2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
23 * UBI wear-leveling sub-system.
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48 * in a physical eraseblock, it has to be moved. Technically this is the same
49 * as moving it for wear-leveling reasons.
51 * As it was said, for the UBI sub-system all physical eraseblocks are either
52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54 * RB-trees, as well as (temporarily) in the @wl->pq queue.
56 * When the WL sub-system returns a physical eraseblock, the physical
57 * eraseblock is protected from being moved for some "time". For this reason,
58 * the physical eraseblock is not directly moved from the @wl->free tree to the
59 * @wl->used tree. There is a protection queue in between where this
60 * physical eraseblock is temporarily stored (@wl->pq).
62 * All this protection stuff is needed because:
63 * o we don't want to move physical eraseblocks just after we have given them
64 * to the user; instead, we first want to let users fill them up with data;
66 * o there is a chance that the user will put the physical eraseblock very
67 * soon, so it makes sense not to move it for some time, but wait.
69 * Physical eraseblocks stay protected only for limited time. But the "time" is
70 * measured in erase cycles in this case. This is implemented with help of the
71 * protection queue. Eraseblocks are put to the tail of this queue when they
72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73 * head of the queue on each erase operation (for any eraseblock). So the
74 * length of the queue defines how may (global) erase cycles PEBs are protected.
76 * To put it differently, each physical eraseblock has 2 main states: free and
77 * used. The former state corresponds to the @wl->free tree. The latter state
78 * is split up on several sub-states:
79 * o the WL movement is allowed (@wl->used tree);
80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81 * erroneous - e.g., there was a read error;
82 * o the WL movement is temporarily prohibited (@wl->pq queue);
83 * o scrubbing is needed (@wl->scrub tree).
85 * Depending on the sub-state, wear-leveling entries of the used physical
86 * eraseblocks may be kept in one of those structures.
88 * Note, in this implementation, we keep a small in-RAM object for each physical
89 * eraseblock. This is surely not a scalable solution. But it appears to be good
90 * enough for moderately large flashes and it is simple. In future, one may
91 * re-work this sub-system and make it more scalable.
93 * At the moment this sub-system does not utilize the sequence number, which
94 * was introduced relatively recently. But it would be wise to do this because
95 * the sequence number of a logical eraseblock characterizes how old is it. For
96 * example, when we move a PEB with low erase counter, and we need to pick the
97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98 * pick target PEB with an average EC if our PEB is not very "old". This is a
99 * room for future re-works of the WL sub-system.
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
136 #define WL_MAX_FAILURES 32
139 * struct ubi_work - UBI work description data structure.
140 * @list: a link in the list of pending works
141 * @func: worker function
142 * @e: physical eraseblock to erase
143 * @vol_id: the volume ID on which this erasure is being performed
144 * @lnum: the logical eraseblock number
145 * @torture: if the physical eraseblock has to be tortured
147 * The @func pointer points to the worker function. If the @cancel argument is
148 * not zero, the worker has to free the resources and exit immediately. The
149 * worker has to return zero in case of success and a negative error code in
153 struct list_head list
;
154 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
155 /* The below fields are only relevant to erasure works */
156 struct ubi_wl_entry
*e
;
162 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
163 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
164 struct ubi_wl_entry
*e
, struct rb_root
*root
);
165 static int self_check_in_pq(const struct ubi_device
*ubi
,
166 struct ubi_wl_entry
*e
);
169 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
170 * @e: the wear-leveling entry to add
171 * @root: the root of the tree
173 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
174 * the @ubi->used and @ubi->free RB-trees.
176 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
178 struct rb_node
**p
, *parent
= NULL
;
182 struct ubi_wl_entry
*e1
;
185 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
189 else if (e
->ec
> e1
->ec
)
192 ubi_assert(e
->pnum
!= e1
->pnum
);
193 if (e
->pnum
< e1
->pnum
)
200 rb_link_node(&e
->u
.rb
, parent
, p
);
201 rb_insert_color(&e
->u
.rb
, root
);
205 * do_work - do one pending work.
206 * @ubi: UBI device description object
208 * This function returns zero in case of success and a negative error code in
211 static int do_work(struct ubi_device
*ubi
)
214 struct ubi_work
*wrk
;
219 * @ubi->work_sem is used to synchronize with the workers. Workers take
220 * it in read mode, so many of them may be doing works at a time. But
221 * the queue flush code has to be sure the whole queue of works is
222 * done, and it takes the mutex in write mode.
224 down_read(&ubi
->work_sem
);
225 spin_lock(&ubi
->wl_lock
);
226 if (list_empty(&ubi
->works
)) {
227 spin_unlock(&ubi
->wl_lock
);
228 up_read(&ubi
->work_sem
);
232 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
233 list_del(&wrk
->list
);
234 ubi
->works_count
-= 1;
235 ubi_assert(ubi
->works_count
>= 0);
236 spin_unlock(&ubi
->wl_lock
);
239 * Call the worker function. Do not touch the work structure
240 * after this call as it will have been freed or reused by that
241 * time by the worker function.
243 err
= wrk
->func(ubi
, wrk
, 0);
245 ubi_err("work failed with error code %d", err
);
246 up_read(&ubi
->work_sem
);
252 * produce_free_peb - produce a free physical eraseblock.
253 * @ubi: UBI device description object
255 * This function tries to make a free PEB by means of synchronous execution of
256 * pending works. This may be needed if, for example the background thread is
257 * disabled. Returns zero in case of success and a negative error code in case
260 static int produce_free_peb(struct ubi_device
*ubi
)
264 spin_lock(&ubi
->wl_lock
);
265 while (!ubi
->free
.rb_node
) {
266 spin_unlock(&ubi
->wl_lock
);
268 dbg_wl("do one work synchronously");
273 spin_lock(&ubi
->wl_lock
);
275 spin_unlock(&ubi
->wl_lock
);
281 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
282 * @e: the wear-leveling entry to check
283 * @root: the root of the tree
285 * This function returns non-zero if @e is in the @root RB-tree and zero if it
288 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
294 struct ubi_wl_entry
*e1
;
296 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
298 if (e
->pnum
== e1
->pnum
) {
305 else if (e
->ec
> e1
->ec
)
308 ubi_assert(e
->pnum
!= e1
->pnum
);
309 if (e
->pnum
< e1
->pnum
)
320 * prot_queue_add - add physical eraseblock to the protection queue.
321 * @ubi: UBI device description object
322 * @e: the physical eraseblock to add
324 * This function adds @e to the tail of the protection queue @ubi->pq, where
325 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
326 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
329 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
331 int pq_tail
= ubi
->pq_head
- 1;
334 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
335 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
336 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
337 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
341 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
342 * @root: the RB-tree where to look for
343 * @diff: maximum possible difference from the smallest erase counter
345 * This function looks for a wear leveling entry with erase counter closest to
346 * min + @diff, where min is the smallest erase counter.
348 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int diff
)
351 struct ubi_wl_entry
*e
;
354 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
359 struct ubi_wl_entry
*e1
;
361 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
374 * ubi_wl_get_peb - get a physical eraseblock.
375 * @ubi: UBI device description object
377 * This function returns a physical eraseblock in case of success and a
378 * negative error code in case of failure. Might sleep.
380 int ubi_wl_get_peb(struct ubi_device
*ubi
)
383 struct ubi_wl_entry
*e
, *first
, *last
;
386 spin_lock(&ubi
->wl_lock
);
387 if (!ubi
->free
.rb_node
) {
388 if (ubi
->works_count
== 0) {
389 ubi_assert(list_empty(&ubi
->works
));
390 ubi_err("no free eraseblocks");
391 spin_unlock(&ubi
->wl_lock
);
394 spin_unlock(&ubi
->wl_lock
);
396 err
= produce_free_peb(ubi
);
402 first
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
403 last
= rb_entry(rb_last(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
405 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
406 e
= rb_entry(ubi
->free
.rb_node
, struct ubi_wl_entry
, u
.rb
);
408 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
/2);
410 self_check_in_wl_tree(ubi
, e
, &ubi
->free
);
413 * Move the physical eraseblock to the protection queue where it will
414 * be protected from being moved for some time.
416 rb_erase(&e
->u
.rb
, &ubi
->free
);
417 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
418 prot_queue_add(ubi
, e
);
419 spin_unlock(&ubi
->wl_lock
);
421 err
= ubi_self_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
422 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
424 ubi_err("new PEB %d does not contain all 0xFF bytes", e
->pnum
);
432 * prot_queue_del - remove a physical eraseblock from the protection queue.
433 * @ubi: UBI device description object
434 * @pnum: the physical eraseblock to remove
436 * This function deletes PEB @pnum from the protection queue and returns zero
437 * in case of success and %-ENODEV if the PEB was not found.
439 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
441 struct ubi_wl_entry
*e
;
443 e
= ubi
->lookuptbl
[pnum
];
447 if (self_check_in_pq(ubi
, e
))
450 list_del(&e
->u
.list
);
451 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
456 * sync_erase - synchronously erase a physical eraseblock.
457 * @ubi: UBI device description object
458 * @e: the the physical eraseblock to erase
459 * @torture: if the physical eraseblock has to be tortured
461 * This function returns zero in case of success and a negative error code in
464 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
468 struct ubi_ec_hdr
*ec_hdr
;
469 unsigned long long ec
= e
->ec
;
471 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
473 err
= self_check_ec(ubi
, e
->pnum
, e
->ec
);
477 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
481 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
486 if (ec
> UBI_MAX_ERASECOUNTER
) {
488 * Erase counter overflow. Upgrade UBI and use 64-bit
489 * erase counters internally.
491 ubi_err("erase counter overflow at PEB %d, EC %llu",
497 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
499 ec_hdr
->ec
= cpu_to_be64(ec
);
501 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
506 spin_lock(&ubi
->wl_lock
);
507 if (e
->ec
> ubi
->max_ec
)
509 spin_unlock(&ubi
->wl_lock
);
517 * serve_prot_queue - check if it is time to stop protecting PEBs.
518 * @ubi: UBI device description object
520 * This function is called after each erase operation and removes PEBs from the
521 * tail of the protection queue. These PEBs have been protected for long enough
522 * and should be moved to the used tree.
524 static void serve_prot_queue(struct ubi_device
*ubi
)
526 struct ubi_wl_entry
*e
, *tmp
;
530 * There may be several protected physical eraseblock to remove,
535 spin_lock(&ubi
->wl_lock
);
536 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
537 dbg_wl("PEB %d EC %d protection over, move to used tree",
540 list_del(&e
->u
.list
);
541 wl_tree_add(e
, &ubi
->used
);
544 * Let's be nice and avoid holding the spinlock for
547 spin_unlock(&ubi
->wl_lock
);
554 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
556 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
557 spin_unlock(&ubi
->wl_lock
);
561 * schedule_ubi_work - schedule a work.
562 * @ubi: UBI device description object
563 * @wrk: the work to schedule
565 * This function adds a work defined by @wrk to the tail of the pending works
568 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
570 spin_lock(&ubi
->wl_lock
);
571 list_add_tail(&wrk
->list
, &ubi
->works
);
572 ubi_assert(ubi
->works_count
>= 0);
573 ubi
->works_count
+= 1;
574 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled(ubi
))
575 wake_up_process(ubi
->bgt_thread
);
576 spin_unlock(&ubi
->wl_lock
);
579 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
583 * schedule_erase - schedule an erase work.
584 * @ubi: UBI device description object
585 * @e: the WL entry of the physical eraseblock to erase
586 * @vol_id: the volume ID that last used this PEB
587 * @lnum: the last used logical eraseblock number for the PEB
588 * @torture: if the physical eraseblock has to be tortured
590 * This function returns zero in case of success and a %-ENOMEM in case of
593 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
594 int vol_id
, int lnum
, int torture
)
596 struct ubi_work
*wl_wrk
;
598 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
599 e
->pnum
, e
->ec
, torture
);
601 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
605 wl_wrk
->func
= &erase_worker
;
607 wl_wrk
->vol_id
= vol_id
;
609 wl_wrk
->torture
= torture
;
611 schedule_ubi_work(ubi
, wl_wrk
);
616 * wear_leveling_worker - wear-leveling worker function.
617 * @ubi: UBI device description object
618 * @wrk: the work object
619 * @cancel: non-zero if the worker has to free memory and exit
621 * This function copies a more worn out physical eraseblock to a less worn out
622 * one. Returns zero in case of success and a negative error code in case of
625 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
628 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
629 int vol_id
= -1, uninitialized_var(lnum
);
630 struct ubi_wl_entry
*e1
, *e2
;
631 struct ubi_vid_hdr
*vid_hdr
;
637 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
641 mutex_lock(&ubi
->move_mutex
);
642 spin_lock(&ubi
->wl_lock
);
643 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
644 ubi_assert(!ubi
->move_to_put
);
646 if (!ubi
->free
.rb_node
||
647 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
649 * No free physical eraseblocks? Well, they must be waiting in
650 * the queue to be erased. Cancel movement - it will be
651 * triggered again when a free physical eraseblock appears.
653 * No used physical eraseblocks? They must be temporarily
654 * protected from being moved. They will be moved to the
655 * @ubi->used tree later and the wear-leveling will be
658 dbg_wl("cancel WL, a list is empty: free %d, used %d",
659 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
663 if (!ubi
->scrub
.rb_node
) {
665 * Now pick the least worn-out used physical eraseblock and a
666 * highly worn-out free physical eraseblock. If the erase
667 * counters differ much enough, start wear-leveling.
669 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
670 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
672 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
673 dbg_wl("no WL needed: min used EC %d, max free EC %d",
677 self_check_in_wl_tree(ubi
, e1
, &ubi
->used
);
678 rb_erase(&e1
->u
.rb
, &ubi
->used
);
679 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
680 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
682 /* Perform scrubbing */
684 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
685 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
686 self_check_in_wl_tree(ubi
, e1
, &ubi
->scrub
);
687 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
688 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
691 self_check_in_wl_tree(ubi
, e2
, &ubi
->free
);
692 rb_erase(&e2
->u
.rb
, &ubi
->free
);
695 spin_unlock(&ubi
->wl_lock
);
698 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
699 * We so far do not know which logical eraseblock our physical
700 * eraseblock (@e1) belongs to. We have to read the volume identifier
703 * Note, we are protected from this PEB being unmapped and erased. The
704 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
705 * which is being moved was unmapped.
708 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
709 if (err
&& err
!= UBI_IO_BITFLIPS
) {
710 if (err
== UBI_IO_FF
) {
712 * We are trying to move PEB without a VID header. UBI
713 * always write VID headers shortly after the PEB was
714 * given, so we have a situation when it has not yet
715 * had a chance to write it, because it was preempted.
716 * So add this PEB to the protection queue so far,
717 * because presumably more data will be written there
718 * (including the missing VID header), and then we'll
721 dbg_wl("PEB %d has no VID header", e1
->pnum
);
724 } else if (err
== UBI_IO_FF_BITFLIPS
) {
726 * The same situation as %UBI_IO_FF, but bit-flips were
727 * detected. It is better to schedule this PEB for
730 dbg_wl("PEB %d has no VID header but has bit-flips",
736 ubi_err("error %d while reading VID header from PEB %d",
741 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
742 lnum
= be32_to_cpu(vid_hdr
->lnum
);
744 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
746 if (err
== MOVE_CANCEL_RACE
) {
748 * The LEB has not been moved because the volume is
749 * being deleted or the PEB has been put meanwhile. We
750 * should prevent this PEB from being selected for
751 * wear-leveling movement again, so put it to the
757 if (err
== MOVE_RETRY
) {
761 if (err
== MOVE_TARGET_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
762 err
== MOVE_TARGET_RD_ERR
) {
764 * Target PEB had bit-flips or write error - torture it.
770 if (err
== MOVE_SOURCE_RD_ERR
) {
772 * An error happened while reading the source PEB. Do
773 * not switch to R/O mode in this case, and give the
774 * upper layers a possibility to recover from this,
775 * e.g. by unmapping corresponding LEB. Instead, just
776 * put this PEB to the @ubi->erroneous list to prevent
777 * UBI from trying to move it over and over again.
779 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
780 ubi_err("too many erroneous eraseblocks (%d)",
781 ubi
->erroneous_peb_count
);
794 /* The PEB has been successfully moved */
796 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
797 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
798 ubi_free_vid_hdr(ubi
, vid_hdr
);
800 spin_lock(&ubi
->wl_lock
);
801 if (!ubi
->move_to_put
) {
802 wl_tree_add(e2
, &ubi
->used
);
805 ubi
->move_from
= ubi
->move_to
= NULL
;
806 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
807 spin_unlock(&ubi
->wl_lock
);
809 err
= schedule_erase(ubi
, e1
, vol_id
, lnum
, 0);
811 kmem_cache_free(ubi_wl_entry_slab
, e1
);
813 kmem_cache_free(ubi_wl_entry_slab
, e2
);
819 * Well, the target PEB was put meanwhile, schedule it for
822 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
823 e2
->pnum
, vol_id
, lnum
);
824 err
= schedule_erase(ubi
, e2
, vol_id
, lnum
, 0);
826 kmem_cache_free(ubi_wl_entry_slab
, e2
);
832 mutex_unlock(&ubi
->move_mutex
);
836 * For some reasons the LEB was not moved, might be an error, might be
837 * something else. @e1 was not changed, so return it back. @e2 might
838 * have been changed, schedule it for erasure.
842 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
843 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
845 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
846 e1
->pnum
, e2
->pnum
, err
);
847 spin_lock(&ubi
->wl_lock
);
849 prot_queue_add(ubi
, e1
);
850 else if (erroneous
) {
851 wl_tree_add(e1
, &ubi
->erroneous
);
852 ubi
->erroneous_peb_count
+= 1;
853 } else if (scrubbing
)
854 wl_tree_add(e1
, &ubi
->scrub
);
856 wl_tree_add(e1
, &ubi
->used
);
857 ubi_assert(!ubi
->move_to_put
);
858 ubi
->move_from
= ubi
->move_to
= NULL
;
859 ubi
->wl_scheduled
= 0;
860 spin_unlock(&ubi
->wl_lock
);
862 ubi_free_vid_hdr(ubi
, vid_hdr
);
863 err
= schedule_erase(ubi
, e2
, vol_id
, lnum
, torture
);
865 kmem_cache_free(ubi_wl_entry_slab
, e2
);
868 mutex_unlock(&ubi
->move_mutex
);
873 ubi_err("error %d while moving PEB %d to PEB %d",
874 err
, e1
->pnum
, e2
->pnum
);
876 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
877 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
878 spin_lock(&ubi
->wl_lock
);
879 ubi
->move_from
= ubi
->move_to
= NULL
;
880 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
881 spin_unlock(&ubi
->wl_lock
);
883 ubi_free_vid_hdr(ubi
, vid_hdr
);
884 kmem_cache_free(ubi_wl_entry_slab
, e1
);
885 kmem_cache_free(ubi_wl_entry_slab
, e2
);
889 mutex_unlock(&ubi
->move_mutex
);
890 ubi_assert(err
!= 0);
891 return err
< 0 ? err
: -EIO
;
894 ubi
->wl_scheduled
= 0;
895 spin_unlock(&ubi
->wl_lock
);
896 mutex_unlock(&ubi
->move_mutex
);
897 ubi_free_vid_hdr(ubi
, vid_hdr
);
902 * ensure_wear_leveling - schedule wear-leveling if it is needed.
903 * @ubi: UBI device description object
905 * This function checks if it is time to start wear-leveling and schedules it
906 * if yes. This function returns zero in case of success and a negative error
907 * code in case of failure.
909 static int ensure_wear_leveling(struct ubi_device
*ubi
)
912 struct ubi_wl_entry
*e1
;
913 struct ubi_wl_entry
*e2
;
914 struct ubi_work
*wrk
;
916 spin_lock(&ubi
->wl_lock
);
917 if (ubi
->wl_scheduled
)
918 /* Wear-leveling is already in the work queue */
922 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
923 * the WL worker has to be scheduled anyway.
925 if (!ubi
->scrub
.rb_node
) {
926 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
927 /* No physical eraseblocks - no deal */
931 * We schedule wear-leveling only if the difference between the
932 * lowest erase counter of used physical eraseblocks and a high
933 * erase counter of free physical eraseblocks is greater than
936 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
937 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
939 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
941 dbg_wl("schedule wear-leveling");
943 dbg_wl("schedule scrubbing");
945 ubi
->wl_scheduled
= 1;
946 spin_unlock(&ubi
->wl_lock
);
948 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
954 wrk
->func
= &wear_leveling_worker
;
955 schedule_ubi_work(ubi
, wrk
);
959 spin_lock(&ubi
->wl_lock
);
960 ubi
->wl_scheduled
= 0;
962 spin_unlock(&ubi
->wl_lock
);
967 * erase_worker - physical eraseblock erase worker function.
968 * @ubi: UBI device description object
969 * @wl_wrk: the work object
970 * @cancel: non-zero if the worker has to free memory and exit
972 * This function erases a physical eraseblock and perform torture testing if
973 * needed. It also takes care about marking the physical eraseblock bad if
974 * needed. Returns zero in case of success and a negative error code in case of
977 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
980 struct ubi_wl_entry
*e
= wl_wrk
->e
;
981 int pnum
= e
->pnum
, err
, need
;
982 int vol_id
= wl_wrk
->vol_id
;
983 int lnum
= wl_wrk
->lnum
;
986 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
988 kmem_cache_free(ubi_wl_entry_slab
, e
);
992 dbg_wl("erase PEB %d EC %d LEB %d:%d",
993 pnum
, e
->ec
, wl_wrk
->vol_id
, wl_wrk
->lnum
);
995 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
997 /* Fine, we've erased it successfully */
1000 spin_lock(&ubi
->wl_lock
);
1001 wl_tree_add(e
, &ubi
->free
);
1002 spin_unlock(&ubi
->wl_lock
);
1005 * One more erase operation has happened, take care about
1006 * protected physical eraseblocks.
1008 serve_prot_queue(ubi
);
1010 /* And take care about wear-leveling */
1011 err
= ensure_wear_leveling(ubi
);
1015 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1018 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1022 /* Re-schedule the LEB for erasure */
1023 err1
= schedule_erase(ubi
, e
, vol_id
, lnum
, 0);
1031 kmem_cache_free(ubi_wl_entry_slab
, e
);
1034 * If this is not %-EIO, we have no idea what to do. Scheduling
1035 * this physical eraseblock for erasure again would cause
1036 * errors again and again. Well, lets switch to R/O mode.
1040 /* It is %-EIO, the PEB went bad */
1042 if (!ubi
->bad_allowed
) {
1043 ubi_err("bad physical eraseblock %d detected", pnum
);
1047 spin_lock(&ubi
->volumes_lock
);
1048 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1050 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1051 ubi
->avail_pebs
-= need
;
1052 ubi
->rsvd_pebs
+= need
;
1053 ubi
->beb_rsvd_pebs
+= need
;
1055 ubi_msg("reserve more %d PEBs", need
);
1058 if (ubi
->beb_rsvd_pebs
== 0) {
1059 spin_unlock(&ubi
->volumes_lock
);
1060 ubi_err("no reserved physical eraseblocks");
1063 spin_unlock(&ubi
->volumes_lock
);
1065 ubi_msg("mark PEB %d as bad", pnum
);
1066 err
= ubi_io_mark_bad(ubi
, pnum
);
1070 spin_lock(&ubi
->volumes_lock
);
1071 ubi
->beb_rsvd_pebs
-= 1;
1072 ubi
->bad_peb_count
+= 1;
1073 ubi
->good_peb_count
-= 1;
1074 ubi_calculate_reserved(ubi
);
1075 if (ubi
->beb_rsvd_pebs
)
1076 ubi_msg("%d PEBs left in the reserve", ubi
->beb_rsvd_pebs
);
1078 ubi_warn("last PEB from the reserved pool was used");
1079 spin_unlock(&ubi
->volumes_lock
);
1089 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1090 * @ubi: UBI device description object
1091 * @vol_id: the volume ID that last used this PEB
1092 * @lnum: the last used logical eraseblock number for the PEB
1093 * @pnum: physical eraseblock to return
1094 * @torture: if this physical eraseblock has to be tortured
1096 * This function is called to return physical eraseblock @pnum to the pool of
1097 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1098 * occurred to this @pnum and it has to be tested. This function returns zero
1099 * in case of success, and a negative error code in case of failure.
1101 int ubi_wl_put_peb(struct ubi_device
*ubi
, int vol_id
, int lnum
,
1102 int pnum
, int torture
)
1105 struct ubi_wl_entry
*e
;
1107 dbg_wl("PEB %d", pnum
);
1108 ubi_assert(pnum
>= 0);
1109 ubi_assert(pnum
< ubi
->peb_count
);
1112 spin_lock(&ubi
->wl_lock
);
1113 e
= ubi
->lookuptbl
[pnum
];
1114 if (e
== ubi
->move_from
) {
1116 * User is putting the physical eraseblock which was selected to
1117 * be moved. It will be scheduled for erasure in the
1118 * wear-leveling worker.
1120 dbg_wl("PEB %d is being moved, wait", pnum
);
1121 spin_unlock(&ubi
->wl_lock
);
1123 /* Wait for the WL worker by taking the @ubi->move_mutex */
1124 mutex_lock(&ubi
->move_mutex
);
1125 mutex_unlock(&ubi
->move_mutex
);
1127 } else if (e
== ubi
->move_to
) {
1129 * User is putting the physical eraseblock which was selected
1130 * as the target the data is moved to. It may happen if the EBA
1131 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1132 * but the WL sub-system has not put the PEB to the "used" tree
1133 * yet, but it is about to do this. So we just set a flag which
1134 * will tell the WL worker that the PEB is not needed anymore
1135 * and should be scheduled for erasure.
1137 dbg_wl("PEB %d is the target of data moving", pnum
);
1138 ubi_assert(!ubi
->move_to_put
);
1139 ubi
->move_to_put
= 1;
1140 spin_unlock(&ubi
->wl_lock
);
1143 if (in_wl_tree(e
, &ubi
->used
)) {
1144 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1145 rb_erase(&e
->u
.rb
, &ubi
->used
);
1146 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1147 self_check_in_wl_tree(ubi
, e
, &ubi
->scrub
);
1148 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1149 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1150 self_check_in_wl_tree(ubi
, e
, &ubi
->erroneous
);
1151 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1152 ubi
->erroneous_peb_count
-= 1;
1153 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1154 /* Erroneous PEBs should be tortured */
1157 err
= prot_queue_del(ubi
, e
->pnum
);
1159 ubi_err("PEB %d not found", pnum
);
1161 spin_unlock(&ubi
->wl_lock
);
1166 spin_unlock(&ubi
->wl_lock
);
1168 err
= schedule_erase(ubi
, e
, vol_id
, lnum
, torture
);
1170 spin_lock(&ubi
->wl_lock
);
1171 wl_tree_add(e
, &ubi
->used
);
1172 spin_unlock(&ubi
->wl_lock
);
1179 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1180 * @ubi: UBI device description object
1181 * @pnum: the physical eraseblock to schedule
1183 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1184 * needs scrubbing. This function schedules a physical eraseblock for
1185 * scrubbing which is done in background. This function returns zero in case of
1186 * success and a negative error code in case of failure.
1188 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1190 struct ubi_wl_entry
*e
;
1192 dbg_msg("schedule PEB %d for scrubbing", pnum
);
1195 spin_lock(&ubi
->wl_lock
);
1196 e
= ubi
->lookuptbl
[pnum
];
1197 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1198 in_wl_tree(e
, &ubi
->erroneous
)) {
1199 spin_unlock(&ubi
->wl_lock
);
1203 if (e
== ubi
->move_to
) {
1205 * This physical eraseblock was used to move data to. The data
1206 * was moved but the PEB was not yet inserted to the proper
1207 * tree. We should just wait a little and let the WL worker
1210 spin_unlock(&ubi
->wl_lock
);
1211 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1216 if (in_wl_tree(e
, &ubi
->used
)) {
1217 self_check_in_wl_tree(ubi
, e
, &ubi
->used
);
1218 rb_erase(&e
->u
.rb
, &ubi
->used
);
1222 err
= prot_queue_del(ubi
, e
->pnum
);
1224 ubi_err("PEB %d not found", pnum
);
1226 spin_unlock(&ubi
->wl_lock
);
1231 wl_tree_add(e
, &ubi
->scrub
);
1232 spin_unlock(&ubi
->wl_lock
);
1235 * Technically scrubbing is the same as wear-leveling, so it is done
1238 return ensure_wear_leveling(ubi
);
1242 * ubi_wl_flush - flush all pending works.
1243 * @ubi: UBI device description object
1244 * @vol_id: the volume id to flush for
1245 * @lnum: the logical eraseblock number to flush for
1247 * This function executes all pending works for a particular volume id /
1248 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1249 * acts as a wildcard for all of the corresponding volume numbers or logical
1250 * eraseblock numbers. It returns zero in case of success and a negative error
1251 * code in case of failure.
1253 int ubi_wl_flush(struct ubi_device
*ubi
, int vol_id
, int lnum
)
1259 * Erase while the pending works queue is not empty, but not more than
1260 * the number of currently pending works.
1262 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1263 vol_id
, lnum
, ubi
->works_count
);
1266 struct ubi_work
*wrk
;
1269 down_read(&ubi
->work_sem
);
1270 spin_lock(&ubi
->wl_lock
);
1271 list_for_each_entry(wrk
, &ubi
->works
, list
) {
1272 if ((vol_id
== UBI_ALL
|| wrk
->vol_id
== vol_id
) &&
1273 (lnum
== UBI_ALL
|| wrk
->lnum
== lnum
)) {
1274 list_del(&wrk
->list
);
1275 ubi
->works_count
-= 1;
1276 ubi_assert(ubi
->works_count
>= 0);
1277 spin_unlock(&ubi
->wl_lock
);
1279 err
= wrk
->func(ubi
, wrk
, 0);
1281 up_read(&ubi
->work_sem
);
1285 spin_lock(&ubi
->wl_lock
);
1290 spin_unlock(&ubi
->wl_lock
);
1291 up_read(&ubi
->work_sem
);
1295 * Make sure all the works which have been done in parallel are
1298 down_write(&ubi
->work_sem
);
1299 up_write(&ubi
->work_sem
);
1305 * tree_destroy - destroy an RB-tree.
1306 * @root: the root of the tree to destroy
1308 static void tree_destroy(struct rb_root
*root
)
1311 struct ubi_wl_entry
*e
;
1317 else if (rb
->rb_right
)
1320 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1324 if (rb
->rb_left
== &e
->u
.rb
)
1327 rb
->rb_right
= NULL
;
1330 kmem_cache_free(ubi_wl_entry_slab
, e
);
1336 * ubi_thread - UBI background thread.
1337 * @u: the UBI device description object pointer
1339 int ubi_thread(void *u
)
1342 struct ubi_device
*ubi
= u
;
1344 ubi_msg("background thread \"%s\" started, PID %d",
1345 ubi
->bgt_name
, task_pid_nr(current
));
1351 if (kthread_should_stop())
1354 if (try_to_freeze())
1357 spin_lock(&ubi
->wl_lock
);
1358 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1359 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled(ubi
)) {
1360 set_current_state(TASK_INTERRUPTIBLE
);
1361 spin_unlock(&ubi
->wl_lock
);
1365 spin_unlock(&ubi
->wl_lock
);
1369 ubi_err("%s: work failed with error code %d",
1370 ubi
->bgt_name
, err
);
1371 if (failures
++ > WL_MAX_FAILURES
) {
1373 * Too many failures, disable the thread and
1374 * switch to read-only mode.
1376 ubi_msg("%s: %d consecutive failures",
1377 ubi
->bgt_name
, WL_MAX_FAILURES
);
1379 ubi
->thread_enabled
= 0;
1388 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1393 * cancel_pending - cancel all pending works.
1394 * @ubi: UBI device description object
1396 static void cancel_pending(struct ubi_device
*ubi
)
1398 while (!list_empty(&ubi
->works
)) {
1399 struct ubi_work
*wrk
;
1401 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1402 list_del(&wrk
->list
);
1403 wrk
->func(ubi
, wrk
, 1);
1404 ubi
->works_count
-= 1;
1405 ubi_assert(ubi
->works_count
>= 0);
1410 * ubi_wl_init - initialize the WL sub-system using attaching information.
1411 * @ubi: UBI device description object
1412 * @ai: attaching information
1414 * This function returns zero in case of success, and a negative error code in
1417 int ubi_wl_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1420 struct rb_node
*rb1
, *rb2
;
1421 struct ubi_ainf_volume
*av
;
1422 struct ubi_ainf_peb
*aeb
, *tmp
;
1423 struct ubi_wl_entry
*e
;
1425 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1426 spin_lock_init(&ubi
->wl_lock
);
1427 mutex_init(&ubi
->move_mutex
);
1428 init_rwsem(&ubi
->work_sem
);
1429 ubi
->max_ec
= ai
->max_ec
;
1430 INIT_LIST_HEAD(&ubi
->works
);
1432 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1435 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1436 if (!ubi
->lookuptbl
)
1439 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1440 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1443 list_for_each_entry_safe(aeb
, tmp
, &ai
->erase
, u
.list
) {
1446 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1450 e
->pnum
= aeb
->pnum
;
1452 ubi
->lookuptbl
[e
->pnum
] = e
;
1453 if (schedule_erase(ubi
, e
, aeb
->vol_id
, aeb
->lnum
, 0)) {
1454 kmem_cache_free(ubi_wl_entry_slab
, e
);
1459 list_for_each_entry(aeb
, &ai
->free
, u
.list
) {
1462 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1466 e
->pnum
= aeb
->pnum
;
1468 ubi_assert(e
->ec
>= 0);
1469 wl_tree_add(e
, &ubi
->free
);
1470 ubi
->lookuptbl
[e
->pnum
] = e
;
1473 ubi_rb_for_each_entry(rb1
, av
, &ai
->volumes
, rb
) {
1474 ubi_rb_for_each_entry(rb2
, aeb
, &av
->root
, u
.rb
) {
1477 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1481 e
->pnum
= aeb
->pnum
;
1483 ubi
->lookuptbl
[e
->pnum
] = e
;
1485 dbg_wl("add PEB %d EC %d to the used tree",
1487 wl_tree_add(e
, &ubi
->used
);
1489 dbg_wl("add PEB %d EC %d to the scrub tree",
1491 wl_tree_add(e
, &ubi
->scrub
);
1496 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1497 ubi_err("no enough physical eraseblocks (%d, need %d)",
1498 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1499 if (ubi
->corr_peb_count
)
1500 ubi_err("%d PEBs are corrupted and not used",
1501 ubi
->corr_peb_count
);
1504 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1505 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1507 /* Schedule wear-leveling if needed */
1508 err
= ensure_wear_leveling(ubi
);
1515 cancel_pending(ubi
);
1516 tree_destroy(&ubi
->used
);
1517 tree_destroy(&ubi
->free
);
1518 tree_destroy(&ubi
->scrub
);
1519 kfree(ubi
->lookuptbl
);
1524 * protection_queue_destroy - destroy the protection queue.
1525 * @ubi: UBI device description object
1527 static void protection_queue_destroy(struct ubi_device
*ubi
)
1530 struct ubi_wl_entry
*e
, *tmp
;
1532 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1533 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1534 list_del(&e
->u
.list
);
1535 kmem_cache_free(ubi_wl_entry_slab
, e
);
1541 * ubi_wl_close - close the wear-leveling sub-system.
1542 * @ubi: UBI device description object
1544 void ubi_wl_close(struct ubi_device
*ubi
)
1546 dbg_wl("close the WL sub-system");
1547 cancel_pending(ubi
);
1548 protection_queue_destroy(ubi
);
1549 tree_destroy(&ubi
->used
);
1550 tree_destroy(&ubi
->erroneous
);
1551 tree_destroy(&ubi
->free
);
1552 tree_destroy(&ubi
->scrub
);
1553 kfree(ubi
->lookuptbl
);
1557 * self_check_ec - make sure that the erase counter of a PEB is correct.
1558 * @ubi: UBI device description object
1559 * @pnum: the physical eraseblock number to check
1560 * @ec: the erase counter to check
1562 * This function returns zero if the erase counter of physical eraseblock @pnum
1563 * is equivalent to @ec, and a negative error code if not or if an error
1566 static int self_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1570 struct ubi_ec_hdr
*ec_hdr
;
1572 if (!ubi
->dbg
->chk_gen
)
1575 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1579 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1580 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1581 /* The header does not have to exist */
1586 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1587 if (ec
!= read_ec
) {
1588 ubi_err("self-check failed for PEB %d", pnum
);
1589 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1601 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1602 * @ubi: UBI device description object
1603 * @e: the wear-leveling entry to check
1604 * @root: the root of the tree
1606 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1609 static int self_check_in_wl_tree(const struct ubi_device
*ubi
,
1610 struct ubi_wl_entry
*e
, struct rb_root
*root
)
1612 if (!ubi
->dbg
->chk_gen
)
1615 if (in_wl_tree(e
, root
))
1618 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
1619 e
->pnum
, e
->ec
, root
);
1625 * self_check_in_pq - check if wear-leveling entry is in the protection
1627 * @ubi: UBI device description object
1628 * @e: the wear-leveling entry to check
1630 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1632 static int self_check_in_pq(const struct ubi_device
*ubi
,
1633 struct ubi_wl_entry
*e
)
1635 struct ubi_wl_entry
*p
;
1638 if (!ubi
->dbg
->chk_gen
)
1641 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
1642 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
1646 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",