2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
75 #include <linux/ethtool.h>
83 #include <asm/byteorder.h>
84 #include <asm/uaccess.h>
87 #define DRV_NAME "acenic"
91 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
92 #define ACE_IS_TIGON_I(ap) 0
93 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
95 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
96 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99 #ifndef PCI_VENDOR_ID_ALTEON
100 #define PCI_VENDOR_ID_ALTEON 0x12ae
102 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
103 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
106 #ifndef PCI_DEVICE_ID_3COM_3C985
107 #define PCI_DEVICE_ID_3COM_3C985 0x0001
109 #ifndef PCI_VENDOR_ID_NETGEAR
110 #define PCI_VENDOR_ID_NETGEAR 0x1385
111 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
113 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
114 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
119 * Farallon used the DEC vendor ID by mistake and they seem not
122 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
123 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
126 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
128 #ifndef PCI_VENDOR_ID_SGI
129 #define PCI_VENDOR_ID_SGI 0x10a9
131 #ifndef PCI_DEVICE_ID_SGI_ACENIC
132 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl
) = {
136 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
137 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
147 * Farallon used the DEC vendor ID on their cards incorrectly,
148 * then later Alteon's ID.
150 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
151 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
152 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
158 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
160 #define ace_sync_irq(irq) synchronize_irq(irq)
162 #ifndef offset_in_page
163 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
166 #define ACE_MAX_MOD_PARMS 8
167 #define BOARD_IDX_STATIC 0
168 #define BOARD_IDX_OVERFLOW -1
173 * These must be defined before the firmware is included.
175 #define MAX_TEXT_LEN 96*1024
176 #define MAX_RODATA_LEN 8*1024
177 #define MAX_DATA_LEN 2*1024
179 #ifndef tigon2FwReleaseLocal
180 #define tigon2FwReleaseLocal 0
184 * This driver currently supports Tigon I and Tigon II based cards
185 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
186 * GA620. The driver should also work on the SGI, DEC and Farallon
187 * versions of the card, however I have not been able to test that
190 * This card is really neat, it supports receive hardware checksumming
191 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
192 * firmware. Also the programming interface is quite neat, except for
193 * the parts dealing with the i2c eeprom on the card ;-)
195 * Using jumbo frames:
197 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
198 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
199 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
200 * interface number and <MTU> being the MTU value.
204 * When compiled as a loadable module, the driver allows for a number
205 * of module parameters to be specified. The driver supports the
206 * following module parameters:
208 * trace=<val> - Firmware trace level. This requires special traced
209 * firmware to replace the firmware supplied with
210 * the driver - for debugging purposes only.
212 * link=<val> - Link state. Normally you want to use the default link
213 * parameters set by the driver. This can be used to
214 * override these in case your switch doesn't negotiate
215 * the link properly. Valid values are:
216 * 0x0001 - Force half duplex link.
217 * 0x0002 - Do not negotiate line speed with the other end.
218 * 0x0010 - 10Mbit/sec link.
219 * 0x0020 - 100Mbit/sec link.
220 * 0x0040 - 1000Mbit/sec link.
221 * 0x0100 - Do not negotiate flow control.
222 * 0x0200 - Enable RX flow control Y
223 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
224 * Default value is 0x0270, ie. enable link+flow
225 * control negotiation. Negotiating the highest
226 * possible link speed with RX flow control enabled.
228 * When disabling link speed negotiation, only one link
229 * speed is allowed to be specified!
231 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 * to wait for more packets to arive before
233 * interrupting the host, from the time the first
236 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
237 * to wait for more packets to arive in the transmit ring,
238 * before interrupting the host, after transmitting the
239 * first packet in the ring.
241 * max_tx_desc=<val> - maximum number of transmit descriptors
242 * (packets) transmitted before interrupting the host.
244 * max_rx_desc=<val> - maximum number of receive descriptors
245 * (packets) received before interrupting the host.
247 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
248 * increments of the NIC's on board memory to be used for
249 * transmit and receive buffers. For the 1MB NIC app. 800KB
250 * is available, on the 1/2MB NIC app. 300KB is available.
251 * 68KB will always be available as a minimum for both
252 * directions. The default value is a 50/50 split.
253 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
254 * operations, default (1) is to always disable this as
255 * that is what Alteon does on NT. I have not been able
256 * to measure any real performance differences with
257 * this on my systems. Set <val>=0 if you want to
258 * enable these operations.
260 * If you use more than one NIC, specify the parameters for the
261 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
262 * run tracing on NIC #2 but not on NIC #1 and #3.
266 * - Proper multicast support.
267 * - NIC dump support.
268 * - More tuning parameters.
270 * The mini ring is not used under Linux and I am not sure it makes sense
271 * to actually use it.
273 * New interrupt handler strategy:
275 * The old interrupt handler worked using the traditional method of
276 * replacing an skbuff with a new one when a packet arrives. However
277 * the rx rings do not need to contain a static number of buffer
278 * descriptors, thus it makes sense to move the memory allocation out
279 * of the main interrupt handler and do it in a bottom half handler
280 * and only allocate new buffers when the number of buffers in the
281 * ring is below a certain threshold. In order to avoid starving the
282 * NIC under heavy load it is however necessary to force allocation
283 * when hitting a minimum threshold. The strategy for alloction is as
286 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
287 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
288 * the buffers in the interrupt handler
289 * RX_RING_THRES - maximum number of buffers in the rx ring
290 * RX_MINI_THRES - maximum number of buffers in the mini ring
291 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
293 * One advantagous side effect of this allocation approach is that the
294 * entire rx processing can be done without holding any spin lock
295 * since the rx rings and registers are totally independent of the tx
296 * ring and its registers. This of course includes the kmalloc's of
297 * new skb's. Thus start_xmit can run in parallel with rx processing
298 * and the memory allocation on SMP systems.
300 * Note that running the skb reallocation in a bottom half opens up
301 * another can of races which needs to be handled properly. In
302 * particular it can happen that the interrupt handler tries to run
303 * the reallocation while the bottom half is either running on another
304 * CPU or was interrupted on the same CPU. To get around this the
305 * driver uses bitops to prevent the reallocation routines from being
308 * TX handling can also be done without holding any spin lock, wheee
309 * this is fun! since tx_ret_csm is only written to by the interrupt
310 * handler. The case to be aware of is when shutting down the device
311 * and cleaning up where it is necessary to make sure that
312 * start_xmit() is not running while this is happening. Well DaveM
313 * informs me that this case is already protected against ... bye bye
314 * Mr. Spin Lock, it was nice to know you.
316 * TX interrupts are now partly disabled so the NIC will only generate
317 * TX interrupts for the number of coal ticks, not for the number of
318 * TX packets in the queue. This should reduce the number of TX only,
319 * ie. when no RX processing is done, interrupts seen.
323 * Threshold values for RX buffer allocation - the low water marks for
324 * when to start refilling the rings are set to 75% of the ring
325 * sizes. It seems to make sense to refill the rings entirely from the
326 * intrrupt handler once it gets below the panic threshold, that way
327 * we don't risk that the refilling is moved to another CPU when the
328 * one running the interrupt handler just got the slab code hot in its
331 #define RX_RING_SIZE 72
332 #define RX_MINI_SIZE 64
333 #define RX_JUMBO_SIZE 48
335 #define RX_PANIC_STD_THRES 16
336 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
337 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
338 #define RX_PANIC_MINI_THRES 12
339 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
340 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
341 #define RX_PANIC_JUMBO_THRES 6
342 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
343 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
347 * Size of the mini ring entries, basically these just should be big
348 * enough to take TCP ACKs
350 #define ACE_MINI_SIZE 100
352 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
353 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
354 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
357 * There seems to be a magic difference in the effect between 995 and 996
358 * but little difference between 900 and 995 ... no idea why.
360 * There is now a default set of tuning parameters which is set, depending
361 * on whether or not the user enables Jumbo frames. It's assumed that if
362 * Jumbo frames are enabled, the user wants optimal tuning for that case.
364 #define DEF_TX_COAL 400 /* 996 */
365 #define DEF_TX_MAX_DESC 60 /* was 40 */
366 #define DEF_RX_COAL 120 /* 1000 */
367 #define DEF_RX_MAX_DESC 25
368 #define DEF_TX_RATIO 21 /* 24 */
370 #define DEF_JUMBO_TX_COAL 20
371 #define DEF_JUMBO_TX_MAX_DESC 60
372 #define DEF_JUMBO_RX_COAL 30
373 #define DEF_JUMBO_RX_MAX_DESC 6
374 #define DEF_JUMBO_TX_RATIO 21
376 #if tigon2FwReleaseLocal < 20001118
378 * Standard firmware and early modifications duplicate
379 * IRQ load without this flag (coal timer is never reset).
380 * Note that with this flag tx_coal should be less than
381 * time to xmit full tx ring.
382 * 400usec is not so bad for tx ring size of 128.
384 #define TX_COAL_INTS_ONLY 1 /* worth it */
387 * With modified firmware, this is not necessary, but still useful.
389 #define TX_COAL_INTS_ONLY 1
393 #define DEF_STAT (2 * TICKS_PER_SEC)
396 static int link_state
[ACE_MAX_MOD_PARMS
];
397 static int trace
[ACE_MAX_MOD_PARMS
];
398 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
399 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
400 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
401 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
402 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
403 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
405 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
406 MODULE_LICENSE("GPL");
407 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
408 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
409 MODULE_FIRMWARE("acenic/tg1.bin");
411 MODULE_FIRMWARE("acenic/tg2.bin");
413 module_param_array_named(link
, link_state
, int, NULL
, 0);
414 module_param_array(trace
, int, NULL
, 0);
415 module_param_array(tx_coal_tick
, int, NULL
, 0);
416 module_param_array(max_tx_desc
, int, NULL
, 0);
417 module_param_array(rx_coal_tick
, int, NULL
, 0);
418 module_param_array(max_rx_desc
, int, NULL
, 0);
419 module_param_array(tx_ratio
, int, NULL
, 0);
420 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
421 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
422 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
423 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
424 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
425 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
426 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
429 static const char version
[] __devinitconst
=
430 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
431 " http://home.cern.ch/~jes/gige/acenic.html\n";
433 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
434 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
435 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
437 static const struct ethtool_ops ace_ethtool_ops
= {
438 .get_settings
= ace_get_settings
,
439 .set_settings
= ace_set_settings
,
440 .get_drvinfo
= ace_get_drvinfo
,
443 static void ace_watchdog(struct net_device
*dev
);
445 static const struct net_device_ops ace_netdev_ops
= {
446 .ndo_open
= ace_open
,
447 .ndo_stop
= ace_close
,
448 .ndo_tx_timeout
= ace_watchdog
,
449 .ndo_get_stats
= ace_get_stats
,
450 .ndo_start_xmit
= ace_start_xmit
,
451 .ndo_set_rx_mode
= ace_set_multicast_list
,
452 .ndo_validate_addr
= eth_validate_addr
,
453 .ndo_set_mac_address
= ace_set_mac_addr
,
454 .ndo_change_mtu
= ace_change_mtu
,
457 static int __devinit
acenic_probe_one(struct pci_dev
*pdev
,
458 const struct pci_device_id
*id
)
460 struct net_device
*dev
;
461 struct ace_private
*ap
;
462 static int boards_found
;
464 dev
= alloc_etherdev(sizeof(struct ace_private
));
468 SET_NETDEV_DEV(dev
, &pdev
->dev
);
470 ap
= netdev_priv(dev
);
472 ap
->name
= pci_name(pdev
);
474 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
475 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
477 dev
->watchdog_timeo
= 5*HZ
;
479 dev
->netdev_ops
= &ace_netdev_ops
;
480 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
482 /* we only display this string ONCE */
486 if (pci_enable_device(pdev
))
487 goto fail_free_netdev
;
490 * Enable master mode before we start playing with the
491 * pci_command word since pci_set_master() will modify
494 pci_set_master(pdev
);
496 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
498 /* OpenFirmware on Mac's does not set this - DOH.. */
499 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
500 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
501 "access - was not enabled by BIOS/Firmware\n",
503 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
504 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
509 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
510 if (ap
->pci_latency
<= 0x40) {
511 ap
->pci_latency
= 0x40;
512 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
516 * Remap the regs into kernel space - this is abuse of
517 * dev->base_addr since it was means for I/O port
518 * addresses but who gives a damn.
520 dev
->base_addr
= pci_resource_start(pdev
, 0);
521 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
523 printk(KERN_ERR
"%s: Unable to map I/O register, "
524 "AceNIC %i will be disabled.\n",
525 ap
->name
, boards_found
);
526 goto fail_free_netdev
;
529 switch(pdev
->vendor
) {
530 case PCI_VENDOR_ID_ALTEON
:
531 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
532 printk(KERN_INFO
"%s: Farallon PN9100-T ",
535 printk(KERN_INFO
"%s: Alteon AceNIC ",
539 case PCI_VENDOR_ID_3COM
:
540 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
542 case PCI_VENDOR_ID_NETGEAR
:
543 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
545 case PCI_VENDOR_ID_DEC
:
546 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
547 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
551 case PCI_VENDOR_ID_SGI
:
552 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
555 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
559 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
560 printk("irq %d\n", pdev
->irq
);
562 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
563 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
564 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
565 " support - NIC disabled\n", dev
->name
);
570 if (ace_allocate_descriptors(dev
))
571 goto fail_free_netdev
;
574 if (boards_found
>= ACE_MAX_MOD_PARMS
)
575 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
577 ap
->board_idx
= boards_found
;
579 ap
->board_idx
= BOARD_IDX_STATIC
;
583 goto fail_free_netdev
;
585 if (register_netdev(dev
)) {
586 printk(KERN_ERR
"acenic: device registration failed\n");
589 ap
->name
= dev
->name
;
591 if (ap
->pci_using_dac
)
592 dev
->features
|= NETIF_F_HIGHDMA
;
594 pci_set_drvdata(pdev
, dev
);
600 ace_init_cleanup(dev
);
606 static void __devexit
acenic_remove_one(struct pci_dev
*pdev
)
608 struct net_device
*dev
= pci_get_drvdata(pdev
);
609 struct ace_private
*ap
= netdev_priv(dev
);
610 struct ace_regs __iomem
*regs
= ap
->regs
;
613 unregister_netdev(dev
);
615 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
616 if (ap
->version
>= 2)
617 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
620 * This clears any pending interrupts
622 writel(1, ®s
->Mb0Lo
);
623 readl(®s
->CpuCtrl
); /* flush */
626 * Make sure no other CPUs are processing interrupts
627 * on the card before the buffers are being released.
628 * Otherwise one might experience some `interesting'
631 * Then release the RX buffers - jumbo buffers were
632 * already released in ace_close().
634 ace_sync_irq(dev
->irq
);
636 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
637 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
640 struct ring_info
*ringp
;
643 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
644 mapping
= dma_unmap_addr(ringp
, mapping
);
645 pci_unmap_page(ap
->pdev
, mapping
,
649 ap
->rx_std_ring
[i
].size
= 0;
650 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
655 if (ap
->version
>= 2) {
656 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
657 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
660 struct ring_info
*ringp
;
663 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
664 mapping
= dma_unmap_addr(ringp
,mapping
);
665 pci_unmap_page(ap
->pdev
, mapping
,
669 ap
->rx_mini_ring
[i
].size
= 0;
670 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
676 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
677 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
679 struct ring_info
*ringp
;
682 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
683 mapping
= dma_unmap_addr(ringp
, mapping
);
684 pci_unmap_page(ap
->pdev
, mapping
,
688 ap
->rx_jumbo_ring
[i
].size
= 0;
689 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
694 ace_init_cleanup(dev
);
698 static struct pci_driver acenic_pci_driver
= {
700 .id_table
= acenic_pci_tbl
,
701 .probe
= acenic_probe_one
,
702 .remove
= __devexit_p(acenic_remove_one
),
705 static int __init
acenic_init(void)
707 return pci_register_driver(&acenic_pci_driver
);
710 static void __exit
acenic_exit(void)
712 pci_unregister_driver(&acenic_pci_driver
);
715 module_init(acenic_init
);
716 module_exit(acenic_exit
);
718 static void ace_free_descriptors(struct net_device
*dev
)
720 struct ace_private
*ap
= netdev_priv(dev
);
723 if (ap
->rx_std_ring
!= NULL
) {
724 size
= (sizeof(struct rx_desc
) *
725 (RX_STD_RING_ENTRIES
+
726 RX_JUMBO_RING_ENTRIES
+
727 RX_MINI_RING_ENTRIES
+
728 RX_RETURN_RING_ENTRIES
));
729 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
730 ap
->rx_ring_base_dma
);
731 ap
->rx_std_ring
= NULL
;
732 ap
->rx_jumbo_ring
= NULL
;
733 ap
->rx_mini_ring
= NULL
;
734 ap
->rx_return_ring
= NULL
;
736 if (ap
->evt_ring
!= NULL
) {
737 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
738 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
742 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
743 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
744 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
749 if (ap
->evt_prd
!= NULL
) {
750 pci_free_consistent(ap
->pdev
, sizeof(u32
),
751 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
754 if (ap
->rx_ret_prd
!= NULL
) {
755 pci_free_consistent(ap
->pdev
, sizeof(u32
),
756 (void *)ap
->rx_ret_prd
,
758 ap
->rx_ret_prd
= NULL
;
760 if (ap
->tx_csm
!= NULL
) {
761 pci_free_consistent(ap
->pdev
, sizeof(u32
),
762 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
768 static int ace_allocate_descriptors(struct net_device
*dev
)
770 struct ace_private
*ap
= netdev_priv(dev
);
773 size
= (sizeof(struct rx_desc
) *
774 (RX_STD_RING_ENTRIES
+
775 RX_JUMBO_RING_ENTRIES
+
776 RX_MINI_RING_ENTRIES
+
777 RX_RETURN_RING_ENTRIES
));
779 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
780 &ap
->rx_ring_base_dma
);
781 if (ap
->rx_std_ring
== NULL
)
784 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
785 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
786 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
788 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
790 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
792 if (ap
->evt_ring
== NULL
)
796 * Only allocate a host TX ring for the Tigon II, the Tigon I
797 * has to use PCI registers for this ;-(
799 if (!ACE_IS_TIGON_I(ap
)) {
800 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
802 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
805 if (ap
->tx_ring
== NULL
)
809 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
811 if (ap
->evt_prd
== NULL
)
814 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
815 &ap
->rx_ret_prd_dma
);
816 if (ap
->rx_ret_prd
== NULL
)
819 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
821 if (ap
->tx_csm
== NULL
)
828 ace_init_cleanup(dev
);
834 * Generic cleanup handling data allocated during init. Used when the
835 * module is unloaded or if an error occurs during initialization
837 static void ace_init_cleanup(struct net_device
*dev
)
839 struct ace_private
*ap
;
841 ap
= netdev_priv(dev
);
843 ace_free_descriptors(dev
);
846 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
847 ap
->info
, ap
->info_dma
);
849 kfree(ap
->trace_buf
);
852 free_irq(dev
->irq
, dev
);
859 * Commands are considered to be slow.
861 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
865 idx
= readl(®s
->CmdPrd
);
867 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
868 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
870 writel(idx
, ®s
->CmdPrd
);
874 static int __devinit
ace_init(struct net_device
*dev
)
876 struct ace_private
*ap
;
877 struct ace_regs __iomem
*regs
;
878 struct ace_info
*info
= NULL
;
879 struct pci_dev
*pdev
;
882 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
883 int board_idx
, ecode
= 0;
885 unsigned char cache_size
;
887 ap
= netdev_priv(dev
);
890 board_idx
= ap
->board_idx
;
893 * aman@sgi.com - its useful to do a NIC reset here to
894 * address the `Firmware not running' problem subsequent
895 * to any crashes involving the NIC
897 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
898 readl(®s
->HostCtrl
); /* PCI write posting */
902 * Don't access any other registers before this point!
906 * This will most likely need BYTE_SWAP once we switch
907 * to using __raw_writel()
909 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
912 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
915 readl(®s
->HostCtrl
); /* PCI write posting */
918 * Stop the NIC CPU and clear pending interrupts
920 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
921 readl(®s
->CpuCtrl
); /* PCI write posting */
922 writel(0, ®s
->Mb0Lo
);
924 tig_ver
= readl(®s
->HostCtrl
) >> 28;
927 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
930 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
931 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
933 writel(0, ®s
->LocalCtrl
);
935 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
939 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
940 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
942 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
943 readl(®s
->CpuBCtrl
); /* PCI write posting */
945 * The SRAM bank size does _not_ indicate the amount
946 * of memory on the card, it controls the _bank_ size!
947 * Ie. a 1MB AceNIC will have two banks of 512KB.
949 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
950 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
952 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
955 printk(KERN_WARNING
" Unsupported Tigon version detected "
962 * ModeStat _must_ be set after the SRAM settings as this change
963 * seems to corrupt the ModeStat and possible other registers.
964 * The SRAM settings survive resets and setting it to the same
965 * value a second time works as well. This is what caused the
966 * `Firmware not running' problem on the Tigon II.
969 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
970 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
972 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
973 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
975 readl(®s
->ModeStat
); /* PCI write posting */
978 for(i
= 0; i
< 4; i
++) {
982 t
= read_eeprom_byte(dev
, 0x8c+i
);
990 for(i
= 4; i
< 8; i
++) {
994 t
= read_eeprom_byte(dev
, 0x8c+i
);
1002 writel(mac1
, ®s
->MacAddrHi
);
1003 writel(mac2
, ®s
->MacAddrLo
);
1005 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
1006 dev
->dev_addr
[1] = mac1
& 0xff;
1007 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
1008 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
1009 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
1010 dev
->dev_addr
[5] = mac2
& 0xff;
1012 printk("MAC: %pM\n", dev
->dev_addr
);
1015 * Looks like this is necessary to deal with on all architectures,
1016 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1017 * Ie. having two NICs in the machine, one will have the cache
1018 * line set at boot time, the other will not.
1021 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1023 if (cache_size
!= SMP_CACHE_BYTES
) {
1024 printk(KERN_INFO
" PCI cache line size set incorrectly "
1025 "(%i bytes) by BIOS/FW, ", cache_size
);
1026 if (cache_size
> SMP_CACHE_BYTES
)
1027 printk("expecting %i\n", SMP_CACHE_BYTES
);
1029 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1030 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1031 SMP_CACHE_BYTES
>> 2);
1035 pci_state
= readl(®s
->PciState
);
1036 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1037 "latency: %i clks\n",
1038 (pci_state
& PCI_32BIT
) ? 32 : 64,
1039 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1043 * Set the max DMA transfer size. Seems that for most systems
1044 * the performance is better when no MAX parameter is
1045 * set. However for systems enabling PCI write and invalidate,
1046 * DMA writes must be set to the L1 cache line size to get
1047 * optimal performance.
1049 * The default is now to turn the PCI write and invalidate off
1050 * - that is what Alteon does for NT.
1052 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1053 if (ap
->version
>= 2) {
1054 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1056 * Tuning parameters only supported for 8 cards
1058 if (board_idx
== BOARD_IDX_OVERFLOW
||
1059 dis_pci_mem_inval
[board_idx
]) {
1060 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1061 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1062 pci_write_config_word(pdev
, PCI_COMMAND
,
1064 printk(KERN_INFO
" Disabling PCI memory "
1065 "write and invalidate\n");
1067 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1068 printk(KERN_INFO
" PCI memory write & invalidate "
1069 "enabled by BIOS, enabling counter measures\n");
1071 switch(SMP_CACHE_BYTES
) {
1073 tmp
|= DMA_WRITE_MAX_16
;
1076 tmp
|= DMA_WRITE_MAX_32
;
1079 tmp
|= DMA_WRITE_MAX_64
;
1082 tmp
|= DMA_WRITE_MAX_128
;
1085 printk(KERN_INFO
" Cache line size %i not "
1086 "supported, PCI write and invalidate "
1087 "disabled\n", SMP_CACHE_BYTES
);
1088 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1089 pci_write_config_word(pdev
, PCI_COMMAND
,
1097 * On this platform, we know what the best dma settings
1098 * are. We use 64-byte maximum bursts, because if we
1099 * burst larger than the cache line size (or even cross
1100 * a 64byte boundary in a single burst) the UltraSparc
1101 * PCI controller will disconnect at 64-byte multiples.
1103 * Read-multiple will be properly enabled above, and when
1104 * set will give the PCI controller proper hints about
1107 tmp
&= ~DMA_READ_WRITE_MASK
;
1108 tmp
|= DMA_READ_MAX_64
;
1109 tmp
|= DMA_WRITE_MAX_64
;
1112 tmp
&= ~DMA_READ_WRITE_MASK
;
1113 tmp
|= DMA_READ_MAX_128
;
1115 * All the docs say MUST NOT. Well, I did.
1116 * Nothing terrible happens, if we load wrong size.
1117 * Bit w&i still works better!
1119 tmp
|= DMA_WRITE_MAX_128
;
1121 writel(tmp
, ®s
->PciState
);
1125 * The Host PCI bus controller driver has to set FBB.
1126 * If all devices on that PCI bus support FBB, then the controller
1127 * can enable FBB support in the Host PCI Bus controller (or on
1128 * the PCI-PCI bridge if that applies).
1132 * I have received reports from people having problems when this
1135 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1136 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1137 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1138 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1143 * Configure DMA attributes.
1145 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
1146 ap
->pci_using_dac
= 1;
1147 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
1148 ap
->pci_using_dac
= 0;
1155 * Initialize the generic info block and the command+event rings
1156 * and the control blocks for the transmit and receive rings
1157 * as they need to be setup once and for all.
1159 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1167 * Get the memory for the skb rings.
1169 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1174 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1177 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1178 DRV_NAME
, pdev
->irq
);
1181 dev
->irq
= pdev
->irq
;
1184 spin_lock_init(&ap
->debug_lock
);
1185 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1186 ap
->last_std_rx
= 0;
1187 ap
->last_mini_rx
= 0;
1190 memset(ap
->info
, 0, sizeof(struct ace_info
));
1191 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1193 ecode
= ace_load_firmware(dev
);
1199 tmp_ptr
= ap
->info_dma
;
1200 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1201 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1203 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1205 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1206 info
->evt_ctrl
.flags
= 0;
1210 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1211 writel(0, ®s
->EvtCsm
);
1213 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1214 info
->cmd_ctrl
.flags
= 0;
1215 info
->cmd_ctrl
.max_len
= 0;
1217 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1218 writel(0, ®s
->CmdRng
[i
]);
1220 writel(0, ®s
->CmdPrd
);
1221 writel(0, ®s
->CmdCsm
);
1223 tmp_ptr
= ap
->info_dma
;
1224 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1225 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1227 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1228 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1229 info
->rx_std_ctrl
.flags
=
1230 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1232 memset(ap
->rx_std_ring
, 0,
1233 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1235 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1236 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1238 ap
->rx_std_skbprd
= 0;
1239 atomic_set(&ap
->cur_rx_bufs
, 0);
1241 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1242 (ap
->rx_ring_base_dma
+
1243 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1244 info
->rx_jumbo_ctrl
.max_len
= 0;
1245 info
->rx_jumbo_ctrl
.flags
=
1246 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1248 memset(ap
->rx_jumbo_ring
, 0,
1249 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1251 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1252 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1254 ap
->rx_jumbo_skbprd
= 0;
1255 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1257 memset(ap
->rx_mini_ring
, 0,
1258 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1260 if (ap
->version
>= 2) {
1261 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1262 (ap
->rx_ring_base_dma
+
1263 (sizeof(struct rx_desc
) *
1264 (RX_STD_RING_ENTRIES
+
1265 RX_JUMBO_RING_ENTRIES
))));
1266 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1267 info
->rx_mini_ctrl
.flags
=
1268 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|RCB_FLG_VLAN_ASSIST
;
1270 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1271 ap
->rx_mini_ring
[i
].flags
=
1272 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1274 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1275 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1276 info
->rx_mini_ctrl
.max_len
= 0;
1279 ap
->rx_mini_skbprd
= 0;
1280 atomic_set(&ap
->cur_mini_bufs
, 0);
1282 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1283 (ap
->rx_ring_base_dma
+
1284 (sizeof(struct rx_desc
) *
1285 (RX_STD_RING_ENTRIES
+
1286 RX_JUMBO_RING_ENTRIES
+
1287 RX_MINI_RING_ENTRIES
))));
1288 info
->rx_return_ctrl
.flags
= 0;
1289 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1291 memset(ap
->rx_return_ring
, 0,
1292 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1294 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1295 *(ap
->rx_ret_prd
) = 0;
1297 writel(TX_RING_BASE
, ®s
->WinBase
);
1299 if (ACE_IS_TIGON_I(ap
)) {
1300 ap
->tx_ring
= (__force
struct tx_desc
*) regs
->Window
;
1301 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1302 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1303 writel(0, (__force
void __iomem
*)ap
->tx_ring
+ i
* 4);
1305 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1307 memset(ap
->tx_ring
, 0,
1308 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1310 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1313 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1314 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1317 * The Tigon I does not like having the TX ring in host memory ;-(
1319 if (!ACE_IS_TIGON_I(ap
))
1320 tmp
|= RCB_FLG_TX_HOST_RING
;
1321 #if TX_COAL_INTS_ONLY
1322 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1324 info
->tx_ctrl
.flags
= tmp
;
1326 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1329 * Potential item for tuning parameter
1332 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1333 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1335 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1336 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1339 writel(0, ®s
->MaskInt
);
1340 writel(1, ®s
->IfIdx
);
1343 * McKinley boxes do not like us fiddling with AssistState
1346 writel(1, ®s
->AssistState
);
1349 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1350 writel(DEF_TRACE
, ®s
->TuneTrace
);
1352 ace_set_rxtx_parms(dev
, 0);
1354 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1355 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1356 "ignoring module parameters!\n",
1357 ap
->name
, ACE_MAX_MOD_PARMS
);
1358 } else if (board_idx
>= 0) {
1359 if (tx_coal_tick
[board_idx
])
1360 writel(tx_coal_tick
[board_idx
],
1361 ®s
->TuneTxCoalTicks
);
1362 if (max_tx_desc
[board_idx
])
1363 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1365 if (rx_coal_tick
[board_idx
])
1366 writel(rx_coal_tick
[board_idx
],
1367 ®s
->TuneRxCoalTicks
);
1368 if (max_rx_desc
[board_idx
])
1369 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1371 if (trace
[board_idx
])
1372 writel(trace
[board_idx
], ®s
->TuneTrace
);
1374 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1375 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1379 * Default link parameters
1381 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1382 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1383 if(ap
->version
>= 2)
1384 tmp
|= LNK_TX_FLOW_CTL_Y
;
1387 * Override link default parameters
1389 if ((board_idx
>= 0) && link_state
[board_idx
]) {
1390 int option
= link_state
[board_idx
];
1394 if (option
& 0x01) {
1395 printk(KERN_INFO
"%s: Setting half duplex link\n",
1397 tmp
&= ~LNK_FULL_DUPLEX
;
1400 tmp
&= ~LNK_NEGOTIATE
;
1407 if ((option
& 0x70) == 0) {
1408 printk(KERN_WARNING
"%s: No media speed specified, "
1409 "forcing auto negotiation\n", ap
->name
);
1410 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1411 LNK_100MB
| LNK_10MB
;
1413 if ((option
& 0x100) == 0)
1414 tmp
|= LNK_NEG_FCTL
;
1416 printk(KERN_INFO
"%s: Disabling flow control "
1417 "negotiation\n", ap
->name
);
1419 tmp
|= LNK_RX_FLOW_CTL_Y
;
1420 if ((option
& 0x400) && (ap
->version
>= 2)) {
1421 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1423 tmp
|= LNK_TX_FLOW_CTL_Y
;
1428 writel(tmp
, ®s
->TuneLink
);
1429 if (ap
->version
>= 2)
1430 writel(tmp
, ®s
->TuneFastLink
);
1432 writel(ap
->firmware_start
, ®s
->Pc
);
1434 writel(0, ®s
->Mb0Lo
);
1437 * Set tx_csm before we start receiving interrupts, otherwise
1438 * the interrupt handler might think it is supposed to process
1439 * tx ints before we are up and running, which may cause a null
1440 * pointer access in the int handler.
1443 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1446 ace_set_txprd(regs
, ap
, 0);
1447 writel(0, ®s
->RxRetCsm
);
1450 * Enable DMA engine now.
1451 * If we do this sooner, Mckinley box pukes.
1452 * I assume it's because Tigon II DMA engine wants to check
1453 * *something* even before the CPU is started.
1455 writel(1, ®s
->AssistState
); /* enable DMA */
1460 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1461 readl(®s
->CpuCtrl
);
1464 * Wait for the firmware to spin up - max 3 seconds.
1466 myjif
= jiffies
+ 3 * HZ
;
1467 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1470 if (!ap
->fw_running
) {
1471 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1474 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1475 readl(®s
->CpuCtrl
);
1477 /* aman@sgi.com - account for badly behaving firmware/NIC:
1478 * - have observed that the NIC may continue to generate
1479 * interrupts for some reason; attempt to stop it - halt
1480 * second CPU for Tigon II cards, and also clear Mb0
1481 * - if we're a module, we'll fail to load if this was
1482 * the only GbE card in the system => if the kernel does
1483 * see an interrupt from the NIC, code to handle it is
1484 * gone and OOps! - so free_irq also
1486 if (ap
->version
>= 2)
1487 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1489 writel(0, ®s
->Mb0Lo
);
1490 readl(®s
->Mb0Lo
);
1497 * We load the ring here as there seem to be no way to tell the
1498 * firmware to wipe the ring without re-initializing it.
1500 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1501 ace_load_std_rx_ring(dev
, RX_RING_SIZE
);
1503 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1505 if (ap
->version
>= 2) {
1506 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1507 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
);
1509 printk(KERN_ERR
"%s: Someone is busy refilling "
1510 "the RX mini ring\n", ap
->name
);
1515 ace_init_cleanup(dev
);
1520 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1522 struct ace_private
*ap
= netdev_priv(dev
);
1523 struct ace_regs __iomem
*regs
= ap
->regs
;
1524 int board_idx
= ap
->board_idx
;
1526 if (board_idx
>= 0) {
1528 if (!tx_coal_tick
[board_idx
])
1529 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1530 if (!max_tx_desc
[board_idx
])
1531 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1532 if (!rx_coal_tick
[board_idx
])
1533 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1534 if (!max_rx_desc
[board_idx
])
1535 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1536 if (!tx_ratio
[board_idx
])
1537 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1539 if (!tx_coal_tick
[board_idx
])
1540 writel(DEF_JUMBO_TX_COAL
,
1541 ®s
->TuneTxCoalTicks
);
1542 if (!max_tx_desc
[board_idx
])
1543 writel(DEF_JUMBO_TX_MAX_DESC
,
1544 ®s
->TuneMaxTxDesc
);
1545 if (!rx_coal_tick
[board_idx
])
1546 writel(DEF_JUMBO_RX_COAL
,
1547 ®s
->TuneRxCoalTicks
);
1548 if (!max_rx_desc
[board_idx
])
1549 writel(DEF_JUMBO_RX_MAX_DESC
,
1550 ®s
->TuneMaxRxDesc
);
1551 if (!tx_ratio
[board_idx
])
1552 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1558 static void ace_watchdog(struct net_device
*data
)
1560 struct net_device
*dev
= data
;
1561 struct ace_private
*ap
= netdev_priv(dev
);
1562 struct ace_regs __iomem
*regs
= ap
->regs
;
1565 * We haven't received a stats update event for more than 2.5
1566 * seconds and there is data in the transmit queue, thus we
1567 * assume the card is stuck.
1569 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1570 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1571 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1572 /* This can happen due to ieee flow control. */
1574 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1577 netif_wake_queue(dev
);
1583 static void ace_tasklet(unsigned long arg
)
1585 struct net_device
*dev
= (struct net_device
*) arg
;
1586 struct ace_private
*ap
= netdev_priv(dev
);
1589 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1590 if ((cur_size
< RX_LOW_STD_THRES
) &&
1591 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1593 printk("refilling buffers (current %i)\n", cur_size
);
1595 ace_load_std_rx_ring(dev
, RX_RING_SIZE
- cur_size
);
1598 if (ap
->version
>= 2) {
1599 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1600 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1601 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1603 printk("refilling mini buffers (current %i)\n",
1606 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
- cur_size
);
1610 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1611 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1612 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1614 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1616 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
- cur_size
);
1618 ap
->tasklet_pending
= 0;
1623 * Copy the contents of the NIC's trace buffer to kernel memory.
1625 static void ace_dump_trace(struct ace_private
*ap
)
1629 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1636 * Load the standard rx ring.
1638 * Loading rings is safe without holding the spin lock since this is
1639 * done only before the device is enabled, thus no interrupts are
1640 * generated and by the interrupt handler/tasklet handler.
1642 static void ace_load_std_rx_ring(struct net_device
*dev
, int nr_bufs
)
1644 struct ace_private
*ap
= netdev_priv(dev
);
1645 struct ace_regs __iomem
*regs
= ap
->regs
;
1649 prefetchw(&ap
->cur_rx_bufs
);
1651 idx
= ap
->rx_std_skbprd
;
1653 for (i
= 0; i
< nr_bufs
; i
++) {
1654 struct sk_buff
*skb
;
1658 skb
= netdev_alloc_skb_ip_align(dev
, ACE_STD_BUFSIZE
);
1662 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1663 offset_in_page(skb
->data
),
1665 PCI_DMA_FROMDEVICE
);
1666 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1667 dma_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1670 rd
= &ap
->rx_std_ring
[idx
];
1671 set_aceaddr(&rd
->addr
, mapping
);
1672 rd
->size
= ACE_STD_BUFSIZE
;
1674 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1680 atomic_add(i
, &ap
->cur_rx_bufs
);
1681 ap
->rx_std_skbprd
= idx
;
1683 if (ACE_IS_TIGON_I(ap
)) {
1685 cmd
.evt
= C_SET_RX_PRD_IDX
;
1687 cmd
.idx
= ap
->rx_std_skbprd
;
1688 ace_issue_cmd(regs
, &cmd
);
1690 writel(idx
, ®s
->RxStdPrd
);
1695 clear_bit(0, &ap
->std_refill_busy
);
1699 printk(KERN_INFO
"Out of memory when allocating "
1700 "standard receive buffers\n");
1705 static void ace_load_mini_rx_ring(struct net_device
*dev
, int nr_bufs
)
1707 struct ace_private
*ap
= netdev_priv(dev
);
1708 struct ace_regs __iomem
*regs
= ap
->regs
;
1711 prefetchw(&ap
->cur_mini_bufs
);
1713 idx
= ap
->rx_mini_skbprd
;
1714 for (i
= 0; i
< nr_bufs
; i
++) {
1715 struct sk_buff
*skb
;
1719 skb
= netdev_alloc_skb_ip_align(dev
, ACE_MINI_BUFSIZE
);
1723 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1724 offset_in_page(skb
->data
),
1726 PCI_DMA_FROMDEVICE
);
1727 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1728 dma_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1731 rd
= &ap
->rx_mini_ring
[idx
];
1732 set_aceaddr(&rd
->addr
, mapping
);
1733 rd
->size
= ACE_MINI_BUFSIZE
;
1735 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1741 atomic_add(i
, &ap
->cur_mini_bufs
);
1743 ap
->rx_mini_skbprd
= idx
;
1745 writel(idx
, ®s
->RxMiniPrd
);
1749 clear_bit(0, &ap
->mini_refill_busy
);
1752 printk(KERN_INFO
"Out of memory when allocating "
1753 "mini receive buffers\n");
1759 * Load the jumbo rx ring, this may happen at any time if the MTU
1760 * is changed to a value > 1500.
1762 static void ace_load_jumbo_rx_ring(struct net_device
*dev
, int nr_bufs
)
1764 struct ace_private
*ap
= netdev_priv(dev
);
1765 struct ace_regs __iomem
*regs
= ap
->regs
;
1768 idx
= ap
->rx_jumbo_skbprd
;
1770 for (i
= 0; i
< nr_bufs
; i
++) {
1771 struct sk_buff
*skb
;
1775 skb
= netdev_alloc_skb_ip_align(dev
, ACE_JUMBO_BUFSIZE
);
1779 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1780 offset_in_page(skb
->data
),
1782 PCI_DMA_FROMDEVICE
);
1783 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1784 dma_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1787 rd
= &ap
->rx_jumbo_ring
[idx
];
1788 set_aceaddr(&rd
->addr
, mapping
);
1789 rd
->size
= ACE_JUMBO_BUFSIZE
;
1791 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1797 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1798 ap
->rx_jumbo_skbprd
= idx
;
1800 if (ACE_IS_TIGON_I(ap
)) {
1802 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1804 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1805 ace_issue_cmd(regs
, &cmd
);
1807 writel(idx
, ®s
->RxJumboPrd
);
1812 clear_bit(0, &ap
->jumbo_refill_busy
);
1815 if (net_ratelimit())
1816 printk(KERN_INFO
"Out of memory when allocating "
1817 "jumbo receive buffers\n");
1823 * All events are considered to be slow (RX/TX ints do not generate
1824 * events) and are handled here, outside the main interrupt handler,
1825 * to reduce the size of the handler.
1827 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1829 struct ace_private
*ap
;
1831 ap
= netdev_priv(dev
);
1833 while (evtcsm
!= evtprd
) {
1834 switch (ap
->evt_ring
[evtcsm
].evt
) {
1836 printk(KERN_INFO
"%s: Firmware up and running\n",
1841 case E_STATS_UPDATED
:
1845 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1849 u32 state
= readl(&ap
->regs
->GigLnkState
);
1850 printk(KERN_WARNING
"%s: Optical link UP "
1851 "(%s Duplex, Flow Control: %s%s)\n",
1853 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1854 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1855 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1859 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1862 case E_C_LINK_10_100
:
1863 printk(KERN_WARNING
"%s: 10/100BaseT link "
1867 printk(KERN_ERR
"%s: Unknown optical link "
1868 "state %02x\n", ap
->name
, code
);
1873 switch(ap
->evt_ring
[evtcsm
].code
) {
1874 case E_C_ERR_INVAL_CMD
:
1875 printk(KERN_ERR
"%s: invalid command error\n",
1878 case E_C_ERR_UNIMP_CMD
:
1879 printk(KERN_ERR
"%s: unimplemented command "
1880 "error\n", ap
->name
);
1882 case E_C_ERR_BAD_CFG
:
1883 printk(KERN_ERR
"%s: bad config error\n",
1887 printk(KERN_ERR
"%s: unknown error %02x\n",
1888 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1891 case E_RESET_JUMBO_RNG
:
1894 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1895 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1896 ap
->rx_jumbo_ring
[i
].size
= 0;
1897 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1898 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1899 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1903 if (ACE_IS_TIGON_I(ap
)) {
1905 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1908 ace_issue_cmd(ap
->regs
, &cmd
);
1910 writel(0, &((ap
->regs
)->RxJumboPrd
));
1915 ap
->rx_jumbo_skbprd
= 0;
1916 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1918 clear_bit(0, &ap
->jumbo_refill_busy
);
1922 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1923 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1925 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1932 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1934 struct ace_private
*ap
= netdev_priv(dev
);
1936 int mini_count
= 0, std_count
= 0;
1940 prefetchw(&ap
->cur_rx_bufs
);
1941 prefetchw(&ap
->cur_mini_bufs
);
1943 while (idx
!= rxretprd
) {
1944 struct ring_info
*rip
;
1945 struct sk_buff
*skb
;
1946 struct rx_desc
*rxdesc
, *retdesc
;
1948 int bd_flags
, desc_type
, mapsize
;
1952 /* make sure the rx descriptor isn't read before rxretprd */
1953 if (idx
== rxretcsm
)
1956 retdesc
= &ap
->rx_return_ring
[idx
];
1957 skbidx
= retdesc
->idx
;
1958 bd_flags
= retdesc
->flags
;
1959 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1963 * Normal frames do not have any flags set
1965 * Mini and normal frames arrive frequently,
1966 * so use a local counter to avoid doing
1967 * atomic operations for each packet arriving.
1970 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1971 mapsize
= ACE_STD_BUFSIZE
;
1972 rxdesc
= &ap
->rx_std_ring
[skbidx
];
1976 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
1977 mapsize
= ACE_JUMBO_BUFSIZE
;
1978 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
1979 atomic_dec(&ap
->cur_jumbo_bufs
);
1982 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
1983 mapsize
= ACE_MINI_BUFSIZE
;
1984 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
1988 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
1989 "returned by NIC\n", dev
->name
,
1996 pci_unmap_page(ap
->pdev
,
1997 dma_unmap_addr(rip
, mapping
),
1999 PCI_DMA_FROMDEVICE
);
2000 skb_put(skb
, retdesc
->size
);
2005 csum
= retdesc
->tcp_udp_csum
;
2007 skb
->protocol
= eth_type_trans(skb
, dev
);
2010 * Instead of forcing the poor tigon mips cpu to calculate
2011 * pseudo hdr checksum, we do this ourselves.
2013 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2014 skb
->csum
= htons(csum
);
2015 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2017 skb_checksum_none_assert(skb
);
2021 if ((bd_flags
& BD_FLG_VLAN_TAG
))
2022 __vlan_hwaccel_put_tag(skb
, retdesc
->vlan
);
2025 dev
->stats
.rx_packets
++;
2026 dev
->stats
.rx_bytes
+= retdesc
->size
;
2028 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2031 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2032 if (!ACE_IS_TIGON_I(ap
))
2033 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2037 * According to the documentation RxRetCsm is obsolete with
2038 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2040 if (ACE_IS_TIGON_I(ap
)) {
2041 writel(idx
, &ap
->regs
->RxRetCsm
);
2052 static inline void ace_tx_int(struct net_device
*dev
,
2055 struct ace_private
*ap
= netdev_priv(dev
);
2058 struct sk_buff
*skb
;
2059 struct tx_ring_info
*info
;
2061 info
= ap
->skb
->tx_skbuff
+ idx
;
2064 if (dma_unmap_len(info
, maplen
)) {
2065 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2066 dma_unmap_len(info
, maplen
),
2068 dma_unmap_len_set(info
, maplen
, 0);
2072 dev
->stats
.tx_packets
++;
2073 dev
->stats
.tx_bytes
+= skb
->len
;
2074 dev_kfree_skb_irq(skb
);
2078 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2079 } while (idx
!= txcsm
);
2081 if (netif_queue_stopped(dev
))
2082 netif_wake_queue(dev
);
2085 ap
->tx_ret_csm
= txcsm
;
2087 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2089 * We could try to make it before. In this case we would get
2090 * the following race condition: hard_start_xmit on other cpu
2091 * enters after we advanced tx_ret_csm and fills space,
2092 * which we have just freed, so that we make illegal device wakeup.
2093 * There is no good way to workaround this (at entry
2094 * to ace_start_xmit detects this condition and prevents
2095 * ring corruption, but it is not a good workaround.)
2097 * When tx_ret_csm is advanced after, we wake up device _only_
2098 * if we really have some space in ring (though the core doing
2099 * hard_start_xmit can see full ring for some period and has to
2100 * synchronize.) Superb.
2101 * BUT! We get another subtle race condition. hard_start_xmit
2102 * may think that ring is full between wakeup and advancing
2103 * tx_ret_csm and will stop device instantly! It is not so bad.
2104 * We are guaranteed that there is something in ring, so that
2105 * the next irq will resume transmission. To speedup this we could
2106 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2107 * (see ace_start_xmit).
2109 * Well, this dilemma exists in all lock-free devices.
2110 * We, following scheme used in drivers by Donald Becker,
2111 * select the least dangerous.
2117 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
2119 struct net_device
*dev
= (struct net_device
*)dev_id
;
2120 struct ace_private
*ap
= netdev_priv(dev
);
2121 struct ace_regs __iomem
*regs
= ap
->regs
;
2123 u32 txcsm
, rxretcsm
, rxretprd
;
2127 * In case of PCI shared interrupts or spurious interrupts,
2128 * we want to make sure it is actually our interrupt before
2129 * spending any time in here.
2131 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2135 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2136 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2137 * writel(0, ®s->Mb0Lo).
2139 * "IRQ avoidance" recommended in docs applies to IRQs served
2140 * threads and it is wrong even for that case.
2142 writel(0, ®s
->Mb0Lo
);
2143 readl(®s
->Mb0Lo
);
2146 * There is no conflict between transmit handling in
2147 * start_xmit and receive processing, thus there is no reason
2148 * to take a spin lock for RX handling. Wait until we start
2149 * working on the other stuff - hey we don't need a spin lock
2152 rxretprd
= *ap
->rx_ret_prd
;
2153 rxretcsm
= ap
->cur_rx
;
2155 if (rxretprd
!= rxretcsm
)
2156 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2158 txcsm
= *ap
->tx_csm
;
2159 idx
= ap
->tx_ret_csm
;
2163 * If each skb takes only one descriptor this check degenerates
2164 * to identity, because new space has just been opened.
2165 * But if skbs are fragmented we must check that this index
2166 * update releases enough of space, otherwise we just
2167 * wait for device to make more work.
2169 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2170 ace_tx_int(dev
, txcsm
, idx
);
2173 evtcsm
= readl(®s
->EvtCsm
);
2174 evtprd
= *ap
->evt_prd
;
2176 if (evtcsm
!= evtprd
) {
2177 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2178 writel(evtcsm
, ®s
->EvtCsm
);
2182 * This has to go last in the interrupt handler and run with
2183 * the spin lock released ... what lock?
2185 if (netif_running(dev
)) {
2187 int run_tasklet
= 0;
2189 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2190 if (cur_size
< RX_LOW_STD_THRES
) {
2191 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2192 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2194 printk("low on std buffers %i\n", cur_size
);
2196 ace_load_std_rx_ring(dev
,
2197 RX_RING_SIZE
- cur_size
);
2202 if (!ACE_IS_TIGON_I(ap
)) {
2203 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2204 if (cur_size
< RX_LOW_MINI_THRES
) {
2205 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2206 !test_and_set_bit(0,
2207 &ap
->mini_refill_busy
)) {
2209 printk("low on mini buffers %i\n",
2212 ace_load_mini_rx_ring(dev
,
2213 RX_MINI_SIZE
- cur_size
);
2220 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2221 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2222 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2223 !test_and_set_bit(0,
2224 &ap
->jumbo_refill_busy
)){
2226 printk("low on jumbo buffers %i\n",
2229 ace_load_jumbo_rx_ring(dev
,
2230 RX_JUMBO_SIZE
- cur_size
);
2235 if (run_tasklet
&& !ap
->tasklet_pending
) {
2236 ap
->tasklet_pending
= 1;
2237 tasklet_schedule(&ap
->ace_tasklet
);
2244 static int ace_open(struct net_device
*dev
)
2246 struct ace_private
*ap
= netdev_priv(dev
);
2247 struct ace_regs __iomem
*regs
= ap
->regs
;
2250 if (!(ap
->fw_running
)) {
2251 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2255 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2257 cmd
.evt
= C_CLEAR_STATS
;
2260 ace_issue_cmd(regs
, &cmd
);
2262 cmd
.evt
= C_HOST_STATE
;
2263 cmd
.code
= C_C_STACK_UP
;
2265 ace_issue_cmd(regs
, &cmd
);
2268 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2269 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2271 if (dev
->flags
& IFF_PROMISC
) {
2272 cmd
.evt
= C_SET_PROMISC_MODE
;
2273 cmd
.code
= C_C_PROMISC_ENABLE
;
2275 ace_issue_cmd(regs
, &cmd
);
2283 cmd
.evt
= C_LNK_NEGOTIATION
;
2286 ace_issue_cmd(regs
, &cmd
);
2289 netif_start_queue(dev
);
2292 * Setup the bottom half rx ring refill handler
2294 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2299 static int ace_close(struct net_device
*dev
)
2301 struct ace_private
*ap
= netdev_priv(dev
);
2302 struct ace_regs __iomem
*regs
= ap
->regs
;
2304 unsigned long flags
;
2308 * Without (or before) releasing irq and stopping hardware, this
2309 * is an absolute non-sense, by the way. It will be reset instantly
2312 netif_stop_queue(dev
);
2316 cmd
.evt
= C_SET_PROMISC_MODE
;
2317 cmd
.code
= C_C_PROMISC_DISABLE
;
2319 ace_issue_cmd(regs
, &cmd
);
2323 cmd
.evt
= C_HOST_STATE
;
2324 cmd
.code
= C_C_STACK_DOWN
;
2326 ace_issue_cmd(regs
, &cmd
);
2328 tasklet_kill(&ap
->ace_tasklet
);
2331 * Make sure one CPU is not processing packets while
2332 * buffers are being released by another.
2335 local_irq_save(flags
);
2338 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2339 struct sk_buff
*skb
;
2340 struct tx_ring_info
*info
;
2342 info
= ap
->skb
->tx_skbuff
+ i
;
2345 if (dma_unmap_len(info
, maplen
)) {
2346 if (ACE_IS_TIGON_I(ap
)) {
2347 /* NB: TIGON_1 is special, tx_ring is in io space */
2348 struct tx_desc __iomem
*tx
;
2349 tx
= (__force
struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2350 writel(0, &tx
->addr
.addrhi
);
2351 writel(0, &tx
->addr
.addrlo
);
2352 writel(0, &tx
->flagsize
);
2354 memset(ap
->tx_ring
+ i
, 0,
2355 sizeof(struct tx_desc
));
2356 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2357 dma_unmap_len(info
, maplen
),
2359 dma_unmap_len_set(info
, maplen
, 0);
2368 cmd
.evt
= C_RESET_JUMBO_RNG
;
2371 ace_issue_cmd(regs
, &cmd
);
2374 ace_unmask_irq(dev
);
2375 local_irq_restore(flags
);
2381 static inline dma_addr_t
2382 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2383 struct sk_buff
*tail
, u32 idx
)
2386 struct tx_ring_info
*info
;
2388 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2389 offset_in_page(skb
->data
),
2390 skb
->len
, PCI_DMA_TODEVICE
);
2392 info
= ap
->skb
->tx_skbuff
+ idx
;
2394 dma_unmap_addr_set(info
, mapping
, mapping
);
2395 dma_unmap_len_set(info
, maplen
, skb
->len
);
2401 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2402 u32 flagsize
, u32 vlan_tag
)
2404 #if !USE_TX_COAL_NOW
2405 flagsize
&= ~BD_FLG_COAL_NOW
;
2408 if (ACE_IS_TIGON_I(ap
)) {
2409 struct tx_desc __iomem
*io
= (__force
struct tx_desc __iomem
*) desc
;
2410 writel(addr
>> 32, &io
->addr
.addrhi
);
2411 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2412 writel(flagsize
, &io
->flagsize
);
2413 writel(vlan_tag
, &io
->vlanres
);
2415 desc
->addr
.addrhi
= addr
>> 32;
2416 desc
->addr
.addrlo
= addr
;
2417 desc
->flagsize
= flagsize
;
2418 desc
->vlanres
= vlan_tag
;
2423 static netdev_tx_t
ace_start_xmit(struct sk_buff
*skb
,
2424 struct net_device
*dev
)
2426 struct ace_private
*ap
= netdev_priv(dev
);
2427 struct ace_regs __iomem
*regs
= ap
->regs
;
2428 struct tx_desc
*desc
;
2430 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2435 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2438 if (!skb_shinfo(skb
)->nr_frags
) {
2442 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2443 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2444 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2445 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2446 if (vlan_tx_tag_present(skb
)) {
2447 flagsize
|= BD_FLG_VLAN_TAG
;
2448 vlan_tag
= vlan_tx_tag_get(skb
);
2450 desc
= ap
->tx_ring
+ idx
;
2451 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2453 /* Look at ace_tx_int for explanations. */
2454 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2455 flagsize
|= BD_FLG_COAL_NOW
;
2457 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2463 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2464 flagsize
= (skb_headlen(skb
) << 16);
2465 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2466 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2467 if (vlan_tx_tag_present(skb
)) {
2468 flagsize
|= BD_FLG_VLAN_TAG
;
2469 vlan_tag
= vlan_tx_tag_get(skb
);
2472 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2474 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2476 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2477 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2478 struct tx_ring_info
*info
;
2480 len
+= skb_frag_size(frag
);
2481 info
= ap
->skb
->tx_skbuff
+ idx
;
2482 desc
= ap
->tx_ring
+ idx
;
2484 mapping
= skb_frag_dma_map(&ap
->pdev
->dev
, frag
, 0,
2485 skb_frag_size(frag
),
2488 flagsize
= skb_frag_size(frag
) << 16;
2489 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2490 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2491 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2493 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2494 flagsize
|= BD_FLG_END
;
2495 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2496 flagsize
|= BD_FLG_COAL_NOW
;
2499 * Only the last fragment frees
2506 dma_unmap_addr_set(info
, mapping
, mapping
);
2507 dma_unmap_len_set(info
, maplen
, skb_frag_size(frag
));
2508 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2514 ace_set_txprd(regs
, ap
, idx
);
2516 if (flagsize
& BD_FLG_COAL_NOW
) {
2517 netif_stop_queue(dev
);
2520 * A TX-descriptor producer (an IRQ) might have gotten
2521 * between, making the ring free again. Since xmit is
2522 * serialized, this is the only situation we have to
2525 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2526 netif_wake_queue(dev
);
2529 return NETDEV_TX_OK
;
2533 * This race condition is unavoidable with lock-free drivers.
2534 * We wake up the queue _before_ tx_prd is advanced, so that we can
2535 * enter hard_start_xmit too early, while tx ring still looks closed.
2536 * This happens ~1-4 times per 100000 packets, so that we can allow
2537 * to loop syncing to other CPU. Probably, we need an additional
2538 * wmb() in ace_tx_intr as well.
2540 * Note that this race is relieved by reserving one more entry
2541 * in tx ring than it is necessary (see original non-SG driver).
2542 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2543 * is already overkill.
2545 * Alternative is to return with 1 not throttling queue. In this
2546 * case loop becomes longer, no more useful effects.
2548 if (time_before(jiffies
, maxjiff
)) {
2554 /* The ring is stuck full. */
2555 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2556 return NETDEV_TX_BUSY
;
2560 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2562 struct ace_private
*ap
= netdev_priv(dev
);
2563 struct ace_regs __iomem
*regs
= ap
->regs
;
2565 if (new_mtu
> ACE_JUMBO_MTU
)
2568 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2571 if (new_mtu
> ACE_STD_MTU
) {
2573 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2574 "support\n", dev
->name
);
2576 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2577 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2578 ace_set_rxtx_parms(dev
, 1);
2581 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2582 ace_sync_irq(dev
->irq
);
2583 ace_set_rxtx_parms(dev
, 0);
2587 cmd
.evt
= C_RESET_JUMBO_RNG
;
2590 ace_issue_cmd(regs
, &cmd
);
2597 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2599 struct ace_private
*ap
= netdev_priv(dev
);
2600 struct ace_regs __iomem
*regs
= ap
->regs
;
2603 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2605 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2606 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2607 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2608 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2610 ecmd
->port
= PORT_FIBRE
;
2611 ecmd
->transceiver
= XCVR_INTERNAL
;
2613 link
= readl(®s
->GigLnkState
);
2614 if (link
& LNK_1000MB
)
2615 ethtool_cmd_speed_set(ecmd
, SPEED_1000
);
2617 link
= readl(®s
->FastLnkState
);
2618 if (link
& LNK_100MB
)
2619 ethtool_cmd_speed_set(ecmd
, SPEED_100
);
2620 else if (link
& LNK_10MB
)
2621 ethtool_cmd_speed_set(ecmd
, SPEED_10
);
2623 ethtool_cmd_speed_set(ecmd
, 0);
2625 if (link
& LNK_FULL_DUPLEX
)
2626 ecmd
->duplex
= DUPLEX_FULL
;
2628 ecmd
->duplex
= DUPLEX_HALF
;
2630 if (link
& LNK_NEGOTIATE
)
2631 ecmd
->autoneg
= AUTONEG_ENABLE
;
2633 ecmd
->autoneg
= AUTONEG_DISABLE
;
2637 * Current struct ethtool_cmd is insufficient
2639 ecmd
->trace
= readl(®s
->TuneTrace
);
2641 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2642 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2644 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2645 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2650 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2652 struct ace_private
*ap
= netdev_priv(dev
);
2653 struct ace_regs __iomem
*regs
= ap
->regs
;
2656 link
= readl(®s
->GigLnkState
);
2657 if (link
& LNK_1000MB
)
2660 link
= readl(®s
->FastLnkState
);
2661 if (link
& LNK_100MB
)
2663 else if (link
& LNK_10MB
)
2669 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2670 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2671 if (!ACE_IS_TIGON_I(ap
))
2672 link
|= LNK_TX_FLOW_CTL_Y
;
2673 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2674 link
|= LNK_NEGOTIATE
;
2675 if (ethtool_cmd_speed(ecmd
) != speed
) {
2676 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2677 switch (ethtool_cmd_speed(ecmd
)) {
2690 if (ecmd
->duplex
== DUPLEX_FULL
)
2691 link
|= LNK_FULL_DUPLEX
;
2693 if (link
!= ap
->link
) {
2695 printk(KERN_INFO
"%s: Renegotiating link state\n",
2699 writel(link
, ®s
->TuneLink
);
2700 if (!ACE_IS_TIGON_I(ap
))
2701 writel(link
, ®s
->TuneFastLink
);
2704 cmd
.evt
= C_LNK_NEGOTIATION
;
2707 ace_issue_cmd(regs
, &cmd
);
2712 static void ace_get_drvinfo(struct net_device
*dev
,
2713 struct ethtool_drvinfo
*info
)
2715 struct ace_private
*ap
= netdev_priv(dev
);
2717 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2718 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2719 ap
->firmware_major
, ap
->firmware_minor
,
2723 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2724 sizeof(info
->bus_info
));
2729 * Set the hardware MAC address.
2731 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2733 struct ace_private
*ap
= netdev_priv(dev
);
2734 struct ace_regs __iomem
*regs
= ap
->regs
;
2735 struct sockaddr
*addr
=p
;
2739 if(netif_running(dev
))
2742 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2744 da
= (u8
*)dev
->dev_addr
;
2746 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2747 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2750 cmd
.evt
= C_SET_MAC_ADDR
;
2753 ace_issue_cmd(regs
, &cmd
);
2759 static void ace_set_multicast_list(struct net_device
*dev
)
2761 struct ace_private
*ap
= netdev_priv(dev
);
2762 struct ace_regs __iomem
*regs
= ap
->regs
;
2765 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2766 cmd
.evt
= C_SET_MULTICAST_MODE
;
2767 cmd
.code
= C_C_MCAST_ENABLE
;
2769 ace_issue_cmd(regs
, &cmd
);
2771 } else if (ap
->mcast_all
) {
2772 cmd
.evt
= C_SET_MULTICAST_MODE
;
2773 cmd
.code
= C_C_MCAST_DISABLE
;
2775 ace_issue_cmd(regs
, &cmd
);
2779 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2780 cmd
.evt
= C_SET_PROMISC_MODE
;
2781 cmd
.code
= C_C_PROMISC_ENABLE
;
2783 ace_issue_cmd(regs
, &cmd
);
2785 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2786 cmd
.evt
= C_SET_PROMISC_MODE
;
2787 cmd
.code
= C_C_PROMISC_DISABLE
;
2789 ace_issue_cmd(regs
, &cmd
);
2794 * For the time being multicast relies on the upper layers
2795 * filtering it properly. The Firmware does not allow one to
2796 * set the entire multicast list at a time and keeping track of
2797 * it here is going to be messy.
2799 if (!netdev_mc_empty(dev
) && !ap
->mcast_all
) {
2800 cmd
.evt
= C_SET_MULTICAST_MODE
;
2801 cmd
.code
= C_C_MCAST_ENABLE
;
2803 ace_issue_cmd(regs
, &cmd
);
2804 }else if (!ap
->mcast_all
) {
2805 cmd
.evt
= C_SET_MULTICAST_MODE
;
2806 cmd
.code
= C_C_MCAST_DISABLE
;
2808 ace_issue_cmd(regs
, &cmd
);
2813 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2815 struct ace_private
*ap
= netdev_priv(dev
);
2816 struct ace_mac_stats __iomem
*mac_stats
=
2817 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2819 dev
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2820 dev
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2821 dev
->stats
.collisions
= readl(&mac_stats
->coll
);
2827 static void __devinit
ace_copy(struct ace_regs __iomem
*regs
, const __be32
*src
,
2830 void __iomem
*tdest
;
2837 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2838 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2839 tdest
= (void __iomem
*) ®s
->Window
+
2840 (dest
& (ACE_WINDOW_SIZE
- 1));
2841 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2842 for (i
= 0; i
< (tsize
/ 4); i
++) {
2843 /* Firmware is big-endian */
2844 writel(be32_to_cpup(src
), tdest
);
2854 static void __devinit
ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2856 void __iomem
*tdest
;
2863 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2864 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2865 tdest
= (void __iomem
*) ®s
->Window
+
2866 (dest
& (ACE_WINDOW_SIZE
- 1));
2867 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2869 for (i
= 0; i
< (tsize
/ 4); i
++) {
2870 writel(0, tdest
+ i
*4);
2880 * Download the firmware into the SRAM on the NIC
2882 * This operation requires the NIC to be halted and is performed with
2883 * interrupts disabled and with the spinlock hold.
2885 static int __devinit
ace_load_firmware(struct net_device
*dev
)
2887 const struct firmware
*fw
;
2888 const char *fw_name
= "acenic/tg2.bin";
2889 struct ace_private
*ap
= netdev_priv(dev
);
2890 struct ace_regs __iomem
*regs
= ap
->regs
;
2891 const __be32
*fw_data
;
2895 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2896 printk(KERN_ERR
"%s: trying to download firmware while the "
2897 "CPU is running!\n", ap
->name
);
2901 if (ACE_IS_TIGON_I(ap
))
2902 fw_name
= "acenic/tg1.bin";
2904 ret
= request_firmware(&fw
, fw_name
, &ap
->pdev
->dev
);
2906 printk(KERN_ERR
"%s: Failed to load firmware \"%s\"\n",
2911 fw_data
= (void *)fw
->data
;
2913 /* Firmware blob starts with version numbers, followed by
2914 load and start address. Remainder is the blob to be loaded
2915 contiguously from load address. We don't bother to represent
2916 the BSS/SBSS sections any more, since we were clearing the
2917 whole thing anyway. */
2918 ap
->firmware_major
= fw
->data
[0];
2919 ap
->firmware_minor
= fw
->data
[1];
2920 ap
->firmware_fix
= fw
->data
[2];
2922 ap
->firmware_start
= be32_to_cpu(fw_data
[1]);
2923 if (ap
->firmware_start
< 0x4000 || ap
->firmware_start
>= 0x80000) {
2924 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2925 ap
->name
, ap
->firmware_start
, fw_name
);
2930 load_addr
= be32_to_cpu(fw_data
[2]);
2931 if (load_addr
< 0x4000 || load_addr
>= 0x80000) {
2932 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2933 ap
->name
, load_addr
, fw_name
);
2939 * Do not try to clear more than 512KiB or we end up seeing
2940 * funny things on NICs with only 512KiB SRAM
2942 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2943 ace_copy(regs
, &fw_data
[3], load_addr
, fw
->size
-12);
2945 release_firmware(fw
);
2951 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2953 * Accessing the EEPROM is `interesting' to say the least - don't read
2954 * this code right after dinner.
2956 * This is all about black magic and bit-banging the device .... I
2957 * wonder in what hospital they have put the guy who designed the i2c
2960 * Oh yes, this is only the beginning!
2962 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2963 * code i2c readout code by beta testing all my hacks.
2965 static void __devinit
eeprom_start(struct ace_regs __iomem
*regs
)
2969 readl(®s
->LocalCtrl
);
2970 udelay(ACE_SHORT_DELAY
);
2971 local
= readl(®s
->LocalCtrl
);
2972 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
2973 writel(local
, ®s
->LocalCtrl
);
2974 readl(®s
->LocalCtrl
);
2976 udelay(ACE_SHORT_DELAY
);
2977 local
|= EEPROM_CLK_OUT
;
2978 writel(local
, ®s
->LocalCtrl
);
2979 readl(®s
->LocalCtrl
);
2981 udelay(ACE_SHORT_DELAY
);
2982 local
&= ~EEPROM_DATA_OUT
;
2983 writel(local
, ®s
->LocalCtrl
);
2984 readl(®s
->LocalCtrl
);
2986 udelay(ACE_SHORT_DELAY
);
2987 local
&= ~EEPROM_CLK_OUT
;
2988 writel(local
, ®s
->LocalCtrl
);
2989 readl(®s
->LocalCtrl
);
2994 static void __devinit
eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
2999 udelay(ACE_SHORT_DELAY
);
3000 local
= readl(®s
->LocalCtrl
);
3001 local
&= ~EEPROM_DATA_OUT
;
3002 local
|= EEPROM_WRITE_ENABLE
;
3003 writel(local
, ®s
->LocalCtrl
);
3004 readl(®s
->LocalCtrl
);
3007 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
3008 udelay(ACE_SHORT_DELAY
);
3010 local
|= EEPROM_DATA_OUT
;
3012 local
&= ~EEPROM_DATA_OUT
;
3013 writel(local
, ®s
->LocalCtrl
);
3014 readl(®s
->LocalCtrl
);
3017 udelay(ACE_SHORT_DELAY
);
3018 local
|= EEPROM_CLK_OUT
;
3019 writel(local
, ®s
->LocalCtrl
);
3020 readl(®s
->LocalCtrl
);
3022 udelay(ACE_SHORT_DELAY
);
3023 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3024 writel(local
, ®s
->LocalCtrl
);
3025 readl(®s
->LocalCtrl
);
3031 static int __devinit
eeprom_check_ack(struct ace_regs __iomem
*regs
)
3036 local
= readl(®s
->LocalCtrl
);
3037 local
&= ~EEPROM_WRITE_ENABLE
;
3038 writel(local
, ®s
->LocalCtrl
);
3039 readl(®s
->LocalCtrl
);
3041 udelay(ACE_LONG_DELAY
);
3042 local
|= EEPROM_CLK_OUT
;
3043 writel(local
, ®s
->LocalCtrl
);
3044 readl(®s
->LocalCtrl
);
3046 udelay(ACE_SHORT_DELAY
);
3047 /* sample data in middle of high clk */
3048 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3049 udelay(ACE_SHORT_DELAY
);
3051 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3052 readl(®s
->LocalCtrl
);
3059 static void __devinit
eeprom_stop(struct ace_regs __iomem
*regs
)
3063 udelay(ACE_SHORT_DELAY
);
3064 local
= readl(®s
->LocalCtrl
);
3065 local
|= EEPROM_WRITE_ENABLE
;
3066 writel(local
, ®s
->LocalCtrl
);
3067 readl(®s
->LocalCtrl
);
3069 udelay(ACE_SHORT_DELAY
);
3070 local
&= ~EEPROM_DATA_OUT
;
3071 writel(local
, ®s
->LocalCtrl
);
3072 readl(®s
->LocalCtrl
);
3074 udelay(ACE_SHORT_DELAY
);
3075 local
|= EEPROM_CLK_OUT
;
3076 writel(local
, ®s
->LocalCtrl
);
3077 readl(®s
->LocalCtrl
);
3079 udelay(ACE_SHORT_DELAY
);
3080 local
|= EEPROM_DATA_OUT
;
3081 writel(local
, ®s
->LocalCtrl
);
3082 readl(®s
->LocalCtrl
);
3084 udelay(ACE_LONG_DELAY
);
3085 local
&= ~EEPROM_CLK_OUT
;
3086 writel(local
, ®s
->LocalCtrl
);
3092 * Read a whole byte from the EEPROM.
3094 static int __devinit
read_eeprom_byte(struct net_device
*dev
,
3095 unsigned long offset
)
3097 struct ace_private
*ap
= netdev_priv(dev
);
3098 struct ace_regs __iomem
*regs
= ap
->regs
;
3099 unsigned long flags
;
3105 * Don't take interrupts on this CPU will bit banging
3106 * the %#%#@$ I2C device
3108 local_irq_save(flags
);
3112 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3113 if (eeprom_check_ack(regs
)) {
3114 local_irq_restore(flags
);
3115 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3117 goto eeprom_read_error
;
3120 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3121 if (eeprom_check_ack(regs
)) {
3122 local_irq_restore(flags
);
3123 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3126 goto eeprom_read_error
;
3129 eeprom_prep(regs
, offset
& 0xff);
3130 if (eeprom_check_ack(regs
)) {
3131 local_irq_restore(flags
);
3132 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3135 goto eeprom_read_error
;
3139 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3140 if (eeprom_check_ack(regs
)) {
3141 local_irq_restore(flags
);
3142 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3145 goto eeprom_read_error
;
3148 for (i
= 0; i
< 8; i
++) {
3149 local
= readl(®s
->LocalCtrl
);
3150 local
&= ~EEPROM_WRITE_ENABLE
;
3151 writel(local
, ®s
->LocalCtrl
);
3152 readl(®s
->LocalCtrl
);
3153 udelay(ACE_LONG_DELAY
);
3155 local
|= EEPROM_CLK_OUT
;
3156 writel(local
, ®s
->LocalCtrl
);
3157 readl(®s
->LocalCtrl
);
3159 udelay(ACE_SHORT_DELAY
);
3160 /* sample data mid high clk */
3161 result
= (result
<< 1) |
3162 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3163 udelay(ACE_SHORT_DELAY
);
3165 local
= readl(®s
->LocalCtrl
);
3166 local
&= ~EEPROM_CLK_OUT
;
3167 writel(local
, ®s
->LocalCtrl
);
3168 readl(®s
->LocalCtrl
);
3169 udelay(ACE_SHORT_DELAY
);
3172 local
|= EEPROM_WRITE_ENABLE
;
3173 writel(local
, ®s
->LocalCtrl
);
3174 readl(®s
->LocalCtrl
);
3176 udelay(ACE_SHORT_DELAY
);
3180 local
|= EEPROM_DATA_OUT
;
3181 writel(local
, ®s
->LocalCtrl
);
3182 readl(®s
->LocalCtrl
);
3184 udelay(ACE_SHORT_DELAY
);
3185 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3186 readl(®s
->LocalCtrl
);
3187 udelay(ACE_LONG_DELAY
);
3188 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3189 readl(®s
->LocalCtrl
);
3191 udelay(ACE_SHORT_DELAY
);
3194 local_irq_restore(flags
);
3199 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",