slab_cache, aeb);
1329 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1330 list_del(&aeb->u.list);
1331 kmem_cache_free(ai->aeb_slab_cache, aeb);
1334 /* Destroy the volume RB-tree */
1335 rb = ai->volumes.rb_node;
1336 while (rb) {
1337 if (rb->rb_left)
1338 rb = rb->rb_left;
1339 else if (rb->rb_right)
1340 rb = rb->rb_right;
1341 else {
1342 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1344 rb = rb_parent(rb);
1345 if (rb) {
1346 if (rb->rb_left == &av->rb)
1347 rb->rb_left = NULL;
1348 else
1349 rb->rb_right = NULL;
1352 destroy_av(ai, av);
1356 if (ai->aeb_slab_cache)
1357 kmem_cache_destroy(ai->aeb_slab_cache);
1359 kfree(ai);
1363 * self_check_ai - check the attaching information.
1364 * @ubi: UBI device description object
1365 * @ai: attaching information
1367 * This function returns zero if the attaching information is all right, and a
1368 * negative error code if not or if an error occurred.
1370 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1372 int pnum, err, vols_found = 0;
1373 struct rb_node *rb1, *rb2;
1374 struct ubi_ainf_volume *av;
1375 struct ubi_ainf_peb *aeb, *last_aeb;
1376 uint8_t *buf;
1378 if (!ubi->dbg->chk_gen)
1379 return 0;
1382 * At first, check that attaching information is OK.
1384 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1385 int leb_count = 0;
1387 cond_resched();
1389 vols_found += 1;
1391 if (ai->is_empty) {
1392 ubi_err("bad is_empty flag");
1393 goto bad_av;
1396 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1397 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1398 av->data_pad < 0 || av->last_data_size < 0) {
1399 ubi_err("negative values");
1400 goto bad_av;
1403 if (av->vol_id >= UBI_MAX_VOLUMES &&
1404 av->vol_id < UBI_INTERNAL_VOL_START) {
1405 ubi_err("bad vol_id");
1406 goto bad_av;
1409 if (av->vol_id > ai->highest_vol_id) {
1410 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1411 ai->highest_vol_id, av->vol_id);
1412 goto out;
1415 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1416 av->vol_type != UBI_STATIC_VOLUME) {
1417 ubi_err("bad vol_type");
1418 goto bad_av;
1421 if (av->data_pad > ubi->leb_size / 2) {
1422 ubi_err("bad data_pad");
1423 goto bad_av;
1426 last_aeb = NULL;
1427 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1428 cond_resched();
1430 last_aeb = aeb;
1431 leb_count += 1;
1433 if (aeb->pnum < 0 || aeb->ec < 0) {
1434 ubi_err("negative values");
1435 goto bad_aeb;
1438 if (aeb->ec < ai->min_ec) {
1439 ubi_err("bad ai->min_ec (%d), %d found",
1440 ai->min_ec, aeb->ec);
1441 goto bad_aeb;
1444 if (aeb->ec > ai->max_ec) {
1445 ubi_err("bad ai->max_ec (%d), %d found",
1446 ai->max_ec, aeb->ec);
1447 goto bad_aeb;
1450 if (aeb->pnum >= ubi->peb_count) {
1451 ubi_err("too high PEB number %d, total PEBs %d",
1452 aeb->pnum, ubi->peb_count);
1453 goto bad_aeb;
1456 if (av->vol_type == UBI_STATIC_VOLUME) {
1457 if (aeb->lnum >= av->used_ebs) {
1458 ubi_err("bad lnum or used_ebs");
1459 goto bad_aeb;
1461 } else {
1462 if (av->used_ebs != 0) {
1463 ubi_err("non-zero used_ebs");
1464 goto bad_aeb;
1468 if (aeb->lnum > av->highest_lnum) {
1469 ubi_err("incorrect highest_lnum or lnum");
1470 goto bad_aeb;
1474 if (av->leb_count != leb_count) {
1475 ubi_err("bad leb_count, %d objects in the tree",
1476 leb_count);
1477 goto bad_av;
1480 if (!last_aeb)
1481 continue;
1483 aeb = last_aeb;
1485 if (aeb->lnum != av->highest_lnum) {
1486 ubi_err("bad highest_lnum");
1487 goto bad_aeb;
1491 if (vols_found != ai->vols_found) {
1492 ubi_err("bad ai->vols_found %d, should be %d",
1493 ai->vols_found, vols_found);
1494 goto out;
1497 /* Check that attaching information is correct */
1498 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1499 last_aeb = NULL;
1500 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1501 int vol_type;
1503 cond_resched();
1505 last_aeb = aeb;
1507 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1508 if (err && err != UBI_IO_BITFLIPS) {
1509 ubi_err("VID header is not OK (%d)", err);
1510 if (err > 0)
1511 err = -EIO;
1512 return err;
1515 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1516 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1517 if (av->vol_type != vol_type) {
1518 ubi_err("bad vol_type");
1519 goto bad_vid_hdr;
1522 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1523 ubi_err("bad sqnum %llu", aeb->sqnum);
1524 goto bad_vid_hdr;
1527 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1528 ubi_err("bad vol_id %d", av->vol_id);
1529 goto bad_vid_hdr;
1532 if (av->compat != vidh->compat) {
1533 ubi_err("bad compat %d", vidh->compat);
1534 goto bad_vid_hdr;
1537 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1538 ubi_err("bad lnum %d", aeb->lnum);
1539 goto bad_vid_hdr;
1542 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1543 ubi_err("bad used_ebs %d", av->used_ebs);
1544 goto bad_vid_hdr;
1547 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1548 ubi_err("bad data_pad %d", av->data_pad);
1549 goto bad_vid_hdr;
1553 if (!last_aeb)
1554 continue;
1556 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1557 ubi_err("bad highest_lnum %d", av->highest_lnum);
1558 goto bad_vid_hdr;
1561 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1562 ubi_err("bad last_data_size %d", av->last_data_size);
1563 goto bad_vid_hdr;
1568 * Make sure that all the physical eraseblocks are in one of the lists
1569 * or trees.
1571 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1572 if (!buf)
1573 return -ENOMEM;
1575 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1576 err = ubi_io_is_bad(ubi, pnum);
1577 if (err < 0) {
1578 kfree(buf);
1579 return err;
1580 } else if (err)
1581 buf[pnum] = 1;
1584 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1585 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1586 buf[aeb->pnum] = 1;
1588 list_for_each_entry(aeb, &ai->free, u.list)
1589 buf[aeb->pnum] = 1;
1591 list_for_each_entry(aeb, &ai->corr, u.list)
1592 buf[aeb->pnum] = 1;
1594 list_for_each_entry(aeb, &ai->erase, u.list)
1595 buf[aeb->pnum] = 1;
1597 list_for_each_entry(aeb, &ai->alien, u.list)
1598 buf[aeb->pnum] = 1;
1600 err = 0;
1601 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1602 if (!buf[pnum]) {
1603 ubi_err("PEB %d is not referred", pnum);
1604 err = 1;
1607 kfree(buf);
1608 if (err)
1609 goto out;
1610 return 0;
1612 bad_aeb:
1613 ubi_err("bad attaching information about LEB %d", aeb->lnum);
1614 ubi_dump_aeb(aeb, 0);
1615 ubi_dump_av(av);
1616 goto out;
1618 bad_av:
1619 ubi_err("bad attaching information about volume %d", av->vol_id);
1620 ubi_dump_av(av);
1621 goto out;
1623 bad_vid_hdr:
1624 ubi_err("bad attaching information about volume %d", av->vol_id);
1625 ubi_dump_av(av);
1626 ubi_dump_vid_hdr(vidh);
1628 out:
1629 dump_stack();
1630 return -EINVAL;