Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / mtd / ubi / io.c
bloba8d523794b525f8b9147887fe8291214e41dd713
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
139 err = self_check_not_bad(ubi, pnum);
140 if (err)
141 return err;
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
163 *((uint8_t *)buf) ^= 0xFF;
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 if (err) {
169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
171 if (mtd_is_bitflip(err)) {
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
180 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
181 ubi_assert(len == read);
182 return UBI_IO_BITFLIPS;
185 if (retries++ < UBI_IO_RETRIES) {
186 ubi_warn("error %d%s while reading %d bytes from PEB "
187 "%d:%d, read only %zd bytes, retry",
188 err, errstr, len, pnum, offset, read);
189 yield();
190 goto retry;
193 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
194 "read %zd bytes", err, errstr, len, pnum, offset, read);
195 dump_stack();
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
202 if (read != len && mtd_is_eccerr(err)) {
203 ubi_assert(0);
204 err = -EIO;
206 } else {
207 ubi_assert(len == read);
209 if (ubi_dbg_is_bitflip(ubi)) {
210 dbg_gen("bit-flip (emulated)");
211 err = UBI_IO_BITFLIPS;
215 return err;
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
230 * bad.
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 int len)
238 int err;
239 size_t written;
240 loff_t addr;
242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
249 if (ubi->ro_mode) {
250 ubi_err("read-only mode");
251 return -EROFS;
254 err = self_check_not_bad(ubi, pnum);
255 if (err)
256 return err;
258 /* The area we are writing to has to contain all 0xFF bytes */
259 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 if (err)
261 return err;
263 if (offset >= ubi->leb_start) {
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
268 err = self_check_peb_ec_hdr(ubi, pnum);
269 if (err)
270 return err;
271 err = self_check_peb_vid_hdr(ubi, pnum);
272 if (err)
273 return err;
276 if (ubi_dbg_is_write_failure(ubi)) {
277 ubi_err("cannot write %d bytes to PEB %d:%d "
278 "(emulated)", len, pnum, offset);
279 dump_stack();
280 return -EIO;
283 addr = (loff_t)pnum * ubi->peb_size + offset;
284 err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 if (err) {
286 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
287 "%zd bytes", err, len, pnum, offset, written);
288 dump_stack();
289 ubi_dump_flash(ubi, pnum, offset, len);
290 } else
291 ubi_assert(written == len);
293 if (!err) {
294 err = self_check_write(ubi, buf, pnum, offset, len);
295 if (err)
296 return err;
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
302 offset += len;
303 len = ubi->peb_size - offset;
304 if (len)
305 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
308 return err;
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
318 static void erase_callback(struct erase_info *ei)
320 wake_up_interruptible((wait_queue_head_t *)ei->priv);
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
334 int err, retries = 0;
335 struct erase_info ei;
336 wait_queue_head_t wq;
338 dbg_io("erase PEB %d", pnum);
339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
341 if (ubi->ro_mode) {
342 ubi_err("read-only mode");
343 return -EROFS;
346 retry:
347 init_waitqueue_head(&wq);
348 memset(&ei, 0, sizeof(struct erase_info));
350 ei.mtd = ubi->mtd;
351 ei.addr = (loff_t)pnum * ubi->peb_size;
352 ei.len = ubi->peb_size;
353 ei.callback = erase_callback;
354 ei.priv = (unsigned long)&wq;
356 err = mtd_erase(ubi->mtd, &ei);
357 if (err) {
358 if (retries++ < UBI_IO_RETRIES) {
359 ubi_warn("error %d while erasing PEB %d, retry",
360 err, pnum);
361 yield();
362 goto retry;
364 ubi_err("cannot erase PEB %d, error %d", pnum, err);
365 dump_stack();
366 return err;
369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 ei.state == MTD_ERASE_FAILED);
371 if (err) {
372 ubi_err("interrupted PEB %d erasure", pnum);
373 return -EINTR;
376 if (ei.state == MTD_ERASE_FAILED) {
377 if (retries++ < UBI_IO_RETRIES) {
378 ubi_warn("error while erasing PEB %d, retry", pnum);
379 yield();
380 goto retry;
382 ubi_err("cannot erase PEB %d", pnum);
383 dump_stack();
384 return -EIO;
387 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
388 if (err)
389 return err;
391 if (ubi_dbg_is_erase_failure(ubi)) {
392 ubi_err("cannot erase PEB %d (emulated)", pnum);
393 return -EIO;
396 return 0;
399 /* Patterns to write to a physical eraseblock when torturing it */
400 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
403 * torture_peb - test a supposedly bad physical eraseblock.
404 * @ubi: UBI device description object
405 * @pnum: the physical eraseblock number to test
407 * This function returns %-EIO if the physical eraseblock did not pass the
408 * test, a positive number of erase operations done if the test was
409 * successfully passed, and other negative error codes in case of other errors.
411 static int torture_peb(struct ubi_device *ubi, int pnum)
413 int err, i, patt_count;
415 ubi_msg("run torture test for PEB %d", pnum);
416 patt_count = ARRAY_SIZE(patterns);
417 ubi_assert(patt_count > 0);
419 mutex_lock(&ubi->buf_mutex);
420 for (i = 0; i < patt_count; i++) {
421 err = do_sync_erase(ubi, pnum);
422 if (err)
423 goto out;
425 /* Make sure the PEB contains only 0xFF bytes */
426 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
427 if (err)
428 goto out;
430 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
431 if (err == 0) {
432 ubi_err("erased PEB %d, but a non-0xFF byte found",
433 pnum);
434 err = -EIO;
435 goto out;
438 /* Write a pattern and check it */
439 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
440 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
441 if (err)
442 goto out;
444 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
445 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
446 if (err)
447 goto out;
449 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
450 ubi->peb_size);
451 if (err == 0) {
452 ubi_err("pattern %x checking failed for PEB %d",
453 patterns[i], pnum);
454 err = -EIO;
455 goto out;
459 err = patt_count;
460 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
462 out:
463 mutex_unlock(&ubi->buf_mutex);
464 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466 * If a bit-flip or data integrity error was detected, the test
467 * has not passed because it happened on a freshly erased
468 * physical eraseblock which means something is wrong with it.
470 ubi_err("read problems on freshly erased PEB %d, must be bad",
471 pnum);
472 err = -EIO;
474 return err;
478 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
479 * @ubi: UBI device description object
480 * @pnum: physical eraseblock number to prepare
482 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
483 * algorithm: the PEB is first filled with zeroes, then it is erased. And
484 * filling with zeroes starts from the end of the PEB. This was observed with
485 * Spansion S29GL512N NOR flash.
487 * This means that in case of a power cut we may end up with intact data at the
488 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
489 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
490 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
491 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
494 * magic numbers in order to invalidate them and prevent the failures. Returns
495 * zero in case of success and a negative error code in case of failure.
497 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499 int err, err1;
500 size_t written;
501 loff_t addr;
502 uint32_t data = 0;
504 * Note, we cannot generally define VID header buffers on stack,
505 * because of the way we deal with these buffers (see the header
506 * comment in this file). But we know this is a NOR-specific piece of
507 * code, so we can do this. But yes, this is error-prone and we should
508 * (pre-)allocate VID header buffer instead.
510 struct ubi_vid_hdr vid_hdr;
513 * It is important to first invalidate the EC header, and then the VID
514 * header. Otherwise a power cut may lead to valid EC header and
515 * invalid VID header, in which case UBI will treat this PEB as
516 * corrupted and will try to preserve it, and print scary warnings.
518 addr = (loff_t)pnum * ubi->peb_size;
519 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
520 if (!err) {
521 addr += ubi->vid_hdr_aloffset;
522 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
523 if (!err)
524 return 0;
528 * We failed to write to the media. This was observed with Spansion
529 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
530 * was interrupted at a very inappropriate moment, so it became
531 * unwritable. In this case we probably anyway have garbage in this
532 * PEB.
534 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
535 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
536 err1 == UBI_IO_FF) {
537 struct ubi_ec_hdr ec_hdr;
539 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
540 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
541 err1 == UBI_IO_FF)
543 * Both VID and EC headers are corrupted, so we can
544 * safely erase this PEB and not afraid that it will be
545 * treated as a valid PEB in case of an unclean reboot.
547 return 0;
551 * The PEB contains a valid VID header, but we cannot invalidate it.
552 * Supposedly the flash media or the driver is screwed up, so return an
553 * error.
555 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
556 pnum, err, err1);
557 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
558 return -EIO;
562 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
563 * @ubi: UBI device description object
564 * @pnum: physical eraseblock number to erase
565 * @torture: if this physical eraseblock has to be tortured
567 * This function synchronously erases physical eraseblock @pnum. If @torture
568 * flag is not zero, the physical eraseblock is checked by means of writing
569 * different patterns to it and reading them back. If the torturing is enabled,
570 * the physical eraseblock is erased more than once.
572 * This function returns the number of erasures made in case of success, %-EIO
573 * if the erasure failed or the torturing test failed, and other negative error
574 * codes in case of other errors. Note, %-EIO means that the physical
575 * eraseblock is bad.
577 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
579 int err, ret = 0;
581 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
583 err = self_check_not_bad(ubi, pnum);
584 if (err != 0)
585 return err;
587 if (ubi->ro_mode) {
588 ubi_err("read-only mode");
589 return -EROFS;
592 if (ubi->nor_flash) {
593 err = nor_erase_prepare(ubi, pnum);
594 if (err)
595 return err;
598 if (torture) {
599 ret = torture_peb(ubi, pnum);
600 if (ret < 0)
601 return ret;
604 err = do_sync_erase(ubi, pnum);
605 if (err)
606 return err;
608 return ret + 1;
612 * ubi_io_is_bad - check if a physical eraseblock is bad.
613 * @ubi: UBI device description object
614 * @pnum: the physical eraseblock number to check
616 * This function returns a positive number if the physical eraseblock is bad,
617 * zero if not, and a negative error code if an error occurred.
619 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
621 struct mtd_info *mtd = ubi->mtd;
623 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
625 if (ubi->bad_allowed) {
626 int ret;
628 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
629 if (ret < 0)
630 ubi_err("error %d while checking if PEB %d is bad",
631 ret, pnum);
632 else if (ret)
633 dbg_io("PEB %d is bad", pnum);
634 return ret;
637 return 0;
641 * ubi_io_mark_bad - mark a physical eraseblock as bad.
642 * @ubi: UBI device description object
643 * @pnum: the physical eraseblock number to mark
645 * This function returns zero in case of success and a negative error code in
646 * case of failure.
648 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
650 int err;
651 struct mtd_info *mtd = ubi->mtd;
653 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
655 if (ubi->ro_mode) {
656 ubi_err("read-only mode");
657 return -EROFS;
660 if (!ubi->bad_allowed)
661 return 0;
663 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
664 if (err)
665 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
666 return err;
670 * validate_ec_hdr - validate an erase counter header.
671 * @ubi: UBI device description object
672 * @ec_hdr: the erase counter header to check
674 * This function returns zero if the erase counter header is OK, and %1 if
675 * not.
677 static int validate_ec_hdr(const struct ubi_device *ubi,
678 const struct ubi_ec_hdr *ec_hdr)
680 long long ec;
681 int vid_hdr_offset, leb_start;
683 ec = be64_to_cpu(ec_hdr->ec);
684 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
685 leb_start = be32_to_cpu(ec_hdr->data_offset);
687 if (ec_hdr->version != UBI_VERSION) {
688 ubi_err("node with incompatible UBI version found: "
689 "this UBI version is %d, image version is %d",
690 UBI_VERSION, (int)ec_hdr->version);
691 goto bad;
694 if (vid_hdr_offset != ubi->vid_hdr_offset) {
695 ubi_err("bad VID header offset %d, expected %d",
696 vid_hdr_offset, ubi->vid_hdr_offset);
697 goto bad;
700 if (leb_start != ubi->leb_start) {
701 ubi_err("bad data offset %d, expected %d",
702 leb_start, ubi->leb_start);
703 goto bad;
706 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
707 ubi_err("bad erase counter %lld", ec);
708 goto bad;
711 return 0;
713 bad:
714 ubi_err("bad EC header");
715 ubi_dump_ec_hdr(ec_hdr);
716 dump_stack();
717 return 1;
721 * ubi_io_read_ec_hdr - read and check an erase counter header.
722 * @ubi: UBI device description object
723 * @pnum: physical eraseblock to read from
724 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
725 * header
726 * @verbose: be verbose if the header is corrupted or was not found
728 * This function reads erase counter header from physical eraseblock @pnum and
729 * stores it in @ec_hdr. This function also checks CRC checksum of the read
730 * erase counter header. The following codes may be returned:
732 * o %0 if the CRC checksum is correct and the header was successfully read;
733 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
734 * and corrected by the flash driver; this is harmless but may indicate that
735 * this eraseblock may become bad soon (but may be not);
736 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
737 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
738 * a data integrity error (uncorrectable ECC error in case of NAND);
739 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
740 * o a negative error code in case of failure.
742 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
743 struct ubi_ec_hdr *ec_hdr, int verbose)
745 int err, read_err;
746 uint32_t crc, magic, hdr_crc;
748 dbg_io("read EC header from PEB %d", pnum);
749 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
751 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
752 if (read_err) {
753 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
754 return read_err;
757 * We read all the data, but either a correctable bit-flip
758 * occurred, or MTD reported a data integrity error
759 * (uncorrectable ECC error in case of NAND). The former is
760 * harmless, the later may mean that the read data is
761 * corrupted. But we have a CRC check-sum and we will detect
762 * this. If the EC header is still OK, we just report this as
763 * there was a bit-flip, to force scrubbing.
767 magic = be32_to_cpu(ec_hdr->magic);
768 if (magic != UBI_EC_HDR_MAGIC) {
769 if (mtd_is_eccerr(read_err))
770 return UBI_IO_BAD_HDR_EBADMSG;
773 * The magic field is wrong. Let's check if we have read all
774 * 0xFF. If yes, this physical eraseblock is assumed to be
775 * empty.
777 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
778 /* The physical eraseblock is supposedly empty */
779 if (verbose)
780 ubi_warn("no EC header found at PEB %d, "
781 "only 0xFF bytes", pnum);
782 dbg_bld("no EC header found at PEB %d, "
783 "only 0xFF bytes", pnum);
784 if (!read_err)
785 return UBI_IO_FF;
786 else
787 return UBI_IO_FF_BITFLIPS;
791 * This is not a valid erase counter header, and these are not
792 * 0xFF bytes. Report that the header is corrupted.
794 if (verbose) {
795 ubi_warn("bad magic number at PEB %d: %08x instead of "
796 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
797 ubi_dump_ec_hdr(ec_hdr);
799 dbg_bld("bad magic number at PEB %d: %08x instead of "
800 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801 return UBI_IO_BAD_HDR;
804 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
805 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
807 if (hdr_crc != crc) {
808 if (verbose) {
809 ubi_warn("bad EC header CRC at PEB %d, calculated "
810 "%#08x, read %#08x", pnum, crc, hdr_crc);
811 ubi_dump_ec_hdr(ec_hdr);
813 dbg_bld("bad EC header CRC at PEB %d, calculated "
814 "%#08x, read %#08x", pnum, crc, hdr_crc);
816 if (!read_err)
817 return UBI_IO_BAD_HDR;
818 else
819 return UBI_IO_BAD_HDR_EBADMSG;
822 /* And of course validate what has just been read from the media */
823 err = validate_ec_hdr(ubi, ec_hdr);
824 if (err) {
825 ubi_err("validation failed for PEB %d", pnum);
826 return -EINVAL;
830 * If there was %-EBADMSG, but the header CRC is still OK, report about
831 * a bit-flip to force scrubbing on this PEB.
833 return read_err ? UBI_IO_BITFLIPS : 0;
837 * ubi_io_write_ec_hdr - write an erase counter header.
838 * @ubi: UBI device description object
839 * @pnum: physical eraseblock to write to
840 * @ec_hdr: the erase counter header to write
842 * This function writes erase counter header described by @ec_hdr to physical
843 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
844 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
845 * field.
847 * This function returns zero in case of success and a negative error code in
848 * case of failure. If %-EIO is returned, the physical eraseblock most probably
849 * went bad.
851 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
852 struct ubi_ec_hdr *ec_hdr)
854 int err;
855 uint32_t crc;
857 dbg_io("write EC header to PEB %d", pnum);
858 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
860 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
861 ec_hdr->version = UBI_VERSION;
862 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
863 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
864 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
865 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
866 ec_hdr->hdr_crc = cpu_to_be32(crc);
868 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
869 if (err)
870 return err;
872 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
873 return err;
877 * validate_vid_hdr - validate a volume identifier header.
878 * @ubi: UBI device description object
879 * @vid_hdr: the volume identifier header to check
881 * This function checks that data stored in the volume identifier header
882 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
884 static int validate_vid_hdr(const struct ubi_device *ubi,
885 const struct ubi_vid_hdr *vid_hdr)
887 int vol_type = vid_hdr->vol_type;
888 int copy_flag = vid_hdr->copy_flag;
889 int vol_id = be32_to_cpu(vid_hdr->vol_id);
890 int lnum = be32_to_cpu(vid_hdr->lnum);
891 int compat = vid_hdr->compat;
892 int data_size = be32_to_cpu(vid_hdr->data_size);
893 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
894 int data_pad = be32_to_cpu(vid_hdr->data_pad);
895 int data_crc = be32_to_cpu(vid_hdr->data_crc);
896 int usable_leb_size = ubi->leb_size - data_pad;
898 if (copy_flag != 0 && copy_flag != 1) {
899 ubi_err("bad copy_flag");
900 goto bad;
903 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
904 data_pad < 0) {
905 ubi_err("negative values");
906 goto bad;
909 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
910 ubi_err("bad vol_id");
911 goto bad;
914 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
915 ubi_err("bad compat");
916 goto bad;
919 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
920 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
921 compat != UBI_COMPAT_REJECT) {
922 ubi_err("bad compat");
923 goto bad;
926 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
927 ubi_err("bad vol_type");
928 goto bad;
931 if (data_pad >= ubi->leb_size / 2) {
932 ubi_err("bad data_pad");
933 goto bad;
936 if (vol_type == UBI_VID_STATIC) {
938 * Although from high-level point of view static volumes may
939 * contain zero bytes of data, but no VID headers can contain
940 * zero at these fields, because they empty volumes do not have
941 * mapped logical eraseblocks.
943 if (used_ebs == 0) {
944 ubi_err("zero used_ebs");
945 goto bad;
947 if (data_size == 0) {
948 ubi_err("zero data_size");
949 goto bad;
951 if (lnum < used_ebs - 1) {
952 if (data_size != usable_leb_size) {
953 ubi_err("bad data_size");
954 goto bad;
956 } else if (lnum == used_ebs - 1) {
957 if (data_size == 0) {
958 ubi_err("bad data_size at last LEB");
959 goto bad;
961 } else {
962 ubi_err("too high lnum");
963 goto bad;
965 } else {
966 if (copy_flag == 0) {
967 if (data_crc != 0) {
968 ubi_err("non-zero data CRC");
969 goto bad;
971 if (data_size != 0) {
972 ubi_err("non-zero data_size");
973 goto bad;
975 } else {
976 if (data_size == 0) {
977 ubi_err("zero data_size of copy");
978 goto bad;
981 if (used_ebs != 0) {
982 ubi_err("bad used_ebs");
983 goto bad;
987 return 0;
989 bad:
990 ubi_err("bad VID header");
991 ubi_dump_vid_hdr(vid_hdr);
992 dump_stack();
993 return 1;
997 * ubi_io_read_vid_hdr - read and check a volume identifier header.
998 * @ubi: UBI device description object
999 * @pnum: physical eraseblock number to read from
1000 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1001 * identifier header
1002 * @verbose: be verbose if the header is corrupted or wasn't found
1004 * This function reads the volume identifier header from physical eraseblock
1005 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1006 * volume identifier header. The error codes are the same as in
1007 * 'ubi_io_read_ec_hdr()'.
1009 * Note, the implementation of this function is also very similar to
1010 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1012 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1013 struct ubi_vid_hdr *vid_hdr, int verbose)
1015 int err, read_err;
1016 uint32_t crc, magic, hdr_crc;
1017 void *p;
1019 dbg_io("read VID header from PEB %d", pnum);
1020 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1022 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1023 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1024 ubi->vid_hdr_alsize);
1025 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1026 return read_err;
1028 magic = be32_to_cpu(vid_hdr->magic);
1029 if (magic != UBI_VID_HDR_MAGIC) {
1030 if (mtd_is_eccerr(read_err))
1031 return UBI_IO_BAD_HDR_EBADMSG;
1033 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1034 if (verbose)
1035 ubi_warn("no VID header found at PEB %d, "
1036 "only 0xFF bytes", pnum);
1037 dbg_bld("no VID header found at PEB %d, "
1038 "only 0xFF bytes", pnum);
1039 if (!read_err)
1040 return UBI_IO_FF;
1041 else
1042 return UBI_IO_FF_BITFLIPS;
1045 if (verbose) {
1046 ubi_warn("bad magic number at PEB %d: %08x instead of "
1047 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1048 ubi_dump_vid_hdr(vid_hdr);
1050 dbg_bld("bad magic number at PEB %d: %08x instead of "
1051 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1052 return UBI_IO_BAD_HDR;
1055 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1056 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1058 if (hdr_crc != crc) {
1059 if (verbose) {
1060 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1061 "read %#08x", pnum, crc, hdr_crc);
1062 ubi_dump_vid_hdr(vid_hdr);
1064 dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1065 "read %#08x", pnum, crc, hdr_crc);
1066 if (!read_err)
1067 return UBI_IO_BAD_HDR;
1068 else
1069 return UBI_IO_BAD_HDR_EBADMSG;
1072 err = validate_vid_hdr(ubi, vid_hdr);
1073 if (err) {
1074 ubi_err("validation failed for PEB %d", pnum);
1075 return -EINVAL;
1078 return read_err ? UBI_IO_BITFLIPS : 0;
1082 * ubi_io_write_vid_hdr - write a volume identifier header.
1083 * @ubi: UBI device description object
1084 * @pnum: the physical eraseblock number to write to
1085 * @vid_hdr: the volume identifier header to write
1087 * This function writes the volume identifier header described by @vid_hdr to
1088 * physical eraseblock @pnum. This function automatically fills the
1089 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1090 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1092 * This function returns zero in case of success and a negative error code in
1093 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1094 * bad.
1096 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1097 struct ubi_vid_hdr *vid_hdr)
1099 int err;
1100 uint32_t crc;
1101 void *p;
1103 dbg_io("write VID header to PEB %d", pnum);
1104 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1106 err = self_check_peb_ec_hdr(ubi, pnum);
1107 if (err)
1108 return err;
1110 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1111 vid_hdr->version = UBI_VERSION;
1112 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1113 vid_hdr->hdr_crc = cpu_to_be32(crc);
1115 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1116 if (err)
1117 return err;
1119 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1120 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1121 ubi->vid_hdr_alsize);
1122 return err;
1126 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1127 * @ubi: UBI device description object
1128 * @pnum: physical eraseblock number to check
1130 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1131 * it is bad and a negative error code if an error occurred.
1133 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1135 int err;
1137 if (!ubi->dbg->chk_io)
1138 return 0;
1140 err = ubi_io_is_bad(ubi, pnum);
1141 if (!err)
1142 return err;
1144 ubi_err("self-check failed for PEB %d", pnum);
1145 dump_stack();
1146 return err > 0 ? -EINVAL : err;
1150 * self_check_ec_hdr - check if an erase counter header is all right.
1151 * @ubi: UBI device description object
1152 * @pnum: physical eraseblock number the erase counter header belongs to
1153 * @ec_hdr: the erase counter header to check
1155 * This function returns zero if the erase counter header contains valid
1156 * values, and %-EINVAL if not.
1158 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1159 const struct ubi_ec_hdr *ec_hdr)
1161 int err;
1162 uint32_t magic;
1164 if (!ubi->dbg->chk_io)
1165 return 0;
1167 magic = be32_to_cpu(ec_hdr->magic);
1168 if (magic != UBI_EC_HDR_MAGIC) {
1169 ubi_err("bad magic %#08x, must be %#08x",
1170 magic, UBI_EC_HDR_MAGIC);
1171 goto fail;
1174 err = validate_ec_hdr(ubi, ec_hdr);
1175 if (err) {
1176 ubi_err("self-check failed for PEB %d", pnum);
1177 goto fail;
1180 return 0;
1182 fail:
1183 ubi_dump_ec_hdr(ec_hdr);
1184 dump_stack();
1185 return -EINVAL;
1189 * self_check_peb_ec_hdr - check erase counter header.
1190 * @ubi: UBI device description object
1191 * @pnum: the physical eraseblock number to check
1193 * This function returns zero if the erase counter header is all right and and
1194 * a negative error code if not or if an error occurred.
1196 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1198 int err;
1199 uint32_t crc, hdr_crc;
1200 struct ubi_ec_hdr *ec_hdr;
1202 if (!ubi->dbg->chk_io)
1203 return 0;
1205 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1206 if (!ec_hdr)
1207 return -ENOMEM;
1209 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1210 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1211 goto exit;
1213 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1214 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1215 if (hdr_crc != crc) {
1216 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1217 ubi_err("self-check failed for PEB %d", pnum);
1218 ubi_dump_ec_hdr(ec_hdr);
1219 dump_stack();
1220 err = -EINVAL;
1221 goto exit;
1224 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1226 exit:
1227 kfree(ec_hdr);
1228 return err;
1232 * self_check_vid_hdr - check that a volume identifier header is all right.
1233 * @ubi: UBI device description object
1234 * @pnum: physical eraseblock number the volume identifier header belongs to
1235 * @vid_hdr: the volume identifier header to check
1237 * This function returns zero if the volume identifier header is all right, and
1238 * %-EINVAL if not.
1240 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1241 const struct ubi_vid_hdr *vid_hdr)
1243 int err;
1244 uint32_t magic;
1246 if (!ubi->dbg->chk_io)
1247 return 0;
1249 magic = be32_to_cpu(vid_hdr->magic);
1250 if (magic != UBI_VID_HDR_MAGIC) {
1251 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1252 magic, pnum, UBI_VID_HDR_MAGIC);
1253 goto fail;
1256 err = validate_vid_hdr(ubi, vid_hdr);
1257 if (err) {
1258 ubi_err("self-check failed for PEB %d", pnum);
1259 goto fail;
1262 return err;
1264 fail:
1265 ubi_err("self-check failed for PEB %d", pnum);
1266 ubi_dump_vid_hdr(vid_hdr);
1267 dump_stack();
1268 return -EINVAL;
1273 * self_check_peb_vid_hdr - check volume identifier header.
1274 * @ubi: UBI device description object
1275 * @pnum: the physical eraseblock number to check
1277 * This function returns zero if the volume identifier header is all right,
1278 * and a negative error code if not or if an error occurred.
1280 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1282 int err;
1283 uint32_t crc, hdr_crc;
1284 struct ubi_vid_hdr *vid_hdr;
1285 void *p;
1287 if (!ubi->dbg->chk_io)
1288 return 0;
1290 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1291 if (!vid_hdr)
1292 return -ENOMEM;
1294 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1295 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1296 ubi->vid_hdr_alsize);
1297 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1298 goto exit;
1300 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1301 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1302 if (hdr_crc != crc) {
1303 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1304 "read %#08x", pnum, crc, hdr_crc);
1305 ubi_err("self-check failed for PEB %d", pnum);
1306 ubi_dump_vid_hdr(vid_hdr);
1307 dump_stack();
1308 err = -EINVAL;
1309 goto exit;
1312 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1314 exit:
1315 ubi_free_vid_hdr(ubi, vid_hdr);
1316 return err;
1320 * self_check_write - make sure write succeeded.
1321 * @ubi: UBI device description object
1322 * @buf: buffer with data which were written
1323 * @pnum: physical eraseblock number the data were written to
1324 * @offset: offset within the physical eraseblock the data were written to
1325 * @len: how many bytes were written
1327 * This functions reads data which were recently written and compares it with
1328 * the original data buffer - the data have to match. Returns zero if the data
1329 * match and a negative error code if not or in case of failure.
1331 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1332 int offset, int len)
1334 int err, i;
1335 size_t read;
1336 void *buf1;
1337 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1339 if (!ubi->dbg->chk_io)
1340 return 0;
1342 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1343 if (!buf1) {
1344 ubi_err("cannot allocate memory to check writes");
1345 return 0;
1348 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1349 if (err && !mtd_is_bitflip(err))
1350 goto out_free;
1352 for (i = 0; i < len; i++) {
1353 uint8_t c = ((uint8_t *)buf)[i];
1354 uint8_t c1 = ((uint8_t *)buf1)[i];
1355 int dump_len;
1357 if (c == c1)
1358 continue;
1360 ubi_err("self-check failed for PEB %d:%d, len %d",
1361 pnum, offset, len);
1362 ubi_msg("data differ at position %d", i);
1363 dump_len = max_t(int, 128, len - i);
1364 ubi_msg("hex dump of the original buffer from %d to %d",
1365 i, i + dump_len);
1366 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1367 buf + i, dump_len, 1);
1368 ubi_msg("hex dump of the read buffer from %d to %d",
1369 i, i + dump_len);
1370 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1371 buf1 + i, dump_len, 1);
1372 dump_stack();
1373 err = -EINVAL;
1374 goto out_free;
1377 vfree(buf1);
1378 return 0;
1380 out_free:
1381 vfree(buf1);
1382 return err;
1386 * ubi_self_check_all_ff - check that a region of flash is empty.
1387 * @ubi: UBI device description object
1388 * @pnum: the physical eraseblock number to check
1389 * @offset: the starting offset within the physical eraseblock to check
1390 * @len: the length of the region to check
1392 * This function returns zero if only 0xFF bytes are present at offset
1393 * @offset of the physical eraseblock @pnum, and a negative error code if not
1394 * or if an error occurred.
1396 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1398 size_t read;
1399 int err;
1400 void *buf;
1401 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1403 if (!ubi->dbg->chk_io)
1404 return 0;
1406 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1407 if (!buf) {
1408 ubi_err("cannot allocate memory to check for 0xFFs");
1409 return 0;
1412 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1413 if (err && !mtd_is_bitflip(err)) {
1414 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1415 "read %zd bytes", err, len, pnum, offset, read);
1416 goto error;
1419 err = ubi_check_pattern(buf, 0xFF, len);
1420 if (err == 0) {
1421 ubi_err("flash region at PEB %d:%d, length %d does not "
1422 "contain all 0xFF bytes", pnum, offset, len);
1423 goto fail;
1426 vfree(buf);
1427 return 0;
1429 fail:
1430 ubi_err("self-check failed for PEB %d", pnum);
1431 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1432 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1433 err = -EINVAL;
1434 error:
1435 dump_stack();
1436 vfree(buf);
1437 return err;