Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / ethernet / atheros / atlx / atl1.c
blob7bae2ad7a7c0ed66b360c844960bb3b4ed50c683
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
32 * This version is adapted from the Attansic reference driver.
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
81 #include <net/checksum.h>
83 #include "atl1.h"
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87 "Chris Snook <csnook@redhat.com>, "
88 "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
95 static const struct ethtool_ops atl1_ethtool_ops;
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
101 #define ATL1_MAX_NIC 4
103 #define OPTION_UNSET -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED 1
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
110 * Interrupt Moderate Timer in units of 2 us
112 * Valid Range: 10-65535
114 * Default Value: 100 (200us)
116 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119 &num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
123 #define MAX_INT_MOD_CNT 65000
124 #define MIN_INT_MOD_CNT 50
126 struct atl1_option {
127 enum { enable_option, range_option, list_option } type;
128 char *name;
129 char *err;
130 int def;
131 union {
132 struct { /* range_option info */
133 int min;
134 int max;
135 } r;
136 struct { /* list_option info */
137 int nr;
138 struct atl1_opt_list {
139 int i;
140 char *str;
141 } *p;
142 } l;
143 } arg;
146 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
147 struct pci_dev *pdev)
149 if (*value == OPTION_UNSET) {
150 *value = opt->def;
151 return 0;
154 switch (opt->type) {
155 case enable_option:
156 switch (*value) {
157 case OPTION_ENABLED:
158 dev_info(&pdev->dev, "%s enabled\n", opt->name);
159 return 0;
160 case OPTION_DISABLED:
161 dev_info(&pdev->dev, "%s disabled\n", opt->name);
162 return 0;
164 break;
165 case range_option:
166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168 *value);
169 return 0;
171 break;
172 case list_option:{
173 int i;
174 struct atl1_opt_list *ent;
176 for (i = 0; i < opt->arg.l.nr; i++) {
177 ent = &opt->arg.l.p[i];
178 if (*value == ent->i) {
179 if (ent->str[0] != '\0')
180 dev_info(&pdev->dev, "%s\n",
181 ent->str);
182 return 0;
186 break;
188 default:
189 break;
192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193 opt->name, *value, opt->err);
194 *value = opt->def;
195 return -1;
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
202 * This routine checks all command line parameters for valid user
203 * input. If an invalid value is given, or if no user specified
204 * value exists, a default value is used. The final value is stored
205 * in a variable in the adapter structure.
207 static void __devinit atl1_check_options(struct atl1_adapter *adapter)
209 struct pci_dev *pdev = adapter->pdev;
210 int bd = adapter->bd_number;
211 if (bd >= ATL1_MAX_NIC) {
212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213 dev_notice(&pdev->dev, "using defaults for all values\n");
215 { /* Interrupt Moderate Timer */
216 struct atl1_option opt = {
217 .type = range_option,
218 .name = "Interrupt Moderator Timer",
219 .err = "using default of "
220 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
221 .def = DEFAULT_INT_MOD_CNT,
222 .arg = {.r = {.min = MIN_INT_MOD_CNT,
223 .max = MAX_INT_MOD_CNT} }
225 int val;
226 if (num_int_mod_timer > bd) {
227 val = int_mod_timer[bd];
228 atl1_validate_option(&val, &opt, pdev);
229 adapter->imt = (u16) val;
230 } else
231 adapter->imt = (u16) (opt.def);
236 * atl1_pci_tbl - PCI Device ID Table
238 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240 /* required last entry */
241 {0,}
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0 or idle status (if error)
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
259 struct pci_dev *pdev = hw->back->pdev;
260 struct atl1_adapter *adapter = hw->back;
261 u32 icr;
262 int i;
265 * Clear Interrupt mask to stop board from generating
266 * interrupts & Clear any pending interrupt events
269 * atlx_irq_disable(adapter);
270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
274 * Issue Soft Reset to the MAC. This will reset the chip's
275 * transmit, receive, DMA. It will not effect
276 * the current PCI configuration. The global reset bit is self-
277 * clearing, and should clear within a microsecond.
279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280 ioread32(hw->hw_addr + REG_MASTER_CTRL);
282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283 ioread16(hw->hw_addr + REG_PHY_ENABLE);
285 /* delay about 1ms */
286 msleep(1);
288 /* Wait at least 10ms for All module to be Idle */
289 for (i = 0; i < 10; i++) {
290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291 if (!icr)
292 break;
293 /* delay 1 ms */
294 msleep(1);
295 /* FIXME: still the right way to do this? */
296 cpu_relax();
299 if (icr) {
300 if (netif_msg_hw(adapter))
301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302 return icr;
305 return 0;
308 /* function about EEPROM
310 * check_eeprom_exist
311 * return 0 if eeprom exist
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
315 u32 value;
316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317 if (value & SPI_FLASH_CTRL_EN_VPD) {
318 value &= ~SPI_FLASH_CTRL_EN_VPD;
319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
328 int i;
329 u32 control;
331 if (offset & 3)
332 /* address do not align */
333 return false;
335 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338 ioread32(hw->hw_addr + REG_VPD_CAP);
340 for (i = 0; i < 10; i++) {
341 msleep(2);
342 control = ioread32(hw->hw_addr + REG_VPD_CAP);
343 if (control & VPD_CAP_VPD_FLAG)
344 break;
346 if (control & VPD_CAP_VPD_FLAG) {
347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348 return true;
350 /* timeout */
351 return false;
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
361 u32 val;
362 int i;
364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366 MDIO_CLK_SEL_SHIFT;
367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368 ioread32(hw->hw_addr + REG_MDIO_CTRL);
370 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371 udelay(2);
372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373 if (!(val & (MDIO_START | MDIO_BUSY)))
374 break;
376 if (!(val & (MDIO_START | MDIO_BUSY))) {
377 *phy_data = (u16) val;
378 return 0;
380 return ATLX_ERR_PHY;
383 #define CUSTOM_SPI_CS_SETUP 2
384 #define CUSTOM_SPI_CLK_HI 2
385 #define CUSTOM_SPI_CLK_LO 2
386 #define CUSTOM_SPI_CS_HOLD 2
387 #define CUSTOM_SPI_CS_HI 3
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
391 int i;
392 u32 value;
394 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
397 value = SPI_FLASH_CTRL_WAIT_READY |
398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400 SPI_FLASH_CTRL_CLK_HI_MASK) <<
401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402 SPI_FLASH_CTRL_CLK_LO_MASK) <<
403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406 SPI_FLASH_CTRL_CS_HI_MASK) <<
407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408 SPI_FLASH_CTRL_INS_SHIFT;
410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
412 value |= SPI_FLASH_CTRL_START;
413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
416 for (i = 0; i < 10; i++) {
417 msleep(1);
418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419 if (!(value & SPI_FLASH_CTRL_START))
420 break;
423 if (value & SPI_FLASH_CTRL_START)
424 return false;
426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
428 return true;
432 * get_permanent_address
433 * return 0 if get valid mac address,
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
437 u32 addr[2];
438 u32 i, control;
439 u16 reg;
440 u8 eth_addr[ETH_ALEN];
441 bool key_valid;
443 if (is_valid_ether_addr(hw->perm_mac_addr))
444 return 0;
446 /* init */
447 addr[0] = addr[1] = 0;
449 if (!atl1_check_eeprom_exist(hw)) {
450 reg = 0;
451 key_valid = false;
452 /* Read out all EEPROM content */
453 i = 0;
454 while (1) {
455 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456 if (key_valid) {
457 if (reg == REG_MAC_STA_ADDR)
458 addr[0] = control;
459 else if (reg == (REG_MAC_STA_ADDR + 4))
460 addr[1] = control;
461 key_valid = false;
462 } else if ((control & 0xff) == 0x5A) {
463 key_valid = true;
464 reg = (u16) (control >> 16);
465 } else
466 break;
467 } else
468 /* read error */
469 break;
470 i += 4;
473 *(u32 *) &eth_addr[2] = swab32(addr[0]);
474 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475 if (is_valid_ether_addr(eth_addr)) {
476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477 return 0;
481 /* see if SPI FLAGS exist ? */
482 addr[0] = addr[1] = 0;
483 reg = 0;
484 key_valid = false;
485 i = 0;
486 while (1) {
487 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488 if (key_valid) {
489 if (reg == REG_MAC_STA_ADDR)
490 addr[0] = control;
491 else if (reg == (REG_MAC_STA_ADDR + 4))
492 addr[1] = control;
493 key_valid = false;
494 } else if ((control & 0xff) == 0x5A) {
495 key_valid = true;
496 reg = (u16) (control >> 16);
497 } else
498 /* data end */
499 break;
500 } else
501 /* read error */
502 break;
503 i += 4;
506 *(u32 *) &eth_addr[2] = swab32(addr[0]);
507 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508 if (is_valid_ether_addr(eth_addr)) {
509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510 return 0;
514 * On some motherboards, the MAC address is written by the
515 * BIOS directly to the MAC register during POST, and is
516 * not stored in eeprom. If all else thus far has failed
517 * to fetch the permanent MAC address, try reading it directly.
519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521 *(u32 *) &eth_addr[2] = swab32(addr[0]);
522 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523 if (is_valid_ether_addr(eth_addr)) {
524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525 return 0;
528 return 1;
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
537 s32 ret = 0;
538 u16 i;
540 if (atl1_get_permanent_address(hw)) {
541 eth_random_addr(hw->perm_mac_addr);
542 ret = 1;
545 for (i = 0; i < ETH_ALEN; i++)
546 hw->mac_addr[i] = hw->perm_mac_addr[i];
547 return ret;
551 * Hashes an address to determine its location in the multicast table
552 * hw - Struct containing variables accessed by shared code
553 * mc_addr - the multicast address to hash
555 * atl1_hash_mc_addr
556 * purpose
557 * set hash value for a multicast address
558 * hash calcu processing :
559 * 1. calcu 32bit CRC for multicast address
560 * 2. reverse crc with MSB to LSB
562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
564 u32 crc32, value = 0;
565 int i;
567 crc32 = ether_crc_le(6, mc_addr);
568 for (i = 0; i < 32; i++)
569 value |= (((crc32 >> i) & 1) << (31 - i));
571 return value;
575 * Sets the bit in the multicast table corresponding to the hash value.
576 * hw - Struct containing variables accessed by shared code
577 * hash_value - Multicast address hash value
579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
581 u32 hash_bit, hash_reg;
582 u32 mta;
585 * The HASH Table is a register array of 2 32-bit registers.
586 * It is treated like an array of 64 bits. We want to set
587 * bit BitArray[hash_value]. So we figure out what register
588 * the bit is in, read it, OR in the new bit, then write
589 * back the new value. The register is determined by the
590 * upper 7 bits of the hash value and the bit within that
591 * register are determined by the lower 5 bits of the value.
593 hash_reg = (hash_value >> 31) & 0x1;
594 hash_bit = (hash_value >> 26) & 0x1F;
595 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596 mta |= (1 << hash_bit);
597 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
601 * Writes a value to a PHY register
602 * hw - Struct containing variables accessed by shared code
603 * reg_addr - address of the PHY register to write
604 * data - data to write to the PHY
606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
608 int i;
609 u32 val;
611 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613 MDIO_SUP_PREAMBLE |
614 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616 ioread32(hw->hw_addr + REG_MDIO_CTRL);
618 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619 udelay(2);
620 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621 if (!(val & (MDIO_START | MDIO_BUSY)))
622 break;
625 if (!(val & (MDIO_START | MDIO_BUSY)))
626 return 0;
628 return ATLX_ERR_PHY;
632 * Make L001's PHY out of Power Saving State (bug)
633 * hw - Struct containing variables accessed by shared code
634 * when power on, L001's PHY always on Power saving State
635 * (Gigabit Link forbidden)
637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
639 s32 ret;
640 ret = atl1_write_phy_reg(hw, 29, 0x0029);
641 if (ret)
642 return ret;
643 return atl1_write_phy_reg(hw, 30, 0);
647 * Resets the PHY and make all config validate
648 * hw - Struct containing variables accessed by shared code
650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
652 static s32 atl1_phy_reset(struct atl1_hw *hw)
654 struct pci_dev *pdev = hw->back->pdev;
655 struct atl1_adapter *adapter = hw->back;
656 s32 ret_val;
657 u16 phy_data;
659 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660 hw->media_type == MEDIA_TYPE_1000M_FULL)
661 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662 else {
663 switch (hw->media_type) {
664 case MEDIA_TYPE_100M_FULL:
665 phy_data =
666 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667 MII_CR_RESET;
668 break;
669 case MEDIA_TYPE_100M_HALF:
670 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671 break;
672 case MEDIA_TYPE_10M_FULL:
673 phy_data =
674 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675 break;
676 default:
677 /* MEDIA_TYPE_10M_HALF: */
678 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679 break;
683 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684 if (ret_val) {
685 u32 val;
686 int i;
687 /* pcie serdes link may be down! */
688 if (netif_msg_hw(adapter))
689 dev_dbg(&pdev->dev, "pcie phy link down\n");
691 for (i = 0; i < 25; i++) {
692 msleep(1);
693 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694 if (!(val & (MDIO_START | MDIO_BUSY)))
695 break;
698 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699 if (netif_msg_hw(adapter))
700 dev_warn(&pdev->dev,
701 "pcie link down at least 25ms\n");
702 return ret_val;
705 return 0;
709 * Configures PHY autoneg and flow control advertisement settings
710 * hw - Struct containing variables accessed by shared code
712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
714 s32 ret_val;
715 s16 mii_autoneg_adv_reg;
716 s16 mii_1000t_ctrl_reg;
718 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
719 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
721 /* Read the MII 1000Base-T Control Register (Address 9). */
722 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
725 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727 * the 1000Base-T Control Register (Address 9).
729 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
733 * Need to parse media_type and set up
734 * the appropriate PHY registers.
736 switch (hw->media_type) {
737 case MEDIA_TYPE_AUTO_SENSOR:
738 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739 MII_AR_10T_FD_CAPS |
740 MII_AR_100TX_HD_CAPS |
741 MII_AR_100TX_FD_CAPS);
742 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743 break;
745 case MEDIA_TYPE_1000M_FULL:
746 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747 break;
749 case MEDIA_TYPE_100M_FULL:
750 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751 break;
753 case MEDIA_TYPE_100M_HALF:
754 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755 break;
757 case MEDIA_TYPE_10M_FULL:
758 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759 break;
761 default:
762 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763 break;
766 /* flow control fixed to enable all */
767 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
769 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
772 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773 if (ret_val)
774 return ret_val;
776 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777 if (ret_val)
778 return ret_val;
780 return 0;
784 * Configures link settings.
785 * hw - Struct containing variables accessed by shared code
786 * Assumes the hardware has previously been reset and the
787 * transmitter and receiver are not enabled.
789 static s32 atl1_setup_link(struct atl1_hw *hw)
791 struct pci_dev *pdev = hw->back->pdev;
792 struct atl1_adapter *adapter = hw->back;
793 s32 ret_val;
796 * Options:
797 * PHY will advertise value(s) parsed from
798 * autoneg_advertised and fc
799 * no matter what autoneg is , We will not wait link result.
801 ret_val = atl1_phy_setup_autoneg_adv(hw);
802 if (ret_val) {
803 if (netif_msg_link(adapter))
804 dev_dbg(&pdev->dev,
805 "error setting up autonegotiation\n");
806 return ret_val;
808 /* SW.Reset , En-Auto-Neg if needed */
809 ret_val = atl1_phy_reset(hw);
810 if (ret_val) {
811 if (netif_msg_link(adapter))
812 dev_dbg(&pdev->dev, "error resetting phy\n");
813 return ret_val;
815 hw->phy_configured = true;
816 return ret_val;
819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
821 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822 /* Atmel */
823 hw->flash_vendor = 0;
825 /* Init OP table */
826 iowrite8(flash_table[hw->flash_vendor].cmd_program,
827 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840 iowrite8(flash_table[hw->flash_vendor].cmd_read,
841 hw->hw_addr + REG_SPI_FLASH_OP_READ);
845 * Performs basic configuration of the adapter.
846 * hw - Struct containing variables accessed by shared code
847 * Assumes that the controller has previously been reset and is in a
848 * post-reset uninitialized state. Initializes multicast table,
849 * and Calls routines to setup link
850 * Leaves the transmit and receive units disabled and uninitialized.
852 static s32 atl1_init_hw(struct atl1_hw *hw)
854 u32 ret_val = 0;
856 /* Zero out the Multicast HASH table */
857 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858 /* clear the old settings from the multicast hash table */
859 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
861 atl1_init_flash_opcode(hw);
863 if (!hw->phy_configured) {
864 /* enable GPHY LinkChange Interrupt */
865 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866 if (ret_val)
867 return ret_val;
868 /* make PHY out of power-saving state */
869 ret_val = atl1_phy_leave_power_saving(hw);
870 if (ret_val)
871 return ret_val;
872 /* Call a subroutine to configure the link */
873 ret_val = atl1_setup_link(hw);
875 return ret_val;
879 * Detects the current speed and duplex settings of the hardware.
880 * hw - Struct containing variables accessed by shared code
881 * speed - Speed of the connection
882 * duplex - Duplex setting of the connection
884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
886 struct pci_dev *pdev = hw->back->pdev;
887 struct atl1_adapter *adapter = hw->back;
888 s32 ret_val;
889 u16 phy_data;
891 /* ; --- Read PHY Specific Status Register (17) */
892 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893 if (ret_val)
894 return ret_val;
896 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897 return ATLX_ERR_PHY_RES;
899 switch (phy_data & MII_ATLX_PSSR_SPEED) {
900 case MII_ATLX_PSSR_1000MBS:
901 *speed = SPEED_1000;
902 break;
903 case MII_ATLX_PSSR_100MBS:
904 *speed = SPEED_100;
905 break;
906 case MII_ATLX_PSSR_10MBS:
907 *speed = SPEED_10;
908 break;
909 default:
910 if (netif_msg_hw(adapter))
911 dev_dbg(&pdev->dev, "error getting speed\n");
912 return ATLX_ERR_PHY_SPEED;
913 break;
915 if (phy_data & MII_ATLX_PSSR_DPLX)
916 *duplex = FULL_DUPLEX;
917 else
918 *duplex = HALF_DUPLEX;
920 return 0;
923 static void atl1_set_mac_addr(struct atl1_hw *hw)
925 u32 value;
927 * 00-0B-6A-F6-00-DC
928 * 0: 6AF600DC 1: 000B
929 * low dword
931 value = (((u32) hw->mac_addr[2]) << 24) |
932 (((u32) hw->mac_addr[3]) << 16) |
933 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
934 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
935 /* high dword */
936 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
937 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
941 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
942 * @adapter: board private structure to initialize
944 * atl1_sw_init initializes the Adapter private data structure.
945 * Fields are initialized based on PCI device information and
946 * OS network device settings (MTU size).
948 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
950 struct atl1_hw *hw = &adapter->hw;
951 struct net_device *netdev = adapter->netdev;
953 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
954 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
956 adapter->wol = 0;
957 device_set_wakeup_enable(&adapter->pdev->dev, false);
958 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
959 adapter->ict = 50000; /* 100ms */
960 adapter->link_speed = SPEED_0; /* hardware init */
961 adapter->link_duplex = FULL_DUPLEX;
963 hw->phy_configured = false;
964 hw->preamble_len = 7;
965 hw->ipgt = 0x60;
966 hw->min_ifg = 0x50;
967 hw->ipgr1 = 0x40;
968 hw->ipgr2 = 0x60;
969 hw->max_retry = 0xf;
970 hw->lcol = 0x37;
971 hw->jam_ipg = 7;
972 hw->rfd_burst = 8;
973 hw->rrd_burst = 8;
974 hw->rfd_fetch_gap = 1;
975 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
976 hw->rx_jumbo_lkah = 1;
977 hw->rrd_ret_timer = 16;
978 hw->tpd_burst = 4;
979 hw->tpd_fetch_th = 16;
980 hw->txf_burst = 0x100;
981 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
982 hw->tpd_fetch_gap = 1;
983 hw->rcb_value = atl1_rcb_64;
984 hw->dma_ord = atl1_dma_ord_enh;
985 hw->dmar_block = atl1_dma_req_256;
986 hw->dmaw_block = atl1_dma_req_256;
987 hw->cmb_rrd = 4;
988 hw->cmb_tpd = 4;
989 hw->cmb_rx_timer = 1; /* about 2us */
990 hw->cmb_tx_timer = 1; /* about 2us */
991 hw->smb_timer = 100000; /* about 200ms */
993 spin_lock_init(&adapter->lock);
994 spin_lock_init(&adapter->mb_lock);
996 return 0;
999 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
1001 struct atl1_adapter *adapter = netdev_priv(netdev);
1002 u16 result;
1004 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1006 return result;
1009 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1010 int val)
1012 struct atl1_adapter *adapter = netdev_priv(netdev);
1014 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1017 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1019 struct atl1_adapter *adapter = netdev_priv(netdev);
1020 unsigned long flags;
1021 int retval;
1023 if (!netif_running(netdev))
1024 return -EINVAL;
1026 spin_lock_irqsave(&adapter->lock, flags);
1027 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1028 spin_unlock_irqrestore(&adapter->lock, flags);
1030 return retval;
1034 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1035 * @adapter: board private structure
1037 * Return 0 on success, negative on failure
1039 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1041 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1042 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1043 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1044 struct atl1_ring_header *ring_header = &adapter->ring_header;
1045 struct pci_dev *pdev = adapter->pdev;
1046 int size;
1047 u8 offset = 0;
1049 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1050 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1051 if (unlikely(!tpd_ring->buffer_info)) {
1052 if (netif_msg_drv(adapter))
1053 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1054 size);
1055 goto err_nomem;
1057 rfd_ring->buffer_info =
1058 (tpd_ring->buffer_info + tpd_ring->count);
1061 * real ring DMA buffer
1062 * each ring/block may need up to 8 bytes for alignment, hence the
1063 * additional 40 bytes tacked onto the end.
1065 ring_header->size = size =
1066 sizeof(struct tx_packet_desc) * tpd_ring->count
1067 + sizeof(struct rx_free_desc) * rfd_ring->count
1068 + sizeof(struct rx_return_desc) * rrd_ring->count
1069 + sizeof(struct coals_msg_block)
1070 + sizeof(struct stats_msg_block)
1071 + 40;
1073 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1074 &ring_header->dma);
1075 if (unlikely(!ring_header->desc)) {
1076 if (netif_msg_drv(adapter))
1077 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1078 goto err_nomem;
1081 memset(ring_header->desc, 0, ring_header->size);
1083 /* init TPD ring */
1084 tpd_ring->dma = ring_header->dma;
1085 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1086 tpd_ring->dma += offset;
1087 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1088 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1090 /* init RFD ring */
1091 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1092 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1093 rfd_ring->dma += offset;
1094 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1095 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1098 /* init RRD ring */
1099 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1100 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1101 rrd_ring->dma += offset;
1102 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1103 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1106 /* init CMB */
1107 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1108 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1109 adapter->cmb.dma += offset;
1110 adapter->cmb.cmb = (struct coals_msg_block *)
1111 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1113 /* init SMB */
1114 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1115 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1116 adapter->smb.dma += offset;
1117 adapter->smb.smb = (struct stats_msg_block *)
1118 ((u8 *) adapter->cmb.cmb +
1119 (sizeof(struct coals_msg_block) + offset));
1121 return 0;
1123 err_nomem:
1124 kfree(tpd_ring->buffer_info);
1125 return -ENOMEM;
1128 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1130 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1131 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1132 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1134 atomic_set(&tpd_ring->next_to_use, 0);
1135 atomic_set(&tpd_ring->next_to_clean, 0);
1137 rfd_ring->next_to_clean = 0;
1138 atomic_set(&rfd_ring->next_to_use, 0);
1140 rrd_ring->next_to_use = 0;
1141 atomic_set(&rrd_ring->next_to_clean, 0);
1145 * atl1_clean_rx_ring - Free RFD Buffers
1146 * @adapter: board private structure
1148 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1150 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1151 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1152 struct atl1_buffer *buffer_info;
1153 struct pci_dev *pdev = adapter->pdev;
1154 unsigned long size;
1155 unsigned int i;
1157 /* Free all the Rx ring sk_buffs */
1158 for (i = 0; i < rfd_ring->count; i++) {
1159 buffer_info = &rfd_ring->buffer_info[i];
1160 if (buffer_info->dma) {
1161 pci_unmap_page(pdev, buffer_info->dma,
1162 buffer_info->length, PCI_DMA_FROMDEVICE);
1163 buffer_info->dma = 0;
1165 if (buffer_info->skb) {
1166 dev_kfree_skb(buffer_info->skb);
1167 buffer_info->skb = NULL;
1171 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1172 memset(rfd_ring->buffer_info, 0, size);
1174 /* Zero out the descriptor ring */
1175 memset(rfd_ring->desc, 0, rfd_ring->size);
1177 rfd_ring->next_to_clean = 0;
1178 atomic_set(&rfd_ring->next_to_use, 0);
1180 rrd_ring->next_to_use = 0;
1181 atomic_set(&rrd_ring->next_to_clean, 0);
1185 * atl1_clean_tx_ring - Free Tx Buffers
1186 * @adapter: board private structure
1188 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1190 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1191 struct atl1_buffer *buffer_info;
1192 struct pci_dev *pdev = adapter->pdev;
1193 unsigned long size;
1194 unsigned int i;
1196 /* Free all the Tx ring sk_buffs */
1197 for (i = 0; i < tpd_ring->count; i++) {
1198 buffer_info = &tpd_ring->buffer_info[i];
1199 if (buffer_info->dma) {
1200 pci_unmap_page(pdev, buffer_info->dma,
1201 buffer_info->length, PCI_DMA_TODEVICE);
1202 buffer_info->dma = 0;
1206 for (i = 0; i < tpd_ring->count; i++) {
1207 buffer_info = &tpd_ring->buffer_info[i];
1208 if (buffer_info->skb) {
1209 dev_kfree_skb_any(buffer_info->skb);
1210 buffer_info->skb = NULL;
1214 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1215 memset(tpd_ring->buffer_info, 0, size);
1217 /* Zero out the descriptor ring */
1218 memset(tpd_ring->desc, 0, tpd_ring->size);
1220 atomic_set(&tpd_ring->next_to_use, 0);
1221 atomic_set(&tpd_ring->next_to_clean, 0);
1225 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1226 * @adapter: board private structure
1228 * Free all transmit software resources
1230 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1232 struct pci_dev *pdev = adapter->pdev;
1233 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1234 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1235 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1236 struct atl1_ring_header *ring_header = &adapter->ring_header;
1238 atl1_clean_tx_ring(adapter);
1239 atl1_clean_rx_ring(adapter);
1241 kfree(tpd_ring->buffer_info);
1242 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1243 ring_header->dma);
1245 tpd_ring->buffer_info = NULL;
1246 tpd_ring->desc = NULL;
1247 tpd_ring->dma = 0;
1249 rfd_ring->buffer_info = NULL;
1250 rfd_ring->desc = NULL;
1251 rfd_ring->dma = 0;
1253 rrd_ring->desc = NULL;
1254 rrd_ring->dma = 0;
1256 adapter->cmb.dma = 0;
1257 adapter->cmb.cmb = NULL;
1259 adapter->smb.dma = 0;
1260 adapter->smb.smb = NULL;
1263 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1265 u32 value;
1266 struct atl1_hw *hw = &adapter->hw;
1267 struct net_device *netdev = adapter->netdev;
1268 /* Config MAC CTRL Register */
1269 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1270 /* duplex */
1271 if (FULL_DUPLEX == adapter->link_duplex)
1272 value |= MAC_CTRL_DUPLX;
1273 /* speed */
1274 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1275 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1276 MAC_CTRL_SPEED_SHIFT);
1277 /* flow control */
1278 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1279 /* PAD & CRC */
1280 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1281 /* preamble length */
1282 value |= (((u32) adapter->hw.preamble_len
1283 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1284 /* vlan */
1285 __atlx_vlan_mode(netdev->features, &value);
1286 /* rx checksum
1287 if (adapter->rx_csum)
1288 value |= MAC_CTRL_RX_CHKSUM_EN;
1290 /* filter mode */
1291 value |= MAC_CTRL_BC_EN;
1292 if (netdev->flags & IFF_PROMISC)
1293 value |= MAC_CTRL_PROMIS_EN;
1294 else if (netdev->flags & IFF_ALLMULTI)
1295 value |= MAC_CTRL_MC_ALL_EN;
1296 /* value |= MAC_CTRL_LOOPBACK; */
1297 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1300 static u32 atl1_check_link(struct atl1_adapter *adapter)
1302 struct atl1_hw *hw = &adapter->hw;
1303 struct net_device *netdev = adapter->netdev;
1304 u32 ret_val;
1305 u16 speed, duplex, phy_data;
1306 int reconfig = 0;
1308 /* MII_BMSR must read twice */
1309 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1311 if (!(phy_data & BMSR_LSTATUS)) {
1312 /* link down */
1313 if (netif_carrier_ok(netdev)) {
1314 /* old link state: Up */
1315 if (netif_msg_link(adapter))
1316 dev_info(&adapter->pdev->dev, "link is down\n");
1317 adapter->link_speed = SPEED_0;
1318 netif_carrier_off(netdev);
1320 return 0;
1323 /* Link Up */
1324 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1325 if (ret_val)
1326 return ret_val;
1328 switch (hw->media_type) {
1329 case MEDIA_TYPE_1000M_FULL:
1330 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1331 reconfig = 1;
1332 break;
1333 case MEDIA_TYPE_100M_FULL:
1334 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1335 reconfig = 1;
1336 break;
1337 case MEDIA_TYPE_100M_HALF:
1338 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1339 reconfig = 1;
1340 break;
1341 case MEDIA_TYPE_10M_FULL:
1342 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1343 reconfig = 1;
1344 break;
1345 case MEDIA_TYPE_10M_HALF:
1346 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1347 reconfig = 1;
1348 break;
1351 /* link result is our setting */
1352 if (!reconfig) {
1353 if (adapter->link_speed != speed ||
1354 adapter->link_duplex != duplex) {
1355 adapter->link_speed = speed;
1356 adapter->link_duplex = duplex;
1357 atl1_setup_mac_ctrl(adapter);
1358 if (netif_msg_link(adapter))
1359 dev_info(&adapter->pdev->dev,
1360 "%s link is up %d Mbps %s\n",
1361 netdev->name, adapter->link_speed,
1362 adapter->link_duplex == FULL_DUPLEX ?
1363 "full duplex" : "half duplex");
1365 if (!netif_carrier_ok(netdev)) {
1366 /* Link down -> Up */
1367 netif_carrier_on(netdev);
1369 return 0;
1372 /* change original link status */
1373 if (netif_carrier_ok(netdev)) {
1374 adapter->link_speed = SPEED_0;
1375 netif_carrier_off(netdev);
1376 netif_stop_queue(netdev);
1379 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1380 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1381 switch (hw->media_type) {
1382 case MEDIA_TYPE_100M_FULL:
1383 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1384 MII_CR_RESET;
1385 break;
1386 case MEDIA_TYPE_100M_HALF:
1387 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1388 break;
1389 case MEDIA_TYPE_10M_FULL:
1390 phy_data =
1391 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1392 break;
1393 default:
1394 /* MEDIA_TYPE_10M_HALF: */
1395 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1396 break;
1398 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1399 return 0;
1402 /* auto-neg, insert timer to re-config phy */
1403 if (!adapter->phy_timer_pending) {
1404 adapter->phy_timer_pending = true;
1405 mod_timer(&adapter->phy_config_timer,
1406 round_jiffies(jiffies + 3 * HZ));
1409 return 0;
1412 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1414 u32 hi, lo, value;
1416 /* RFD Flow Control */
1417 value = adapter->rfd_ring.count;
1418 hi = value / 16;
1419 if (hi < 2)
1420 hi = 2;
1421 lo = value * 7 / 8;
1423 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1424 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1425 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1427 /* RRD Flow Control */
1428 value = adapter->rrd_ring.count;
1429 lo = value / 16;
1430 hi = value * 7 / 8;
1431 if (lo < 2)
1432 lo = 2;
1433 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1434 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1435 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1438 static void set_flow_ctrl_new(struct atl1_hw *hw)
1440 u32 hi, lo, value;
1442 /* RXF Flow Control */
1443 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1444 lo = value / 16;
1445 if (lo < 192)
1446 lo = 192;
1447 hi = value * 7 / 8;
1448 if (hi < lo)
1449 hi = lo + 16;
1450 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1451 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1452 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1454 /* RRD Flow Control */
1455 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1456 lo = value / 8;
1457 hi = value * 7 / 8;
1458 if (lo < 2)
1459 lo = 2;
1460 if (hi < lo)
1461 hi = lo + 3;
1462 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1463 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1464 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1468 * atl1_configure - Configure Transmit&Receive Unit after Reset
1469 * @adapter: board private structure
1471 * Configure the Tx /Rx unit of the MAC after a reset.
1473 static u32 atl1_configure(struct atl1_adapter *adapter)
1475 struct atl1_hw *hw = &adapter->hw;
1476 u32 value;
1478 /* clear interrupt status */
1479 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1481 /* set MAC Address */
1482 value = (((u32) hw->mac_addr[2]) << 24) |
1483 (((u32) hw->mac_addr[3]) << 16) |
1484 (((u32) hw->mac_addr[4]) << 8) |
1485 (((u32) hw->mac_addr[5]));
1486 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1487 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1488 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1490 /* tx / rx ring */
1492 /* HI base address */
1493 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1494 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1495 /* LO base address */
1496 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1497 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1498 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1499 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1500 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1501 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1502 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1503 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1504 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1505 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1507 /* element count */
1508 value = adapter->rrd_ring.count;
1509 value <<= 16;
1510 value += adapter->rfd_ring.count;
1511 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1512 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1513 REG_DESC_TPD_RING_SIZE);
1515 /* Load Ptr */
1516 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1518 /* config Mailbox */
1519 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1520 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1521 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1522 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1523 ((atomic_read(&adapter->rfd_ring.next_to_use)
1524 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1525 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1527 /* config IPG/IFG */
1528 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1529 << MAC_IPG_IFG_IPGT_SHIFT) |
1530 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1531 << MAC_IPG_IFG_MIFG_SHIFT) |
1532 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1533 << MAC_IPG_IFG_IPGR1_SHIFT) |
1534 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1535 << MAC_IPG_IFG_IPGR2_SHIFT);
1536 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1538 /* config Half-Duplex Control */
1539 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1540 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1541 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1542 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1543 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1544 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1545 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1546 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1548 /* set Interrupt Moderator Timer */
1549 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1550 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1552 /* set Interrupt Clear Timer */
1553 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1555 /* set max frame size hw will accept */
1556 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1558 /* jumbo size & rrd retirement timer */
1559 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1560 << RXQ_JMBOSZ_TH_SHIFT) |
1561 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1562 << RXQ_JMBO_LKAH_SHIFT) |
1563 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1564 << RXQ_RRD_TIMER_SHIFT);
1565 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1567 /* Flow Control */
1568 switch (hw->dev_rev) {
1569 case 0x8001:
1570 case 0x9001:
1571 case 0x9002:
1572 case 0x9003:
1573 set_flow_ctrl_old(adapter);
1574 break;
1575 default:
1576 set_flow_ctrl_new(hw);
1577 break;
1580 /* config TXQ */
1581 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1582 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1583 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1584 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1585 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1586 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1587 TXQ_CTRL_EN;
1588 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1590 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1591 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1592 << TX_JUMBO_TASK_TH_SHIFT) |
1593 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1594 << TX_TPD_MIN_IPG_SHIFT);
1595 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1597 /* config RXQ */
1598 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1599 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1600 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1601 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1602 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1603 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1604 RXQ_CTRL_EN;
1605 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1607 /* config DMA Engine */
1608 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1609 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1610 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1611 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1612 DMA_CTRL_DMAW_EN;
1613 value |= (u32) hw->dma_ord;
1614 if (atl1_rcb_128 == hw->rcb_value)
1615 value |= DMA_CTRL_RCB_VALUE;
1616 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1618 /* config CMB / SMB */
1619 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1620 hw->cmb_tpd : adapter->tpd_ring.count;
1621 value <<= 16;
1622 value |= hw->cmb_rrd;
1623 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1624 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1625 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1626 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1628 /* --- enable CMB / SMB */
1629 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1630 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1632 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1633 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1634 value = 1; /* config failed */
1635 else
1636 value = 0;
1638 /* clear all interrupt status */
1639 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1640 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1641 return value;
1645 * atl1_pcie_patch - Patch for PCIE module
1647 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1649 u32 value;
1651 /* much vendor magic here */
1652 value = 0x6500;
1653 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1654 /* pcie flow control mode change */
1655 value = ioread32(adapter->hw.hw_addr + 0x1008);
1656 value |= 0x8000;
1657 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1661 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1662 * on PCI Command register is disable.
1663 * The function enable this bit.
1664 * Brackett, 2006/03/15
1666 static void atl1_via_workaround(struct atl1_adapter *adapter)
1668 unsigned long value;
1670 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1671 if (value & PCI_COMMAND_INTX_DISABLE)
1672 value &= ~PCI_COMMAND_INTX_DISABLE;
1673 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1676 static void atl1_inc_smb(struct atl1_adapter *adapter)
1678 struct net_device *netdev = adapter->netdev;
1679 struct stats_msg_block *smb = adapter->smb.smb;
1681 /* Fill out the OS statistics structure */
1682 adapter->soft_stats.rx_packets += smb->rx_ok;
1683 adapter->soft_stats.tx_packets += smb->tx_ok;
1684 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1685 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1686 adapter->soft_stats.multicast += smb->rx_mcast;
1687 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1688 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1690 /* Rx Errors */
1691 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1692 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1693 smb->rx_rrd_ov + smb->rx_align_err);
1694 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1695 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1696 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1697 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1698 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1699 smb->rx_rxf_ov);
1701 adapter->soft_stats.rx_pause += smb->rx_pause;
1702 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1703 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1705 /* Tx Errors */
1706 adapter->soft_stats.tx_errors += (smb->tx_late_col +
1707 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1708 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1709 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1710 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1712 adapter->soft_stats.excecol += smb->tx_abort_col;
1713 adapter->soft_stats.deffer += smb->tx_defer;
1714 adapter->soft_stats.scc += smb->tx_1_col;
1715 adapter->soft_stats.mcc += smb->tx_2_col;
1716 adapter->soft_stats.latecol += smb->tx_late_col;
1717 adapter->soft_stats.tx_underun += smb->tx_underrun;
1718 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1719 adapter->soft_stats.tx_pause += smb->tx_pause;
1721 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1722 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1723 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1724 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1725 netdev->stats.multicast = adapter->soft_stats.multicast;
1726 netdev->stats.collisions = adapter->soft_stats.collisions;
1727 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1728 netdev->stats.rx_over_errors =
1729 adapter->soft_stats.rx_missed_errors;
1730 netdev->stats.rx_length_errors =
1731 adapter->soft_stats.rx_length_errors;
1732 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1733 netdev->stats.rx_frame_errors =
1734 adapter->soft_stats.rx_frame_errors;
1735 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1736 netdev->stats.rx_missed_errors =
1737 adapter->soft_stats.rx_missed_errors;
1738 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1739 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1740 netdev->stats.tx_aborted_errors =
1741 adapter->soft_stats.tx_aborted_errors;
1742 netdev->stats.tx_window_errors =
1743 adapter->soft_stats.tx_window_errors;
1744 netdev->stats.tx_carrier_errors =
1745 adapter->soft_stats.tx_carrier_errors;
1748 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1750 unsigned long flags;
1751 u32 tpd_next_to_use;
1752 u32 rfd_next_to_use;
1753 u32 rrd_next_to_clean;
1754 u32 value;
1756 spin_lock_irqsave(&adapter->mb_lock, flags);
1758 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1759 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1760 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1762 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1763 MB_RFD_PROD_INDX_SHIFT) |
1764 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1765 MB_RRD_CONS_INDX_SHIFT) |
1766 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1767 MB_TPD_PROD_INDX_SHIFT);
1768 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1770 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1773 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1774 struct rx_return_desc *rrd, u16 offset)
1776 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1778 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1779 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1780 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1781 rfd_ring->next_to_clean = 0;
1786 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1787 struct rx_return_desc *rrd)
1789 u16 num_buf;
1791 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1792 adapter->rx_buffer_len;
1793 if (rrd->num_buf == num_buf)
1794 /* clean alloc flag for bad rrd */
1795 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1798 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1799 struct rx_return_desc *rrd, struct sk_buff *skb)
1801 struct pci_dev *pdev = adapter->pdev;
1804 * The L1 hardware contains a bug that erroneously sets the
1805 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1806 * fragmented IP packet is received, even though the packet
1807 * is perfectly valid and its checksum is correct. There's
1808 * no way to distinguish between one of these good packets
1809 * and a packet that actually contains a TCP/UDP checksum
1810 * error, so all we can do is allow it to be handed up to
1811 * the higher layers and let it be sorted out there.
1814 skb_checksum_none_assert(skb);
1816 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1817 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1818 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1819 adapter->hw_csum_err++;
1820 if (netif_msg_rx_err(adapter))
1821 dev_printk(KERN_DEBUG, &pdev->dev,
1822 "rx checksum error\n");
1823 return;
1827 /* not IPv4 */
1828 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1829 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1830 return;
1832 /* IPv4 packet */
1833 if (likely(!(rrd->err_flg &
1834 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1835 skb->ip_summed = CHECKSUM_UNNECESSARY;
1836 adapter->hw_csum_good++;
1837 return;
1842 * atl1_alloc_rx_buffers - Replace used receive buffers
1843 * @adapter: address of board private structure
1845 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1847 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1848 struct pci_dev *pdev = adapter->pdev;
1849 struct page *page;
1850 unsigned long offset;
1851 struct atl1_buffer *buffer_info, *next_info;
1852 struct sk_buff *skb;
1853 u16 num_alloc = 0;
1854 u16 rfd_next_to_use, next_next;
1855 struct rx_free_desc *rfd_desc;
1857 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1858 if (++next_next == rfd_ring->count)
1859 next_next = 0;
1860 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1861 next_info = &rfd_ring->buffer_info[next_next];
1863 while (!buffer_info->alloced && !next_info->alloced) {
1864 if (buffer_info->skb) {
1865 buffer_info->alloced = 1;
1866 goto next;
1869 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1871 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1872 adapter->rx_buffer_len);
1873 if (unlikely(!skb)) {
1874 /* Better luck next round */
1875 adapter->netdev->stats.rx_dropped++;
1876 break;
1879 buffer_info->alloced = 1;
1880 buffer_info->skb = skb;
1881 buffer_info->length = (u16) adapter->rx_buffer_len;
1882 page = virt_to_page(skb->data);
1883 offset = (unsigned long)skb->data & ~PAGE_MASK;
1884 buffer_info->dma = pci_map_page(pdev, page, offset,
1885 adapter->rx_buffer_len,
1886 PCI_DMA_FROMDEVICE);
1887 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1888 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1889 rfd_desc->coalese = 0;
1891 next:
1892 rfd_next_to_use = next_next;
1893 if (unlikely(++next_next == rfd_ring->count))
1894 next_next = 0;
1896 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1897 next_info = &rfd_ring->buffer_info[next_next];
1898 num_alloc++;
1901 if (num_alloc) {
1903 * Force memory writes to complete before letting h/w
1904 * know there are new descriptors to fetch. (Only
1905 * applicable for weak-ordered memory model archs,
1906 * such as IA-64).
1908 wmb();
1909 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1911 return num_alloc;
1914 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1916 int i, count;
1917 u16 length;
1918 u16 rrd_next_to_clean;
1919 u32 value;
1920 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1921 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1922 struct atl1_buffer *buffer_info;
1923 struct rx_return_desc *rrd;
1924 struct sk_buff *skb;
1926 count = 0;
1928 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1930 while (count < budget) {
1931 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1932 i = 1;
1933 if (likely(rrd->xsz.valid)) { /* packet valid */
1934 chk_rrd:
1935 /* check rrd status */
1936 if (likely(rrd->num_buf == 1))
1937 goto rrd_ok;
1938 else if (netif_msg_rx_err(adapter)) {
1939 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1940 "unexpected RRD buffer count\n");
1941 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942 "rx_buf_len = %d\n",
1943 adapter->rx_buffer_len);
1944 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945 "RRD num_buf = %d\n",
1946 rrd->num_buf);
1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 "RRD pkt_len = %d\n",
1949 rrd->xsz.xsum_sz.pkt_size);
1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 "RRD pkt_flg = 0x%08X\n",
1952 rrd->pkt_flg);
1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 "RRD err_flg = 0x%08X\n",
1955 rrd->err_flg);
1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 "RRD vlan_tag = 0x%08X\n",
1958 rrd->vlan_tag);
1961 /* rrd seems to be bad */
1962 if (unlikely(i-- > 0)) {
1963 /* rrd may not be DMAed completely */
1964 udelay(1);
1965 goto chk_rrd;
1967 /* bad rrd */
1968 if (netif_msg_rx_err(adapter))
1969 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1970 "bad RRD\n");
1971 /* see if update RFD index */
1972 if (rrd->num_buf > 1)
1973 atl1_update_rfd_index(adapter, rrd);
1975 /* update rrd */
1976 rrd->xsz.valid = 0;
1977 if (++rrd_next_to_clean == rrd_ring->count)
1978 rrd_next_to_clean = 0;
1979 count++;
1980 continue;
1981 } else { /* current rrd still not be updated */
1983 break;
1985 rrd_ok:
1986 /* clean alloc flag for bad rrd */
1987 atl1_clean_alloc_flag(adapter, rrd, 0);
1989 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1990 if (++rfd_ring->next_to_clean == rfd_ring->count)
1991 rfd_ring->next_to_clean = 0;
1993 /* update rrd next to clean */
1994 if (++rrd_next_to_clean == rrd_ring->count)
1995 rrd_next_to_clean = 0;
1996 count++;
1998 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1999 if (!(rrd->err_flg &
2000 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2001 | ERR_FLAG_LEN))) {
2002 /* packet error, don't need upstream */
2003 buffer_info->alloced = 0;
2004 rrd->xsz.valid = 0;
2005 continue;
2009 /* Good Receive */
2010 pci_unmap_page(adapter->pdev, buffer_info->dma,
2011 buffer_info->length, PCI_DMA_FROMDEVICE);
2012 buffer_info->dma = 0;
2013 skb = buffer_info->skb;
2014 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2016 skb_put(skb, length - ETH_FCS_LEN);
2018 /* Receive Checksum Offload */
2019 atl1_rx_checksum(adapter, rrd, skb);
2020 skb->protocol = eth_type_trans(skb, adapter->netdev);
2022 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2023 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2024 ((rrd->vlan_tag & 7) << 13) |
2025 ((rrd->vlan_tag & 8) << 9);
2027 __vlan_hwaccel_put_tag(skb, vlan_tag);
2029 netif_receive_skb(skb);
2031 /* let protocol layer free skb */
2032 buffer_info->skb = NULL;
2033 buffer_info->alloced = 0;
2034 rrd->xsz.valid = 0;
2037 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2039 atl1_alloc_rx_buffers(adapter);
2041 /* update mailbox ? */
2042 if (count) {
2043 u32 tpd_next_to_use;
2044 u32 rfd_next_to_use;
2046 spin_lock(&adapter->mb_lock);
2048 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2049 rfd_next_to_use =
2050 atomic_read(&adapter->rfd_ring.next_to_use);
2051 rrd_next_to_clean =
2052 atomic_read(&adapter->rrd_ring.next_to_clean);
2053 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2054 MB_RFD_PROD_INDX_SHIFT) |
2055 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2056 MB_RRD_CONS_INDX_SHIFT) |
2057 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2058 MB_TPD_PROD_INDX_SHIFT);
2059 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2060 spin_unlock(&adapter->mb_lock);
2063 return count;
2066 static int atl1_intr_tx(struct atl1_adapter *adapter)
2068 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2069 struct atl1_buffer *buffer_info;
2070 u16 sw_tpd_next_to_clean;
2071 u16 cmb_tpd_next_to_clean;
2072 int count = 0;
2074 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2075 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2077 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2078 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2079 if (buffer_info->dma) {
2080 pci_unmap_page(adapter->pdev, buffer_info->dma,
2081 buffer_info->length, PCI_DMA_TODEVICE);
2082 buffer_info->dma = 0;
2085 if (buffer_info->skb) {
2086 dev_kfree_skb_irq(buffer_info->skb);
2087 buffer_info->skb = NULL;
2090 if (++sw_tpd_next_to_clean == tpd_ring->count)
2091 sw_tpd_next_to_clean = 0;
2093 count++;
2095 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2097 if (netif_queue_stopped(adapter->netdev) &&
2098 netif_carrier_ok(adapter->netdev))
2099 netif_wake_queue(adapter->netdev);
2101 return count;
2104 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2106 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2107 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2108 return (next_to_clean > next_to_use) ?
2109 next_to_clean - next_to_use - 1 :
2110 tpd_ring->count + next_to_clean - next_to_use - 1;
2113 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2114 struct tx_packet_desc *ptpd)
2116 u8 hdr_len, ip_off;
2117 u32 real_len;
2118 int err;
2120 if (skb_shinfo(skb)->gso_size) {
2121 if (skb_header_cloned(skb)) {
2122 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2123 if (unlikely(err))
2124 return -1;
2127 if (skb->protocol == htons(ETH_P_IP)) {
2128 struct iphdr *iph = ip_hdr(skb);
2130 real_len = (((unsigned char *)iph - skb->data) +
2131 ntohs(iph->tot_len));
2132 if (real_len < skb->len)
2133 pskb_trim(skb, real_len);
2134 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2135 if (skb->len == hdr_len) {
2136 iph->check = 0;
2137 tcp_hdr(skb)->check =
2138 ~csum_tcpudp_magic(iph->saddr,
2139 iph->daddr, tcp_hdrlen(skb),
2140 IPPROTO_TCP, 0);
2141 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2142 TPD_IPHL_SHIFT;
2143 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2144 TPD_TCPHDRLEN_MASK) <<
2145 TPD_TCPHDRLEN_SHIFT;
2146 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2147 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2148 return 1;
2151 iph->check = 0;
2152 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2153 iph->daddr, 0, IPPROTO_TCP, 0);
2154 ip_off = (unsigned char *)iph -
2155 (unsigned char *) skb_network_header(skb);
2156 if (ip_off == 8) /* 802.3-SNAP frame */
2157 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2158 else if (ip_off != 0)
2159 return -2;
2161 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2162 TPD_IPHL_SHIFT;
2163 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2164 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2165 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2166 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2167 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2168 return 3;
2171 return false;
2174 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2175 struct tx_packet_desc *ptpd)
2177 u8 css, cso;
2179 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2180 css = skb_checksum_start_offset(skb);
2181 cso = css + (u8) skb->csum_offset;
2182 if (unlikely(css & 0x1)) {
2183 /* L1 hardware requires an even number here */
2184 if (netif_msg_tx_err(adapter))
2185 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2186 "payload offset not an even number\n");
2187 return -1;
2189 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2190 TPD_PLOADOFFSET_SHIFT;
2191 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2192 TPD_CCSUMOFFSET_SHIFT;
2193 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2194 return true;
2196 return 0;
2199 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2200 struct tx_packet_desc *ptpd)
2202 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2203 struct atl1_buffer *buffer_info;
2204 u16 buf_len = skb->len;
2205 struct page *page;
2206 unsigned long offset;
2207 unsigned int nr_frags;
2208 unsigned int f;
2209 int retval;
2210 u16 next_to_use;
2211 u16 data_len;
2212 u8 hdr_len;
2214 buf_len -= skb->data_len;
2215 nr_frags = skb_shinfo(skb)->nr_frags;
2216 next_to_use = atomic_read(&tpd_ring->next_to_use);
2217 buffer_info = &tpd_ring->buffer_info[next_to_use];
2218 BUG_ON(buffer_info->skb);
2219 /* put skb in last TPD */
2220 buffer_info->skb = NULL;
2222 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2223 if (retval) {
2224 /* TSO */
2225 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2226 buffer_info->length = hdr_len;
2227 page = virt_to_page(skb->data);
2228 offset = (unsigned long)skb->data & ~PAGE_MASK;
2229 buffer_info->dma = pci_map_page(adapter->pdev, page,
2230 offset, hdr_len,
2231 PCI_DMA_TODEVICE);
2233 if (++next_to_use == tpd_ring->count)
2234 next_to_use = 0;
2236 if (buf_len > hdr_len) {
2237 int i, nseg;
2239 data_len = buf_len - hdr_len;
2240 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2241 ATL1_MAX_TX_BUF_LEN;
2242 for (i = 0; i < nseg; i++) {
2243 buffer_info =
2244 &tpd_ring->buffer_info[next_to_use];
2245 buffer_info->skb = NULL;
2246 buffer_info->length =
2247 (ATL1_MAX_TX_BUF_LEN >=
2248 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2249 data_len -= buffer_info->length;
2250 page = virt_to_page(skb->data +
2251 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2252 offset = (unsigned long)(skb->data +
2253 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2254 ~PAGE_MASK;
2255 buffer_info->dma = pci_map_page(adapter->pdev,
2256 page, offset, buffer_info->length,
2257 PCI_DMA_TODEVICE);
2258 if (++next_to_use == tpd_ring->count)
2259 next_to_use = 0;
2262 } else {
2263 /* not TSO */
2264 buffer_info->length = buf_len;
2265 page = virt_to_page(skb->data);
2266 offset = (unsigned long)skb->data & ~PAGE_MASK;
2267 buffer_info->dma = pci_map_page(adapter->pdev, page,
2268 offset, buf_len, PCI_DMA_TODEVICE);
2269 if (++next_to_use == tpd_ring->count)
2270 next_to_use = 0;
2273 for (f = 0; f < nr_frags; f++) {
2274 const struct skb_frag_struct *frag;
2275 u16 i, nseg;
2277 frag = &skb_shinfo(skb)->frags[f];
2278 buf_len = skb_frag_size(frag);
2280 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2281 ATL1_MAX_TX_BUF_LEN;
2282 for (i = 0; i < nseg; i++) {
2283 buffer_info = &tpd_ring->buffer_info[next_to_use];
2284 BUG_ON(buffer_info->skb);
2286 buffer_info->skb = NULL;
2287 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2288 ATL1_MAX_TX_BUF_LEN : buf_len;
2289 buf_len -= buffer_info->length;
2290 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2291 frag, i * ATL1_MAX_TX_BUF_LEN,
2292 buffer_info->length, DMA_TO_DEVICE);
2294 if (++next_to_use == tpd_ring->count)
2295 next_to_use = 0;
2299 /* last tpd's buffer-info */
2300 buffer_info->skb = skb;
2303 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2304 struct tx_packet_desc *ptpd)
2306 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2307 struct atl1_buffer *buffer_info;
2308 struct tx_packet_desc *tpd;
2309 u16 j;
2310 u32 val;
2311 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2313 for (j = 0; j < count; j++) {
2314 buffer_info = &tpd_ring->buffer_info[next_to_use];
2315 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2316 if (tpd != ptpd)
2317 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2318 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2319 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2320 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2321 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2324 * if this is the first packet in a TSO chain, set
2325 * TPD_HDRFLAG, otherwise, clear it.
2327 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2328 TPD_SEGMENT_EN_MASK;
2329 if (val) {
2330 if (!j)
2331 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2332 else
2333 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2336 if (j == (count - 1))
2337 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2339 if (++next_to_use == tpd_ring->count)
2340 next_to_use = 0;
2343 * Force memory writes to complete before letting h/w
2344 * know there are new descriptors to fetch. (Only
2345 * applicable for weak-ordered memory model archs,
2346 * such as IA-64).
2348 wmb();
2350 atomic_set(&tpd_ring->next_to_use, next_to_use);
2353 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2354 struct net_device *netdev)
2356 struct atl1_adapter *adapter = netdev_priv(netdev);
2357 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2358 int len;
2359 int tso;
2360 int count = 1;
2361 int ret_val;
2362 struct tx_packet_desc *ptpd;
2363 u16 vlan_tag;
2364 unsigned int nr_frags = 0;
2365 unsigned int mss = 0;
2366 unsigned int f;
2367 unsigned int proto_hdr_len;
2369 len = skb_headlen(skb);
2371 if (unlikely(skb->len <= 0)) {
2372 dev_kfree_skb_any(skb);
2373 return NETDEV_TX_OK;
2376 nr_frags = skb_shinfo(skb)->nr_frags;
2377 for (f = 0; f < nr_frags; f++) {
2378 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2379 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2380 ATL1_MAX_TX_BUF_LEN;
2383 mss = skb_shinfo(skb)->gso_size;
2384 if (mss) {
2385 if (skb->protocol == htons(ETH_P_IP)) {
2386 proto_hdr_len = (skb_transport_offset(skb) +
2387 tcp_hdrlen(skb));
2388 if (unlikely(proto_hdr_len > len)) {
2389 dev_kfree_skb_any(skb);
2390 return NETDEV_TX_OK;
2392 /* need additional TPD ? */
2393 if (proto_hdr_len != len)
2394 count += (len - proto_hdr_len +
2395 ATL1_MAX_TX_BUF_LEN - 1) /
2396 ATL1_MAX_TX_BUF_LEN;
2400 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2401 /* not enough descriptors */
2402 netif_stop_queue(netdev);
2403 if (netif_msg_tx_queued(adapter))
2404 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2405 "tx busy\n");
2406 return NETDEV_TX_BUSY;
2409 ptpd = ATL1_TPD_DESC(tpd_ring,
2410 (u16) atomic_read(&tpd_ring->next_to_use));
2411 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2413 if (vlan_tx_tag_present(skb)) {
2414 vlan_tag = vlan_tx_tag_get(skb);
2415 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2416 ((vlan_tag >> 9) & 0x8);
2417 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2418 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2419 TPD_VLANTAG_SHIFT;
2422 tso = atl1_tso(adapter, skb, ptpd);
2423 if (tso < 0) {
2424 dev_kfree_skb_any(skb);
2425 return NETDEV_TX_OK;
2428 if (!tso) {
2429 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2430 if (ret_val < 0) {
2431 dev_kfree_skb_any(skb);
2432 return NETDEV_TX_OK;
2436 atl1_tx_map(adapter, skb, ptpd);
2437 atl1_tx_queue(adapter, count, ptpd);
2438 atl1_update_mailbox(adapter);
2439 mmiowb();
2440 return NETDEV_TX_OK;
2443 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2445 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2446 int work_done = atl1_intr_rx(adapter, budget);
2448 if (atl1_intr_tx(adapter))
2449 work_done = budget;
2451 /* Let's come again to process some more packets */
2452 if (work_done >= budget)
2453 return work_done;
2455 napi_complete(napi);
2456 /* re-enable Interrupt */
2457 if (likely(adapter->int_enabled))
2458 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2459 return work_done;
2462 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2464 if (!napi_schedule_prep(&adapter->napi))
2465 /* It is possible in case even the RX/TX ints are disabled via IMR
2466 * register the ISR bits are set anyway (but do not produce IRQ).
2467 * To handle such situation the napi functions used to check is
2468 * something scheduled or not.
2470 return 0;
2472 __napi_schedule(&adapter->napi);
2475 * Disable RX/TX ints via IMR register if it is
2476 * allowed. NAPI handler must reenable them in same
2477 * way.
2479 if (!adapter->int_enabled)
2480 return 1;
2482 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2483 return 1;
2487 * atl1_intr - Interrupt Handler
2488 * @irq: interrupt number
2489 * @data: pointer to a network interface device structure
2491 static irqreturn_t atl1_intr(int irq, void *data)
2493 struct atl1_adapter *adapter = netdev_priv(data);
2494 u32 status;
2496 status = adapter->cmb.cmb->int_stats;
2497 if (!status)
2498 return IRQ_NONE;
2500 /* clear CMB interrupt status at once,
2501 * but leave rx/tx interrupt status in case it should be dropped
2502 * only if rx/tx processing queued. In other case interrupt
2503 * can be lost.
2505 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2507 if (status & ISR_GPHY) /* clear phy status */
2508 atlx_clear_phy_int(adapter);
2510 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2511 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2513 /* check if SMB intr */
2514 if (status & ISR_SMB)
2515 atl1_inc_smb(adapter);
2517 /* check if PCIE PHY Link down */
2518 if (status & ISR_PHY_LINKDOWN) {
2519 if (netif_msg_intr(adapter))
2520 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2521 "pcie phy link down %x\n", status);
2522 if (netif_running(adapter->netdev)) { /* reset MAC */
2523 atlx_irq_disable(adapter);
2524 schedule_work(&adapter->reset_dev_task);
2525 return IRQ_HANDLED;
2529 /* check if DMA read/write error ? */
2530 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2531 if (netif_msg_intr(adapter))
2532 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2533 "pcie DMA r/w error (status = 0x%x)\n",
2534 status);
2535 atlx_irq_disable(adapter);
2536 schedule_work(&adapter->reset_dev_task);
2537 return IRQ_HANDLED;
2540 /* link event */
2541 if (status & ISR_GPHY) {
2542 adapter->soft_stats.tx_carrier_errors++;
2543 atl1_check_for_link(adapter);
2546 /* transmit or receive event */
2547 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2548 atl1_sched_rings_clean(adapter))
2549 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2550 ~(ISR_CMB_TX | ISR_CMB_RX);
2552 /* rx exception */
2553 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2554 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2555 ISR_HOST_RRD_OV))) {
2556 if (netif_msg_intr(adapter))
2557 dev_printk(KERN_DEBUG,
2558 &adapter->pdev->dev,
2559 "rx exception, ISR = 0x%x\n",
2560 status);
2561 atl1_sched_rings_clean(adapter);
2564 /* re-enable Interrupt */
2565 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2566 return IRQ_HANDLED;
2571 * atl1_phy_config - Timer Call-back
2572 * @data: pointer to netdev cast into an unsigned long
2574 static void atl1_phy_config(unsigned long data)
2576 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2577 struct atl1_hw *hw = &adapter->hw;
2578 unsigned long flags;
2580 spin_lock_irqsave(&adapter->lock, flags);
2581 adapter->phy_timer_pending = false;
2582 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2583 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2584 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2585 spin_unlock_irqrestore(&adapter->lock, flags);
2589 * Orphaned vendor comment left intact here:
2590 * <vendor comment>
2591 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2592 * will assert. We do soft reset <0x1400=1> according
2593 * with the SPEC. BUT, it seemes that PCIE or DMA
2594 * state-machine will not be reset. DMAR_TO_INT will
2595 * assert again and again.
2596 * </vendor comment>
2599 static int atl1_reset(struct atl1_adapter *adapter)
2601 int ret;
2602 ret = atl1_reset_hw(&adapter->hw);
2603 if (ret)
2604 return ret;
2605 return atl1_init_hw(&adapter->hw);
2608 static s32 atl1_up(struct atl1_adapter *adapter)
2610 struct net_device *netdev = adapter->netdev;
2611 int err;
2612 int irq_flags = 0;
2614 /* hardware has been reset, we need to reload some things */
2615 atlx_set_multi(netdev);
2616 atl1_init_ring_ptrs(adapter);
2617 atlx_restore_vlan(adapter);
2618 err = atl1_alloc_rx_buffers(adapter);
2619 if (unlikely(!err))
2620 /* no RX BUFFER allocated */
2621 return -ENOMEM;
2623 if (unlikely(atl1_configure(adapter))) {
2624 err = -EIO;
2625 goto err_up;
2628 err = pci_enable_msi(adapter->pdev);
2629 if (err) {
2630 if (netif_msg_ifup(adapter))
2631 dev_info(&adapter->pdev->dev,
2632 "Unable to enable MSI: %d\n", err);
2633 irq_flags |= IRQF_SHARED;
2636 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2637 netdev->name, netdev);
2638 if (unlikely(err))
2639 goto err_up;
2641 napi_enable(&adapter->napi);
2642 atlx_irq_enable(adapter);
2643 atl1_check_link(adapter);
2644 netif_start_queue(netdev);
2645 return 0;
2647 err_up:
2648 pci_disable_msi(adapter->pdev);
2649 /* free rx_buffers */
2650 atl1_clean_rx_ring(adapter);
2651 return err;
2654 static void atl1_down(struct atl1_adapter *adapter)
2656 struct net_device *netdev = adapter->netdev;
2658 napi_disable(&adapter->napi);
2659 netif_stop_queue(netdev);
2660 del_timer_sync(&adapter->phy_config_timer);
2661 adapter->phy_timer_pending = false;
2663 atlx_irq_disable(adapter);
2664 free_irq(adapter->pdev->irq, netdev);
2665 pci_disable_msi(adapter->pdev);
2666 atl1_reset_hw(&adapter->hw);
2667 adapter->cmb.cmb->int_stats = 0;
2669 adapter->link_speed = SPEED_0;
2670 adapter->link_duplex = -1;
2671 netif_carrier_off(netdev);
2673 atl1_clean_tx_ring(adapter);
2674 atl1_clean_rx_ring(adapter);
2677 static void atl1_reset_dev_task(struct work_struct *work)
2679 struct atl1_adapter *adapter =
2680 container_of(work, struct atl1_adapter, reset_dev_task);
2681 struct net_device *netdev = adapter->netdev;
2683 netif_device_detach(netdev);
2684 atl1_down(adapter);
2685 atl1_up(adapter);
2686 netif_device_attach(netdev);
2690 * atl1_change_mtu - Change the Maximum Transfer Unit
2691 * @netdev: network interface device structure
2692 * @new_mtu: new value for maximum frame size
2694 * Returns 0 on success, negative on failure
2696 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2698 struct atl1_adapter *adapter = netdev_priv(netdev);
2699 int old_mtu = netdev->mtu;
2700 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2702 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2703 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2704 if (netif_msg_link(adapter))
2705 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2706 return -EINVAL;
2709 adapter->hw.max_frame_size = max_frame;
2710 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2711 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2712 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2714 netdev->mtu = new_mtu;
2715 if ((old_mtu != new_mtu) && netif_running(netdev)) {
2716 atl1_down(adapter);
2717 atl1_up(adapter);
2720 return 0;
2724 * atl1_open - Called when a network interface is made active
2725 * @netdev: network interface device structure
2727 * Returns 0 on success, negative value on failure
2729 * The open entry point is called when a network interface is made
2730 * active by the system (IFF_UP). At this point all resources needed
2731 * for transmit and receive operations are allocated, the interrupt
2732 * handler is registered with the OS, the watchdog timer is started,
2733 * and the stack is notified that the interface is ready.
2735 static int atl1_open(struct net_device *netdev)
2737 struct atl1_adapter *adapter = netdev_priv(netdev);
2738 int err;
2740 netif_carrier_off(netdev);
2742 /* allocate transmit descriptors */
2743 err = atl1_setup_ring_resources(adapter);
2744 if (err)
2745 return err;
2747 err = atl1_up(adapter);
2748 if (err)
2749 goto err_up;
2751 return 0;
2753 err_up:
2754 atl1_reset(adapter);
2755 return err;
2759 * atl1_close - Disables a network interface
2760 * @netdev: network interface device structure
2762 * Returns 0, this is not allowed to fail
2764 * The close entry point is called when an interface is de-activated
2765 * by the OS. The hardware is still under the drivers control, but
2766 * needs to be disabled. A global MAC reset is issued to stop the
2767 * hardware, and all transmit and receive resources are freed.
2769 static int atl1_close(struct net_device *netdev)
2771 struct atl1_adapter *adapter = netdev_priv(netdev);
2772 atl1_down(adapter);
2773 atl1_free_ring_resources(adapter);
2774 return 0;
2777 #ifdef CONFIG_PM
2778 static int atl1_suspend(struct device *dev)
2780 struct pci_dev *pdev = to_pci_dev(dev);
2781 struct net_device *netdev = pci_get_drvdata(pdev);
2782 struct atl1_adapter *adapter = netdev_priv(netdev);
2783 struct atl1_hw *hw = &adapter->hw;
2784 u32 ctrl = 0;
2785 u32 wufc = adapter->wol;
2786 u32 val;
2787 u16 speed;
2788 u16 duplex;
2790 netif_device_detach(netdev);
2791 if (netif_running(netdev))
2792 atl1_down(adapter);
2794 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2795 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2796 val = ctrl & BMSR_LSTATUS;
2797 if (val)
2798 wufc &= ~ATLX_WUFC_LNKC;
2799 if (!wufc)
2800 goto disable_wol;
2802 if (val) {
2803 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2804 if (val) {
2805 if (netif_msg_ifdown(adapter))
2806 dev_printk(KERN_DEBUG, &pdev->dev,
2807 "error getting speed/duplex\n");
2808 goto disable_wol;
2811 ctrl = 0;
2813 /* enable magic packet WOL */
2814 if (wufc & ATLX_WUFC_MAG)
2815 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2816 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2817 ioread32(hw->hw_addr + REG_WOL_CTRL);
2819 /* configure the mac */
2820 ctrl = MAC_CTRL_RX_EN;
2821 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2822 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2823 if (duplex == FULL_DUPLEX)
2824 ctrl |= MAC_CTRL_DUPLX;
2825 ctrl |= (((u32)adapter->hw.preamble_len &
2826 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2827 __atlx_vlan_mode(netdev->features, &ctrl);
2828 if (wufc & ATLX_WUFC_MAG)
2829 ctrl |= MAC_CTRL_BC_EN;
2830 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2831 ioread32(hw->hw_addr + REG_MAC_CTRL);
2833 /* poke the PHY */
2834 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2835 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2836 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2837 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2838 } else {
2839 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2840 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2841 ioread32(hw->hw_addr + REG_WOL_CTRL);
2842 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2843 ioread32(hw->hw_addr + REG_MAC_CTRL);
2844 hw->phy_configured = false;
2847 return 0;
2849 disable_wol:
2850 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2851 ioread32(hw->hw_addr + REG_WOL_CTRL);
2852 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2853 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2854 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2855 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2856 hw->phy_configured = false;
2858 return 0;
2861 static int atl1_resume(struct device *dev)
2863 struct pci_dev *pdev = to_pci_dev(dev);
2864 struct net_device *netdev = pci_get_drvdata(pdev);
2865 struct atl1_adapter *adapter = netdev_priv(netdev);
2867 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2869 atl1_reset_hw(&adapter->hw);
2871 if (netif_running(netdev)) {
2872 adapter->cmb.cmb->int_stats = 0;
2873 atl1_up(adapter);
2875 netif_device_attach(netdev);
2877 return 0;
2880 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2881 #define ATL1_PM_OPS (&atl1_pm_ops)
2883 #else
2885 static int atl1_suspend(struct device *dev) { return 0; }
2887 #define ATL1_PM_OPS NULL
2888 #endif
2890 static void atl1_shutdown(struct pci_dev *pdev)
2892 struct net_device *netdev = pci_get_drvdata(pdev);
2893 struct atl1_adapter *adapter = netdev_priv(netdev);
2895 atl1_suspend(&pdev->dev);
2896 pci_wake_from_d3(pdev, adapter->wol);
2897 pci_set_power_state(pdev, PCI_D3hot);
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 static void atl1_poll_controller(struct net_device *netdev)
2903 disable_irq(netdev->irq);
2904 atl1_intr(netdev->irq, netdev);
2905 enable_irq(netdev->irq);
2907 #endif
2909 static const struct net_device_ops atl1_netdev_ops = {
2910 .ndo_open = atl1_open,
2911 .ndo_stop = atl1_close,
2912 .ndo_start_xmit = atl1_xmit_frame,
2913 .ndo_set_rx_mode = atlx_set_multi,
2914 .ndo_validate_addr = eth_validate_addr,
2915 .ndo_set_mac_address = atl1_set_mac,
2916 .ndo_change_mtu = atl1_change_mtu,
2917 .ndo_fix_features = atlx_fix_features,
2918 .ndo_set_features = atlx_set_features,
2919 .ndo_do_ioctl = atlx_ioctl,
2920 .ndo_tx_timeout = atlx_tx_timeout,
2921 #ifdef CONFIG_NET_POLL_CONTROLLER
2922 .ndo_poll_controller = atl1_poll_controller,
2923 #endif
2927 * atl1_probe - Device Initialization Routine
2928 * @pdev: PCI device information struct
2929 * @ent: entry in atl1_pci_tbl
2931 * Returns 0 on success, negative on failure
2933 * atl1_probe initializes an adapter identified by a pci_dev structure.
2934 * The OS initialization, configuring of the adapter private structure,
2935 * and a hardware reset occur.
2937 static int __devinit atl1_probe(struct pci_dev *pdev,
2938 const struct pci_device_id *ent)
2940 struct net_device *netdev;
2941 struct atl1_adapter *adapter;
2942 static int cards_found = 0;
2943 int err;
2945 err = pci_enable_device(pdev);
2946 if (err)
2947 return err;
2950 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2951 * shared register for the high 32 bits, so only a single, aligned,
2952 * 4 GB physical address range can be used at a time.
2954 * Supporting 64-bit DMA on this hardware is more trouble than it's
2955 * worth. It is far easier to limit to 32-bit DMA than update
2956 * various kernel subsystems to support the mechanics required by a
2957 * fixed-high-32-bit system.
2959 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2960 if (err) {
2961 dev_err(&pdev->dev, "no usable DMA configuration\n");
2962 goto err_dma;
2965 * Mark all PCI regions associated with PCI device
2966 * pdev as being reserved by owner atl1_driver_name
2968 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2969 if (err)
2970 goto err_request_regions;
2973 * Enables bus-mastering on the device and calls
2974 * pcibios_set_master to do the needed arch specific settings
2976 pci_set_master(pdev);
2978 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2979 if (!netdev) {
2980 err = -ENOMEM;
2981 goto err_alloc_etherdev;
2983 SET_NETDEV_DEV(netdev, &pdev->dev);
2985 pci_set_drvdata(pdev, netdev);
2986 adapter = netdev_priv(netdev);
2987 adapter->netdev = netdev;
2988 adapter->pdev = pdev;
2989 adapter->hw.back = adapter;
2990 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2992 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2993 if (!adapter->hw.hw_addr) {
2994 err = -EIO;
2995 goto err_pci_iomap;
2997 /* get device revision number */
2998 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2999 (REG_MASTER_CTRL + 2));
3000 if (netif_msg_probe(adapter))
3001 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3003 /* set default ring resource counts */
3004 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3005 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3007 adapter->mii.dev = netdev;
3008 adapter->mii.mdio_read = mdio_read;
3009 adapter->mii.mdio_write = mdio_write;
3010 adapter->mii.phy_id_mask = 0x1f;
3011 adapter->mii.reg_num_mask = 0x1f;
3013 netdev->netdev_ops = &atl1_netdev_ops;
3014 netdev->watchdog_timeo = 5 * HZ;
3015 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3017 netdev->ethtool_ops = &atl1_ethtool_ops;
3018 adapter->bd_number = cards_found;
3020 /* setup the private structure */
3021 err = atl1_sw_init(adapter);
3022 if (err)
3023 goto err_common;
3025 netdev->features = NETIF_F_HW_CSUM;
3026 netdev->features |= NETIF_F_SG;
3027 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
3029 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3030 NETIF_F_HW_VLAN_RX;
3032 /* is this valid? see atl1_setup_mac_ctrl() */
3033 netdev->features |= NETIF_F_RXCSUM;
3036 * patch for some L1 of old version,
3037 * the final version of L1 may not need these
3038 * patches
3040 /* atl1_pcie_patch(adapter); */
3042 /* really reset GPHY core */
3043 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3046 * reset the controller to
3047 * put the device in a known good starting state
3049 if (atl1_reset_hw(&adapter->hw)) {
3050 err = -EIO;
3051 goto err_common;
3054 /* copy the MAC address out of the EEPROM */
3055 if (atl1_read_mac_addr(&adapter->hw)) {
3056 /* mark random mac */
3057 netdev->addr_assign_type |= NET_ADDR_RANDOM;
3059 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3061 if (!is_valid_ether_addr(netdev->dev_addr)) {
3062 err = -EIO;
3063 goto err_common;
3066 atl1_check_options(adapter);
3068 /* pre-init the MAC, and setup link */
3069 err = atl1_init_hw(&adapter->hw);
3070 if (err) {
3071 err = -EIO;
3072 goto err_common;
3075 atl1_pcie_patch(adapter);
3076 /* assume we have no link for now */
3077 netif_carrier_off(netdev);
3079 setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3080 (unsigned long)adapter);
3081 adapter->phy_timer_pending = false;
3083 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3085 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3087 err = register_netdev(netdev);
3088 if (err)
3089 goto err_common;
3091 cards_found++;
3092 atl1_via_workaround(adapter);
3093 return 0;
3095 err_common:
3096 pci_iounmap(pdev, adapter->hw.hw_addr);
3097 err_pci_iomap:
3098 free_netdev(netdev);
3099 err_alloc_etherdev:
3100 pci_release_regions(pdev);
3101 err_dma:
3102 err_request_regions:
3103 pci_disable_device(pdev);
3104 return err;
3108 * atl1_remove - Device Removal Routine
3109 * @pdev: PCI device information struct
3111 * atl1_remove is called by the PCI subsystem to alert the driver
3112 * that it should release a PCI device. The could be caused by a
3113 * Hot-Plug event, or because the driver is going to be removed from
3114 * memory.
3116 static void __devexit atl1_remove(struct pci_dev *pdev)
3118 struct net_device *netdev = pci_get_drvdata(pdev);
3119 struct atl1_adapter *adapter;
3120 /* Device not available. Return. */
3121 if (!netdev)
3122 return;
3124 adapter = netdev_priv(netdev);
3127 * Some atl1 boards lack persistent storage for their MAC, and get it
3128 * from the BIOS during POST. If we've been messing with the MAC
3129 * address, we need to save the permanent one.
3131 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3132 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3133 ETH_ALEN);
3134 atl1_set_mac_addr(&adapter->hw);
3137 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3138 unregister_netdev(netdev);
3139 pci_iounmap(pdev, adapter->hw.hw_addr);
3140 pci_release_regions(pdev);
3141 free_netdev(netdev);
3142 pci_disable_device(pdev);
3145 static struct pci_driver atl1_driver = {
3146 .name = ATLX_DRIVER_NAME,
3147 .id_table = atl1_pci_tbl,
3148 .probe = atl1_probe,
3149 .remove = __devexit_p(atl1_remove),
3150 .shutdown = atl1_shutdown,
3151 .driver.pm = ATL1_PM_OPS,
3155 * atl1_exit_module - Driver Exit Cleanup Routine
3157 * atl1_exit_module is called just before the driver is removed
3158 * from memory.
3160 static void __exit atl1_exit_module(void)
3162 pci_unregister_driver(&atl1_driver);
3166 * atl1_init_module - Driver Registration Routine
3168 * atl1_init_module is the first routine called when the driver is
3169 * loaded. All it does is register with the PCI subsystem.
3171 static int __init atl1_init_module(void)
3173 return pci_register_driver(&atl1_driver);
3176 module_init(atl1_init_module);
3177 module_exit(atl1_exit_module);
3179 struct atl1_stats {
3180 char stat_string[ETH_GSTRING_LEN];
3181 int sizeof_stat;
3182 int stat_offset;
3185 #define ATL1_STAT(m) \
3186 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3188 static struct atl1_stats atl1_gstrings_stats[] = {
3189 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3190 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3191 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3192 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3193 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3194 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3195 {"multicast", ATL1_STAT(soft_stats.multicast)},
3196 {"collisions", ATL1_STAT(soft_stats.collisions)},
3197 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3198 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3199 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3200 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3201 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3202 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3203 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3204 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3205 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3206 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3207 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3208 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3209 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3210 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3211 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3212 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3213 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3214 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3215 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3216 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3217 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3220 static void atl1_get_ethtool_stats(struct net_device *netdev,
3221 struct ethtool_stats *stats, u64 *data)
3223 struct atl1_adapter *adapter = netdev_priv(netdev);
3224 int i;
3225 char *p;
3227 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3228 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3229 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3230 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3235 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3237 switch (sset) {
3238 case ETH_SS_STATS:
3239 return ARRAY_SIZE(atl1_gstrings_stats);
3240 default:
3241 return -EOPNOTSUPP;
3245 static int atl1_get_settings(struct net_device *netdev,
3246 struct ethtool_cmd *ecmd)
3248 struct atl1_adapter *adapter = netdev_priv(netdev);
3249 struct atl1_hw *hw = &adapter->hw;
3251 ecmd->supported = (SUPPORTED_10baseT_Half |
3252 SUPPORTED_10baseT_Full |
3253 SUPPORTED_100baseT_Half |
3254 SUPPORTED_100baseT_Full |
3255 SUPPORTED_1000baseT_Full |
3256 SUPPORTED_Autoneg | SUPPORTED_TP);
3257 ecmd->advertising = ADVERTISED_TP;
3258 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3259 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3260 ecmd->advertising |= ADVERTISED_Autoneg;
3261 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3262 ecmd->advertising |= ADVERTISED_Autoneg;
3263 ecmd->advertising |=
3264 (ADVERTISED_10baseT_Half |
3265 ADVERTISED_10baseT_Full |
3266 ADVERTISED_100baseT_Half |
3267 ADVERTISED_100baseT_Full |
3268 ADVERTISED_1000baseT_Full);
3269 } else
3270 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3272 ecmd->port = PORT_TP;
3273 ecmd->phy_address = 0;
3274 ecmd->transceiver = XCVR_INTERNAL;
3276 if (netif_carrier_ok(adapter->netdev)) {
3277 u16 link_speed, link_duplex;
3278 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3279 ethtool_cmd_speed_set(ecmd, link_speed);
3280 if (link_duplex == FULL_DUPLEX)
3281 ecmd->duplex = DUPLEX_FULL;
3282 else
3283 ecmd->duplex = DUPLEX_HALF;
3284 } else {
3285 ethtool_cmd_speed_set(ecmd, -1);
3286 ecmd->duplex = -1;
3288 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3289 hw->media_type == MEDIA_TYPE_1000M_FULL)
3290 ecmd->autoneg = AUTONEG_ENABLE;
3291 else
3292 ecmd->autoneg = AUTONEG_DISABLE;
3294 return 0;
3297 static int atl1_set_settings(struct net_device *netdev,
3298 struct ethtool_cmd *ecmd)
3300 struct atl1_adapter *adapter = netdev_priv(netdev);
3301 struct atl1_hw *hw = &adapter->hw;
3302 u16 phy_data;
3303 int ret_val = 0;
3304 u16 old_media_type = hw->media_type;
3306 if (netif_running(adapter->netdev)) {
3307 if (netif_msg_link(adapter))
3308 dev_dbg(&adapter->pdev->dev,
3309 "ethtool shutting down adapter\n");
3310 atl1_down(adapter);
3313 if (ecmd->autoneg == AUTONEG_ENABLE)
3314 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3315 else {
3316 u32 speed = ethtool_cmd_speed(ecmd);
3317 if (speed == SPEED_1000) {
3318 if (ecmd->duplex != DUPLEX_FULL) {
3319 if (netif_msg_link(adapter))
3320 dev_warn(&adapter->pdev->dev,
3321 "1000M half is invalid\n");
3322 ret_val = -EINVAL;
3323 goto exit_sset;
3325 hw->media_type = MEDIA_TYPE_1000M_FULL;
3326 } else if (speed == SPEED_100) {
3327 if (ecmd->duplex == DUPLEX_FULL)
3328 hw->media_type = MEDIA_TYPE_100M_FULL;
3329 else
3330 hw->media_type = MEDIA_TYPE_100M_HALF;
3331 } else {
3332 if (ecmd->duplex == DUPLEX_FULL)
3333 hw->media_type = MEDIA_TYPE_10M_FULL;
3334 else
3335 hw->media_type = MEDIA_TYPE_10M_HALF;
3338 switch (hw->media_type) {
3339 case MEDIA_TYPE_AUTO_SENSOR:
3340 ecmd->advertising =
3341 ADVERTISED_10baseT_Half |
3342 ADVERTISED_10baseT_Full |
3343 ADVERTISED_100baseT_Half |
3344 ADVERTISED_100baseT_Full |
3345 ADVERTISED_1000baseT_Full |
3346 ADVERTISED_Autoneg | ADVERTISED_TP;
3347 break;
3348 case MEDIA_TYPE_1000M_FULL:
3349 ecmd->advertising =
3350 ADVERTISED_1000baseT_Full |
3351 ADVERTISED_Autoneg | ADVERTISED_TP;
3352 break;
3353 default:
3354 ecmd->advertising = 0;
3355 break;
3357 if (atl1_phy_setup_autoneg_adv(hw)) {
3358 ret_val = -EINVAL;
3359 if (netif_msg_link(adapter))
3360 dev_warn(&adapter->pdev->dev,
3361 "invalid ethtool speed/duplex setting\n");
3362 goto exit_sset;
3364 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3365 hw->media_type == MEDIA_TYPE_1000M_FULL)
3366 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3367 else {
3368 switch (hw->media_type) {
3369 case MEDIA_TYPE_100M_FULL:
3370 phy_data =
3371 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3372 MII_CR_RESET;
3373 break;
3374 case MEDIA_TYPE_100M_HALF:
3375 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3376 break;
3377 case MEDIA_TYPE_10M_FULL:
3378 phy_data =
3379 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3380 break;
3381 default:
3382 /* MEDIA_TYPE_10M_HALF: */
3383 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3384 break;
3387 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3388 exit_sset:
3389 if (ret_val)
3390 hw->media_type = old_media_type;
3392 if (netif_running(adapter->netdev)) {
3393 if (netif_msg_link(adapter))
3394 dev_dbg(&adapter->pdev->dev,
3395 "ethtool starting adapter\n");
3396 atl1_up(adapter);
3397 } else if (!ret_val) {
3398 if (netif_msg_link(adapter))
3399 dev_dbg(&adapter->pdev->dev,
3400 "ethtool resetting adapter\n");
3401 atl1_reset(adapter);
3403 return ret_val;
3406 static void atl1_get_drvinfo(struct net_device *netdev,
3407 struct ethtool_drvinfo *drvinfo)
3409 struct atl1_adapter *adapter = netdev_priv(netdev);
3411 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3412 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3413 sizeof(drvinfo->version));
3414 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3415 sizeof(drvinfo->bus_info));
3416 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3419 static void atl1_get_wol(struct net_device *netdev,
3420 struct ethtool_wolinfo *wol)
3422 struct atl1_adapter *adapter = netdev_priv(netdev);
3424 wol->supported = WAKE_MAGIC;
3425 wol->wolopts = 0;
3426 if (adapter->wol & ATLX_WUFC_MAG)
3427 wol->wolopts |= WAKE_MAGIC;
3430 static int atl1_set_wol(struct net_device *netdev,
3431 struct ethtool_wolinfo *wol)
3433 struct atl1_adapter *adapter = netdev_priv(netdev);
3435 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3436 WAKE_ARP | WAKE_MAGICSECURE))
3437 return -EOPNOTSUPP;
3438 adapter->wol = 0;
3439 if (wol->wolopts & WAKE_MAGIC)
3440 adapter->wol |= ATLX_WUFC_MAG;
3442 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3444 return 0;
3447 static u32 atl1_get_msglevel(struct net_device *netdev)
3449 struct atl1_adapter *adapter = netdev_priv(netdev);
3450 return adapter->msg_enable;
3453 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3455 struct atl1_adapter *adapter = netdev_priv(netdev);
3456 adapter->msg_enable = value;
3459 static int atl1_get_regs_len(struct net_device *netdev)
3461 return ATL1_REG_COUNT * sizeof(u32);
3464 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3465 void *p)
3467 struct atl1_adapter *adapter = netdev_priv(netdev);
3468 struct atl1_hw *hw = &adapter->hw;
3469 unsigned int i;
3470 u32 *regbuf = p;
3472 for (i = 0; i < ATL1_REG_COUNT; i++) {
3474 * This switch statement avoids reserved regions
3475 * of register space.
3477 switch (i) {
3478 case 6 ... 9:
3479 case 14:
3480 case 29 ... 31:
3481 case 34 ... 63:
3482 case 75 ... 127:
3483 case 136 ... 1023:
3484 case 1027 ... 1087:
3485 case 1091 ... 1151:
3486 case 1194 ... 1195:
3487 case 1200 ... 1201:
3488 case 1206 ... 1213:
3489 case 1216 ... 1279:
3490 case 1290 ... 1311:
3491 case 1323 ... 1343:
3492 case 1358 ... 1359:
3493 case 1368 ... 1375:
3494 case 1378 ... 1383:
3495 case 1388 ... 1391:
3496 case 1393 ... 1395:
3497 case 1402 ... 1403:
3498 case 1410 ... 1471:
3499 case 1522 ... 1535:
3500 /* reserved region; don't read it */
3501 regbuf[i] = 0;
3502 break;
3503 default:
3504 /* unreserved region */
3505 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3510 static void atl1_get_ringparam(struct net_device *netdev,
3511 struct ethtool_ringparam *ring)
3513 struct atl1_adapter *adapter = netdev_priv(netdev);
3514 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3515 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3517 ring->rx_max_pending = ATL1_MAX_RFD;
3518 ring->tx_max_pending = ATL1_MAX_TPD;
3519 ring->rx_pending = rxdr->count;
3520 ring->tx_pending = txdr->count;
3523 static int atl1_set_ringparam(struct net_device *netdev,
3524 struct ethtool_ringparam *ring)
3526 struct atl1_adapter *adapter = netdev_priv(netdev);
3527 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3528 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3529 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3531 struct atl1_tpd_ring tpd_old, tpd_new;
3532 struct atl1_rfd_ring rfd_old, rfd_new;
3533 struct atl1_rrd_ring rrd_old, rrd_new;
3534 struct atl1_ring_header rhdr_old, rhdr_new;
3535 struct atl1_smb smb;
3536 struct atl1_cmb cmb;
3537 int err;
3539 tpd_old = adapter->tpd_ring;
3540 rfd_old = adapter->rfd_ring;
3541 rrd_old = adapter->rrd_ring;
3542 rhdr_old = adapter->ring_header;
3544 if (netif_running(adapter->netdev))
3545 atl1_down(adapter);
3547 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3548 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3549 rfdr->count;
3550 rfdr->count = (rfdr->count + 3) & ~3;
3551 rrdr->count = rfdr->count;
3553 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3554 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3555 tpdr->count;
3556 tpdr->count = (tpdr->count + 3) & ~3;
3558 if (netif_running(adapter->netdev)) {
3559 /* try to get new resources before deleting old */
3560 err = atl1_setup_ring_resources(adapter);
3561 if (err)
3562 goto err_setup_ring;
3565 * save the new, restore the old in order to free it,
3566 * then restore the new back again
3569 rfd_new = adapter->rfd_ring;
3570 rrd_new = adapter->rrd_ring;
3571 tpd_new = adapter->tpd_ring;
3572 rhdr_new = adapter->ring_header;
3573 adapter->rfd_ring = rfd_old;
3574 adapter->rrd_ring = rrd_old;
3575 adapter->tpd_ring = tpd_old;
3576 adapter->ring_header = rhdr_old;
3578 * Save SMB and CMB, since atl1_free_ring_resources
3579 * will clear them.
3581 smb = adapter->smb;
3582 cmb = adapter->cmb;
3583 atl1_free_ring_resources(adapter);
3584 adapter->rfd_ring = rfd_new;
3585 adapter->rrd_ring = rrd_new;
3586 adapter->tpd_ring = tpd_new;
3587 adapter->ring_header = rhdr_new;
3588 adapter->smb = smb;
3589 adapter->cmb = cmb;
3591 err = atl1_up(adapter);
3592 if (err)
3593 return err;
3595 return 0;
3597 err_setup_ring:
3598 adapter->rfd_ring = rfd_old;
3599 adapter->rrd_ring = rrd_old;
3600 adapter->tpd_ring = tpd_old;
3601 adapter->ring_header = rhdr_old;
3602 atl1_up(adapter);
3603 return err;
3606 static void atl1_get_pauseparam(struct net_device *netdev,
3607 struct ethtool_pauseparam *epause)
3609 struct atl1_adapter *adapter = netdev_priv(netdev);
3610 struct atl1_hw *hw = &adapter->hw;
3612 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3613 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3614 epause->autoneg = AUTONEG_ENABLE;
3615 } else {
3616 epause->autoneg = AUTONEG_DISABLE;
3618 epause->rx_pause = 1;
3619 epause->tx_pause = 1;
3622 static int atl1_set_pauseparam(struct net_device *netdev,
3623 struct ethtool_pauseparam *epause)
3625 struct atl1_adapter *adapter = netdev_priv(netdev);
3626 struct atl1_hw *hw = &adapter->hw;
3628 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3629 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3630 epause->autoneg = AUTONEG_ENABLE;
3631 } else {
3632 epause->autoneg = AUTONEG_DISABLE;
3635 epause->rx_pause = 1;
3636 epause->tx_pause = 1;
3638 return 0;
3641 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3642 u8 *data)
3644 u8 *p = data;
3645 int i;
3647 switch (stringset) {
3648 case ETH_SS_STATS:
3649 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3650 memcpy(p, atl1_gstrings_stats[i].stat_string,
3651 ETH_GSTRING_LEN);
3652 p += ETH_GSTRING_LEN;
3654 break;
3658 static int atl1_nway_reset(struct net_device *netdev)
3660 struct atl1_adapter *adapter = netdev_priv(netdev);
3661 struct atl1_hw *hw = &adapter->hw;
3663 if (netif_running(netdev)) {
3664 u16 phy_data;
3665 atl1_down(adapter);
3667 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3668 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3669 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3670 } else {
3671 switch (hw->media_type) {
3672 case MEDIA_TYPE_100M_FULL:
3673 phy_data = MII_CR_FULL_DUPLEX |
3674 MII_CR_SPEED_100 | MII_CR_RESET;
3675 break;
3676 case MEDIA_TYPE_100M_HALF:
3677 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3678 break;
3679 case MEDIA_TYPE_10M_FULL:
3680 phy_data = MII_CR_FULL_DUPLEX |
3681 MII_CR_SPEED_10 | MII_CR_RESET;
3682 break;
3683 default:
3684 /* MEDIA_TYPE_10M_HALF */
3685 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3688 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3689 atl1_up(adapter);
3691 return 0;
3694 static const struct ethtool_ops atl1_ethtool_ops = {
3695 .get_settings = atl1_get_settings,
3696 .set_settings = atl1_set_settings,
3697 .get_drvinfo = atl1_get_drvinfo,
3698 .get_wol = atl1_get_wol,
3699 .set_wol = atl1_set_wol,
3700 .get_msglevel = atl1_get_msglevel,
3701 .set_msglevel = atl1_set_msglevel,
3702 .get_regs_len = atl1_get_regs_len,
3703 .get_regs = atl1_get_regs,
3704 .get_ringparam = atl1_get_ringparam,
3705 .set_ringparam = atl1_set_ringparam,
3706 .get_pauseparam = atl1_get_pauseparam,
3707 .set_pauseparam = atl1_set_pauseparam,
3708 .get_link = ethtool_op_get_link,
3709 .get_strings = atl1_get_strings,
3710 .nway_reset = atl1_nway_reset,
3711 .get_ethtool_stats = atl1_get_ethtool_stats,
3712 .get_sset_count = atl1_get_sset_count,