1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/stringify.h>
18 #include <linux/kernel.h>
19 #include <linux/timer.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/init.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
41 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.2.3"
62 #define DRV_MODULE_RELDATE "June 27, 2012"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] __devinitdata
=
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
87 static int disable_msi
= 0;
89 module_param(disable_msi
, int, 0);
90 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
106 /* indexed by board_t, above */
109 } board_info
[] __devinitdata
= {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
140 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
144 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
145 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
149 static const struct flash_spec flash_table
[] =
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
156 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
161 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
178 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
195 "Non-buffered flash (64kB)"},
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
199 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
224 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
234 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
235 "Buffered flash (256kB)"},
238 static const struct flash_spec flash_5709
= {
239 .flags
= BNX2_NV_BUFFERED
,
240 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
241 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
242 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
243 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
244 .name
= "5709 Buffered flash (256kB)",
247 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
249 static void bnx2_init_napi(struct bnx2
*bp
);
250 static void bnx2_del_napi(struct bnx2
*bp
);
252 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
256 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
259 /* The ring uses 256 indices for 255 entries, one of them
260 * needs to be skipped.
262 diff
= txr
->tx_prod
- txr
->tx_cons
;
263 if (unlikely(diff
>= TX_DESC_CNT
)) {
265 if (diff
== TX_DESC_CNT
)
266 diff
= MAX_TX_DESC_CNT
;
268 return bp
->tx_ring_size
- diff
;
272 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
276 spin_lock_bh(&bp
->indirect_lock
);
277 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
278 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
279 spin_unlock_bh(&bp
->indirect_lock
);
284 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
286 spin_lock_bh(&bp
->indirect_lock
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
288 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
289 spin_unlock_bh(&bp
->indirect_lock
);
293 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
295 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
299 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
301 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
305 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
308 spin_lock_bh(&bp
->indirect_lock
);
309 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
312 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
313 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
314 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
315 for (i
= 0; i
< 5; i
++) {
316 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
317 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
322 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
323 REG_WR(bp
, BNX2_CTX_DATA
, val
);
325 spin_unlock_bh(&bp
->indirect_lock
);
330 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
332 struct bnx2
*bp
= netdev_priv(dev
);
333 struct drv_ctl_io
*io
= &info
->data
.io
;
336 case DRV_CTL_IO_WR_CMD
:
337 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
339 case DRV_CTL_IO_RD_CMD
:
340 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
342 case DRV_CTL_CTX_WR_CMD
:
343 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
351 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
353 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
354 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
357 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
358 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
359 bnapi
->cnic_present
= 0;
360 sb_id
= bp
->irq_nvecs
;
361 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
363 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
364 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
365 bnapi
->cnic_present
= 1;
367 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
370 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
371 cp
->irq_arr
[0].status_blk
= (void *)
372 ((unsigned long) bnapi
->status_blk
.msi
+
373 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
374 cp
->irq_arr
[0].status_blk_num
= sb_id
;
378 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
381 struct bnx2
*bp
= netdev_priv(dev
);
382 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
387 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
390 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
393 bp
->cnic_data
= data
;
394 rcu_assign_pointer(bp
->cnic_ops
, ops
);
397 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
399 bnx2_setup_cnic_irq_info(bp
);
404 static int bnx2_unregister_cnic(struct net_device
*dev
)
406 struct bnx2
*bp
= netdev_priv(dev
);
407 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
408 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
410 mutex_lock(&bp
->cnic_lock
);
412 bnapi
->cnic_present
= 0;
413 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
414 mutex_unlock(&bp
->cnic_lock
);
419 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
421 struct bnx2
*bp
= netdev_priv(dev
);
422 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
424 if (!cp
->max_iscsi_conn
)
427 cp
->drv_owner
= THIS_MODULE
;
428 cp
->chip_id
= bp
->chip_id
;
430 cp
->io_base
= bp
->regview
;
431 cp
->drv_ctl
= bnx2_drv_ctl
;
432 cp
->drv_register_cnic
= bnx2_register_cnic
;
433 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
437 EXPORT_SYMBOL(bnx2_cnic_probe
);
440 bnx2_cnic_stop(struct bnx2
*bp
)
442 struct cnic_ops
*c_ops
;
443 struct cnic_ctl_info info
;
445 mutex_lock(&bp
->cnic_lock
);
446 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
447 lockdep_is_held(&bp
->cnic_lock
));
449 info
.cmd
= CNIC_CTL_STOP_CMD
;
450 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
452 mutex_unlock(&bp
->cnic_lock
);
456 bnx2_cnic_start(struct bnx2
*bp
)
458 struct cnic_ops
*c_ops
;
459 struct cnic_ctl_info info
;
461 mutex_lock(&bp
->cnic_lock
);
462 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
463 lockdep_is_held(&bp
->cnic_lock
));
465 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
466 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
468 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
470 info
.cmd
= CNIC_CTL_START_CMD
;
471 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
473 mutex_unlock(&bp
->cnic_lock
);
479 bnx2_cnic_stop(struct bnx2
*bp
)
484 bnx2_cnic_start(struct bnx2
*bp
)
491 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
496 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
497 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
498 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
500 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
501 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
506 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
507 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
508 BNX2_EMAC_MDIO_COMM_START_BUSY
;
509 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
511 for (i
= 0; i
< 50; i
++) {
514 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
515 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
518 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
519 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
525 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
534 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
535 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
536 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
538 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
539 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
548 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
553 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
554 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
555 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
557 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
558 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
563 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
564 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
565 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
566 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
568 for (i
= 0; i
< 50; i
++) {
571 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
572 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
578 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
583 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
584 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
585 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
587 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
588 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
597 bnx2_disable_int(struct bnx2
*bp
)
600 struct bnx2_napi
*bnapi
;
602 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
603 bnapi
= &bp
->bnx2_napi
[i
];
604 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
605 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
607 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
611 bnx2_enable_int(struct bnx2
*bp
)
614 struct bnx2_napi
*bnapi
;
616 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
617 bnapi
= &bp
->bnx2_napi
[i
];
619 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
620 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
621 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
622 bnapi
->last_status_idx
);
624 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
625 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
626 bnapi
->last_status_idx
);
628 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
632 bnx2_disable_int_sync(struct bnx2
*bp
)
636 atomic_inc(&bp
->intr_sem
);
637 if (!netif_running(bp
->dev
))
640 bnx2_disable_int(bp
);
641 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
642 synchronize_irq(bp
->irq_tbl
[i
].vector
);
646 bnx2_napi_disable(struct bnx2
*bp
)
650 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
651 napi_disable(&bp
->bnx2_napi
[i
].napi
);
655 bnx2_napi_enable(struct bnx2
*bp
)
659 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
660 napi_enable(&bp
->bnx2_napi
[i
].napi
);
664 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
668 if (netif_running(bp
->dev
)) {
669 bnx2_napi_disable(bp
);
670 netif_tx_disable(bp
->dev
);
672 bnx2_disable_int_sync(bp
);
673 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
677 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
679 if (atomic_dec_and_test(&bp
->intr_sem
)) {
680 if (netif_running(bp
->dev
)) {
681 netif_tx_wake_all_queues(bp
->dev
);
682 spin_lock_bh(&bp
->phy_lock
);
684 netif_carrier_on(bp
->dev
);
685 spin_unlock_bh(&bp
->phy_lock
);
686 bnx2_napi_enable(bp
);
695 bnx2_free_tx_mem(struct bnx2
*bp
)
699 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
700 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
701 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
703 if (txr
->tx_desc_ring
) {
704 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
706 txr
->tx_desc_mapping
);
707 txr
->tx_desc_ring
= NULL
;
709 kfree(txr
->tx_buf_ring
);
710 txr
->tx_buf_ring
= NULL
;
715 bnx2_free_rx_mem(struct bnx2
*bp
)
719 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
720 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
721 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
724 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
725 if (rxr
->rx_desc_ring
[j
])
726 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
727 rxr
->rx_desc_ring
[j
],
728 rxr
->rx_desc_mapping
[j
]);
729 rxr
->rx_desc_ring
[j
] = NULL
;
731 vfree(rxr
->rx_buf_ring
);
732 rxr
->rx_buf_ring
= NULL
;
734 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
735 if (rxr
->rx_pg_desc_ring
[j
])
736 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
737 rxr
->rx_pg_desc_ring
[j
],
738 rxr
->rx_pg_desc_mapping
[j
]);
739 rxr
->rx_pg_desc_ring
[j
] = NULL
;
741 vfree(rxr
->rx_pg_ring
);
742 rxr
->rx_pg_ring
= NULL
;
747 bnx2_alloc_tx_mem(struct bnx2
*bp
)
751 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
752 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
753 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
755 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
756 if (txr
->tx_buf_ring
== NULL
)
760 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
761 &txr
->tx_desc_mapping
, GFP_KERNEL
);
762 if (txr
->tx_desc_ring
== NULL
)
769 bnx2_alloc_rx_mem(struct bnx2
*bp
)
773 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
774 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
775 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
779 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
780 if (rxr
->rx_buf_ring
== NULL
)
783 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
784 rxr
->rx_desc_ring
[j
] =
785 dma_alloc_coherent(&bp
->pdev
->dev
,
787 &rxr
->rx_desc_mapping
[j
],
789 if (rxr
->rx_desc_ring
[j
] == NULL
)
794 if (bp
->rx_pg_ring_size
) {
795 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
797 if (rxr
->rx_pg_ring
== NULL
)
802 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
803 rxr
->rx_pg_desc_ring
[j
] =
804 dma_alloc_coherent(&bp
->pdev
->dev
,
806 &rxr
->rx_pg_desc_mapping
[j
],
808 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
817 bnx2_free_mem(struct bnx2
*bp
)
820 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
822 bnx2_free_tx_mem(bp
);
823 bnx2_free_rx_mem(bp
);
825 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
826 if (bp
->ctx_blk
[i
]) {
827 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
829 bp
->ctx_blk_mapping
[i
]);
830 bp
->ctx_blk
[i
] = NULL
;
833 if (bnapi
->status_blk
.msi
) {
834 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
835 bnapi
->status_blk
.msi
,
836 bp
->status_blk_mapping
);
837 bnapi
->status_blk
.msi
= NULL
;
838 bp
->stats_blk
= NULL
;
843 bnx2_alloc_mem(struct bnx2
*bp
)
845 int i
, status_blk_size
, err
;
846 struct bnx2_napi
*bnapi
;
849 /* Combine status and statistics blocks into one allocation. */
850 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
851 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
852 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
853 BNX2_SBLK_MSIX_ALIGN_SIZE
);
854 bp
->status_stats_size
= status_blk_size
+
855 sizeof(struct statistics_block
);
857 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
858 &bp
->status_blk_mapping
, GFP_KERNEL
);
859 if (status_blk
== NULL
)
862 memset(status_blk
, 0, bp
->status_stats_size
);
864 bnapi
= &bp
->bnx2_napi
[0];
865 bnapi
->status_blk
.msi
= status_blk
;
866 bnapi
->hw_tx_cons_ptr
=
867 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
868 bnapi
->hw_rx_cons_ptr
=
869 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
870 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
871 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
872 struct status_block_msix
*sblk
;
874 bnapi
= &bp
->bnx2_napi
[i
];
876 sblk
= (status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
877 bnapi
->status_blk
.msix
= sblk
;
878 bnapi
->hw_tx_cons_ptr
=
879 &sblk
->status_tx_quick_consumer_index
;
880 bnapi
->hw_rx_cons_ptr
=
881 &sblk
->status_rx_quick_consumer_index
;
882 bnapi
->int_num
= i
<< 24;
886 bp
->stats_blk
= status_blk
+ status_blk_size
;
888 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
890 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
891 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
892 if (bp
->ctx_pages
== 0)
894 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
895 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
897 &bp
->ctx_blk_mapping
[i
],
899 if (bp
->ctx_blk
[i
] == NULL
)
904 err
= bnx2_alloc_rx_mem(bp
);
908 err
= bnx2_alloc_tx_mem(bp
);
920 bnx2_report_fw_link(struct bnx2
*bp
)
922 u32 fw_link_status
= 0;
924 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
930 switch (bp
->line_speed
) {
932 if (bp
->duplex
== DUPLEX_HALF
)
933 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
935 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
938 if (bp
->duplex
== DUPLEX_HALF
)
939 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
941 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
944 if (bp
->duplex
== DUPLEX_HALF
)
945 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
947 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
950 if (bp
->duplex
== DUPLEX_HALF
)
951 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
953 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
957 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
960 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
962 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
963 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
965 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
966 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
967 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
969 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
973 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
975 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
979 bnx2_xceiver_str(struct bnx2
*bp
)
981 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
982 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
987 bnx2_report_link(struct bnx2
*bp
)
990 netif_carrier_on(bp
->dev
);
991 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
992 bnx2_xceiver_str(bp
),
994 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
997 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
998 pr_cont(", receive ");
999 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1000 pr_cont("& transmit ");
1003 pr_cont(", transmit ");
1005 pr_cont("flow control ON");
1009 netif_carrier_off(bp
->dev
);
1010 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1011 bnx2_xceiver_str(bp
));
1014 bnx2_report_fw_link(bp
);
1018 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1020 u32 local_adv
, remote_adv
;
1023 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1024 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1026 if (bp
->duplex
== DUPLEX_FULL
) {
1027 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1032 if (bp
->duplex
!= DUPLEX_FULL
) {
1036 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1037 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1040 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1041 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1042 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1043 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1044 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1048 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1049 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1051 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1052 u32 new_local_adv
= 0;
1053 u32 new_remote_adv
= 0;
1055 if (local_adv
& ADVERTISE_1000XPAUSE
)
1056 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1059 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1060 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1061 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1062 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1064 local_adv
= new_local_adv
;
1065 remote_adv
= new_remote_adv
;
1068 /* See Table 28B-3 of 802.3ab-1999 spec. */
1069 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1070 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1072 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1074 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1075 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1079 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1080 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1084 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1085 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1086 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1088 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1094 bnx2_5709s_linkup(struct bnx2
*bp
)
1100 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1101 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1102 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1104 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1105 bp
->line_speed
= bp
->req_line_speed
;
1106 bp
->duplex
= bp
->req_duplex
;
1109 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1111 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1112 bp
->line_speed
= SPEED_10
;
1114 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1115 bp
->line_speed
= SPEED_100
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1118 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1119 bp
->line_speed
= SPEED_1000
;
1121 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1122 bp
->line_speed
= SPEED_2500
;
1125 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1126 bp
->duplex
= DUPLEX_FULL
;
1128 bp
->duplex
= DUPLEX_HALF
;
1133 bnx2_5708s_linkup(struct bnx2
*bp
)
1138 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1139 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1140 case BCM5708S_1000X_STAT1_SPEED_10
:
1141 bp
->line_speed
= SPEED_10
;
1143 case BCM5708S_1000X_STAT1_SPEED_100
:
1144 bp
->line_speed
= SPEED_100
;
1146 case BCM5708S_1000X_STAT1_SPEED_1G
:
1147 bp
->line_speed
= SPEED_1000
;
1149 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1150 bp
->line_speed
= SPEED_2500
;
1153 if (val
& BCM5708S_1000X_STAT1_FD
)
1154 bp
->duplex
= DUPLEX_FULL
;
1156 bp
->duplex
= DUPLEX_HALF
;
1162 bnx2_5706s_linkup(struct bnx2
*bp
)
1164 u32 bmcr
, local_adv
, remote_adv
, common
;
1167 bp
->line_speed
= SPEED_1000
;
1169 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1170 if (bmcr
& BMCR_FULLDPLX
) {
1171 bp
->duplex
= DUPLEX_FULL
;
1174 bp
->duplex
= DUPLEX_HALF
;
1177 if (!(bmcr
& BMCR_ANENABLE
)) {
1181 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1182 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1184 common
= local_adv
& remote_adv
;
1185 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1187 if (common
& ADVERTISE_1000XFULL
) {
1188 bp
->duplex
= DUPLEX_FULL
;
1191 bp
->duplex
= DUPLEX_HALF
;
1199 bnx2_copper_linkup(struct bnx2
*bp
)
1203 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1204 if (bmcr
& BMCR_ANENABLE
) {
1205 u32 local_adv
, remote_adv
, common
;
1207 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1208 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1210 common
= local_adv
& (remote_adv
>> 2);
1211 if (common
& ADVERTISE_1000FULL
) {
1212 bp
->line_speed
= SPEED_1000
;
1213 bp
->duplex
= DUPLEX_FULL
;
1215 else if (common
& ADVERTISE_1000HALF
) {
1216 bp
->line_speed
= SPEED_1000
;
1217 bp
->duplex
= DUPLEX_HALF
;
1220 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1221 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1223 common
= local_adv
& remote_adv
;
1224 if (common
& ADVERTISE_100FULL
) {
1225 bp
->line_speed
= SPEED_100
;
1226 bp
->duplex
= DUPLEX_FULL
;
1228 else if (common
& ADVERTISE_100HALF
) {
1229 bp
->line_speed
= SPEED_100
;
1230 bp
->duplex
= DUPLEX_HALF
;
1232 else if (common
& ADVERTISE_10FULL
) {
1233 bp
->line_speed
= SPEED_10
;
1234 bp
->duplex
= DUPLEX_FULL
;
1236 else if (common
& ADVERTISE_10HALF
) {
1237 bp
->line_speed
= SPEED_10
;
1238 bp
->duplex
= DUPLEX_HALF
;
1247 if (bmcr
& BMCR_SPEED100
) {
1248 bp
->line_speed
= SPEED_100
;
1251 bp
->line_speed
= SPEED_10
;
1253 if (bmcr
& BMCR_FULLDPLX
) {
1254 bp
->duplex
= DUPLEX_FULL
;
1257 bp
->duplex
= DUPLEX_HALF
;
1265 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1267 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1269 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1270 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1273 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1274 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1276 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1280 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1285 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1288 bnx2_init_rx_context(bp
, cid
);
1293 bnx2_set_mac_link(struct bnx2
*bp
)
1297 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1298 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1299 (bp
->duplex
== DUPLEX_HALF
)) {
1300 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1303 /* Configure the EMAC mode register. */
1304 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1306 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1307 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1308 BNX2_EMAC_MODE_25G_MODE
);
1311 switch (bp
->line_speed
) {
1313 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1314 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1319 val
|= BNX2_EMAC_MODE_PORT_MII
;
1322 val
|= BNX2_EMAC_MODE_25G_MODE
;
1325 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1330 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1333 /* Set the MAC to operate in the appropriate duplex mode. */
1334 if (bp
->duplex
== DUPLEX_HALF
)
1335 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1336 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1338 /* Enable/disable rx PAUSE. */
1339 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1341 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1342 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1343 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1345 /* Enable/disable tx PAUSE. */
1346 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1347 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1349 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1350 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1351 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1353 /* Acknowledge the interrupt. */
1354 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1356 bnx2_init_all_rx_contexts(bp
);
1360 bnx2_enable_bmsr1(struct bnx2
*bp
)
1362 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1363 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1364 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1365 MII_BNX2_BLK_ADDR_GP_STATUS
);
1369 bnx2_disable_bmsr1(struct bnx2
*bp
)
1371 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1372 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1373 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1374 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1378 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1383 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1386 if (bp
->autoneg
& AUTONEG_SPEED
)
1387 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1389 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1390 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1392 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1393 if (!(up1
& BCM5708S_UP1_2G5
)) {
1394 up1
|= BCM5708S_UP1_2G5
;
1395 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1399 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1400 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1401 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1407 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1412 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1415 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1416 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1418 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1419 if (up1
& BCM5708S_UP1_2G5
) {
1420 up1
&= ~BCM5708S_UP1_2G5
;
1421 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1425 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1426 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1427 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1433 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1435 u32
uninitialized_var(bmcr
);
1438 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1441 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1444 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1445 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1446 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1447 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1448 val
|= MII_BNX2_SD_MISC1_FORCE
|
1449 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1450 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1453 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1454 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1455 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1457 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1458 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1460 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1468 if (bp
->autoneg
& AUTONEG_SPEED
) {
1469 bmcr
&= ~BMCR_ANENABLE
;
1470 if (bp
->req_duplex
== DUPLEX_FULL
)
1471 bmcr
|= BMCR_FULLDPLX
;
1473 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1477 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1479 u32
uninitialized_var(bmcr
);
1482 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1485 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1488 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1489 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1490 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1491 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1492 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1495 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1496 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1497 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1499 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1500 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1502 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1510 if (bp
->autoneg
& AUTONEG_SPEED
)
1511 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1512 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1516 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1520 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1521 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1523 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1525 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1529 bnx2_set_link(struct bnx2
*bp
)
1534 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1539 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1542 link_up
= bp
->link_up
;
1544 bnx2_enable_bmsr1(bp
);
1545 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1546 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1547 bnx2_disable_bmsr1(bp
);
1549 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1550 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1553 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1554 bnx2_5706s_force_link_dn(bp
, 0);
1555 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1557 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1559 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1560 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1561 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1563 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1564 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1565 bmsr
|= BMSR_LSTATUS
;
1567 bmsr
&= ~BMSR_LSTATUS
;
1570 if (bmsr
& BMSR_LSTATUS
) {
1573 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1574 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1575 bnx2_5706s_linkup(bp
);
1576 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1577 bnx2_5708s_linkup(bp
);
1578 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1579 bnx2_5709s_linkup(bp
);
1582 bnx2_copper_linkup(bp
);
1584 bnx2_resolve_flow_ctrl(bp
);
1587 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1588 (bp
->autoneg
& AUTONEG_SPEED
))
1589 bnx2_disable_forced_2g5(bp
);
1591 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1594 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1595 bmcr
|= BMCR_ANENABLE
;
1596 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1598 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1603 if (bp
->link_up
!= link_up
) {
1604 bnx2_report_link(bp
);
1607 bnx2_set_mac_link(bp
);
1613 bnx2_reset_phy(struct bnx2
*bp
)
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1620 #define PHY_RESET_MAX_WAIT 100
1621 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1624 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1625 if (!(reg
& BMCR_RESET
)) {
1630 if (i
== PHY_RESET_MAX_WAIT
) {
1637 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1641 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1642 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1644 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1645 adv
= ADVERTISE_1000XPAUSE
;
1648 adv
= ADVERTISE_PAUSE_CAP
;
1651 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1652 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1653 adv
= ADVERTISE_1000XPSE_ASYM
;
1656 adv
= ADVERTISE_PAUSE_ASYM
;
1659 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1660 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1661 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1664 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1670 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1673 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1674 __releases(&bp
->phy_lock
)
1675 __acquires(&bp
->phy_lock
)
1677 u32 speed_arg
= 0, pause_adv
;
1679 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1681 if (bp
->autoneg
& AUTONEG_SPEED
) {
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1683 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1685 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1687 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1689 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1691 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1693 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1694 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1696 if (bp
->req_line_speed
== SPEED_2500
)
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1698 else if (bp
->req_line_speed
== SPEED_1000
)
1699 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1700 else if (bp
->req_line_speed
== SPEED_100
) {
1701 if (bp
->req_duplex
== DUPLEX_FULL
)
1702 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1704 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1705 } else if (bp
->req_line_speed
== SPEED_10
) {
1706 if (bp
->req_duplex
== DUPLEX_FULL
)
1707 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1709 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1713 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1715 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1716 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1718 if (port
== PORT_TP
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1722 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1724 spin_unlock_bh(&bp
->phy_lock
);
1725 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1726 spin_lock_bh(&bp
->phy_lock
);
1732 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1733 __releases(&bp
->phy_lock
)
1734 __acquires(&bp
->phy_lock
)
1739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1740 return bnx2_setup_remote_phy(bp
, port
);
1742 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1744 int force_link_down
= 0;
1746 if (bp
->req_line_speed
== SPEED_2500
) {
1747 if (!bnx2_test_and_enable_2g5(bp
))
1748 force_link_down
= 1;
1749 } else if (bp
->req_line_speed
== SPEED_1000
) {
1750 if (bnx2_test_and_disable_2g5(bp
))
1751 force_link_down
= 1;
1753 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1754 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1756 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1757 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1758 new_bmcr
|= BMCR_SPEED1000
;
1760 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1761 if (bp
->req_line_speed
== SPEED_2500
)
1762 bnx2_enable_forced_2g5(bp
);
1763 else if (bp
->req_line_speed
== SPEED_1000
) {
1764 bnx2_disable_forced_2g5(bp
);
1765 new_bmcr
&= ~0x2000;
1768 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1769 if (bp
->req_line_speed
== SPEED_2500
)
1770 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1772 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1775 if (bp
->req_duplex
== DUPLEX_FULL
) {
1776 adv
|= ADVERTISE_1000XFULL
;
1777 new_bmcr
|= BMCR_FULLDPLX
;
1780 adv
|= ADVERTISE_1000XHALF
;
1781 new_bmcr
&= ~BMCR_FULLDPLX
;
1783 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1784 /* Force a link down visible on the other side */
1786 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1787 ~(ADVERTISE_1000XFULL
|
1788 ADVERTISE_1000XHALF
));
1789 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1790 BMCR_ANRESTART
| BMCR_ANENABLE
);
1793 netif_carrier_off(bp
->dev
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1795 bnx2_report_link(bp
);
1797 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1798 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1800 bnx2_resolve_flow_ctrl(bp
);
1801 bnx2_set_mac_link(bp
);
1806 bnx2_test_and_enable_2g5(bp
);
1808 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1809 new_adv
|= ADVERTISE_1000XFULL
;
1811 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1813 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1814 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1816 bp
->serdes_an_pending
= 0;
1817 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1818 /* Force a link down visible on the other side */
1820 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1821 spin_unlock_bh(&bp
->phy_lock
);
1823 spin_lock_bh(&bp
->phy_lock
);
1826 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1827 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1829 /* Speed up link-up time when the link partner
1830 * does not autonegotiate which is very common
1831 * in blade servers. Some blade servers use
1832 * IPMI for kerboard input and it's important
1833 * to minimize link disruptions. Autoneg. involves
1834 * exchanging base pages plus 3 next pages and
1835 * normally completes in about 120 msec.
1837 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1838 bp
->serdes_an_pending
= 1;
1839 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1841 bnx2_resolve_flow_ctrl(bp
);
1842 bnx2_set_mac_link(bp
);
1848 #define ETHTOOL_ALL_FIBRE_SPEED \
1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1851 (ADVERTISED_1000baseT_Full)
1853 #define ETHTOOL_ALL_COPPER_SPEED \
1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Full)
1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1864 bnx2_set_default_remote_link(struct bnx2
*bp
)
1868 if (bp
->phy_port
== PORT_TP
)
1869 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1871 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1873 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1874 bp
->req_line_speed
= 0;
1875 bp
->autoneg
|= AUTONEG_SPEED
;
1876 bp
->advertising
= ADVERTISED_Autoneg
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1878 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1880 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1882 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1884 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1886 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1887 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1888 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1891 bp
->advertising
= 0;
1892 bp
->req_duplex
= DUPLEX_FULL
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1894 bp
->req_line_speed
= SPEED_10
;
1895 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1896 bp
->req_duplex
= DUPLEX_HALF
;
1898 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1899 bp
->req_line_speed
= SPEED_100
;
1900 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1901 bp
->req_duplex
= DUPLEX_HALF
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1904 bp
->req_line_speed
= SPEED_1000
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1906 bp
->req_line_speed
= SPEED_2500
;
1911 bnx2_set_default_link(struct bnx2
*bp
)
1913 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1914 bnx2_set_default_remote_link(bp
);
1918 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1919 bp
->req_line_speed
= 0;
1920 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1923 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1925 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1926 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1927 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1929 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1930 bp
->req_duplex
= DUPLEX_FULL
;
1933 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1937 bnx2_send_heart_beat(struct bnx2
*bp
)
1942 spin_lock(&bp
->indirect_lock
);
1943 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1944 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1945 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1946 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1947 spin_unlock(&bp
->indirect_lock
);
1951 bnx2_remote_phy_event(struct bnx2
*bp
)
1954 u8 link_up
= bp
->link_up
;
1957 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1959 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1960 bnx2_send_heart_beat(bp
);
1962 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1964 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1970 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1971 bp
->duplex
= DUPLEX_FULL
;
1973 case BNX2_LINK_STATUS_10HALF
:
1974 bp
->duplex
= DUPLEX_HALF
;
1976 case BNX2_LINK_STATUS_10FULL
:
1977 bp
->line_speed
= SPEED_10
;
1979 case BNX2_LINK_STATUS_100HALF
:
1980 bp
->duplex
= DUPLEX_HALF
;
1982 case BNX2_LINK_STATUS_100BASE_T4
:
1983 case BNX2_LINK_STATUS_100FULL
:
1984 bp
->line_speed
= SPEED_100
;
1986 case BNX2_LINK_STATUS_1000HALF
:
1987 bp
->duplex
= DUPLEX_HALF
;
1989 case BNX2_LINK_STATUS_1000FULL
:
1990 bp
->line_speed
= SPEED_1000
;
1992 case BNX2_LINK_STATUS_2500HALF
:
1993 bp
->duplex
= DUPLEX_HALF
;
1995 case BNX2_LINK_STATUS_2500FULL
:
1996 bp
->line_speed
= SPEED_2500
;
2004 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2005 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2006 if (bp
->duplex
== DUPLEX_FULL
)
2007 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2009 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2010 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2011 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2012 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2015 old_port
= bp
->phy_port
;
2016 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2017 bp
->phy_port
= PORT_FIBRE
;
2019 bp
->phy_port
= PORT_TP
;
2021 if (old_port
!= bp
->phy_port
)
2022 bnx2_set_default_link(bp
);
2025 if (bp
->link_up
!= link_up
)
2026 bnx2_report_link(bp
);
2028 bnx2_set_mac_link(bp
);
2032 bnx2_set_remote_link(struct bnx2
*bp
)
2036 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2038 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2039 bnx2_remote_phy_event(bp
);
2041 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2043 bnx2_send_heart_beat(bp
);
2050 bnx2_setup_copper_phy(struct bnx2
*bp
)
2051 __releases(&bp
->phy_lock
)
2052 __acquires(&bp
->phy_lock
)
2057 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2059 if (bp
->autoneg
& AUTONEG_SPEED
) {
2060 u32 adv_reg
, adv1000_reg
;
2062 u32 new_adv1000
= 0;
2064 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2065 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2066 ADVERTISE_PAUSE_ASYM
);
2068 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2069 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2071 new_adv
= ethtool_adv_to_mii_adv_t(bp
->advertising
);
2072 new_adv
|= ADVERTISE_CSMA
;
2073 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2075 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2077 if ((adv1000_reg
!= new_adv1000
) ||
2078 (adv_reg
!= new_adv
) ||
2079 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2081 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2082 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2083 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2086 else if (bp
->link_up
) {
2087 /* Flow ctrl may have changed from auto to forced */
2088 /* or vice-versa. */
2090 bnx2_resolve_flow_ctrl(bp
);
2091 bnx2_set_mac_link(bp
);
2097 if (bp
->req_line_speed
== SPEED_100
) {
2098 new_bmcr
|= BMCR_SPEED100
;
2100 if (bp
->req_duplex
== DUPLEX_FULL
) {
2101 new_bmcr
|= BMCR_FULLDPLX
;
2103 if (new_bmcr
!= bmcr
) {
2106 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2107 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2109 if (bmsr
& BMSR_LSTATUS
) {
2110 /* Force link down */
2111 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2112 spin_unlock_bh(&bp
->phy_lock
);
2114 spin_lock_bh(&bp
->phy_lock
);
2116 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2117 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2120 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2122 /* Normally, the new speed is setup after the link has
2123 * gone down and up again. In some cases, link will not go
2124 * down so we need to set up the new speed here.
2126 if (bmsr
& BMSR_LSTATUS
) {
2127 bp
->line_speed
= bp
->req_line_speed
;
2128 bp
->duplex
= bp
->req_duplex
;
2129 bnx2_resolve_flow_ctrl(bp
);
2130 bnx2_set_mac_link(bp
);
2133 bnx2_resolve_flow_ctrl(bp
);
2134 bnx2_set_mac_link(bp
);
2140 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2141 __releases(&bp
->phy_lock
)
2142 __acquires(&bp
->phy_lock
)
2144 if (bp
->loopback
== MAC_LOOPBACK
)
2147 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2148 return bnx2_setup_serdes_phy(bp
, port
);
2151 return bnx2_setup_copper_phy(bp
);
2156 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2160 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2161 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2162 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2163 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2164 bp
->mii_lpa
= MII_LPA
+ 0x10;
2165 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2167 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2168 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2170 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2174 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2176 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2177 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2178 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2179 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2181 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2182 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2183 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2184 val
|= BCM5708S_UP1_2G5
;
2186 val
&= ~BCM5708S_UP1_2G5
;
2187 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2189 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2190 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2191 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2192 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2194 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2196 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2197 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2198 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2200 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2206 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2213 bp
->mii_up1
= BCM5708S_UP1
;
2215 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2216 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2217 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2219 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2220 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2221 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2223 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2224 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2225 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2227 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2228 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2229 val
|= BCM5708S_UP1_2G5
;
2230 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2233 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2234 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2235 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2236 /* increase tx signal amplitude */
2237 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2238 BCM5708S_BLK_ADDR_TX_MISC
);
2239 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2240 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2241 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2245 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2246 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2251 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2252 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2253 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2254 BCM5708S_BLK_ADDR_TX_MISC
);
2255 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2256 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2257 BCM5708S_BLK_ADDR_DIG
);
2264 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2269 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2271 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2272 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2274 if (bp
->dev
->mtu
> 1500) {
2277 /* Set extended packet length bit */
2278 bnx2_write_phy(bp
, 0x18, 0x7);
2279 bnx2_read_phy(bp
, 0x18, &val
);
2280 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2282 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2283 bnx2_read_phy(bp
, 0x1c, &val
);
2284 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2289 bnx2_write_phy(bp
, 0x18, 0x7);
2290 bnx2_read_phy(bp
, 0x18, &val
);
2291 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2293 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2294 bnx2_read_phy(bp
, 0x1c, &val
);
2295 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2302 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2309 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2310 bnx2_write_phy(bp
, 0x18, 0x0c00);
2311 bnx2_write_phy(bp
, 0x17, 0x000a);
2312 bnx2_write_phy(bp
, 0x15, 0x310b);
2313 bnx2_write_phy(bp
, 0x17, 0x201f);
2314 bnx2_write_phy(bp
, 0x15, 0x9506);
2315 bnx2_write_phy(bp
, 0x17, 0x401f);
2316 bnx2_write_phy(bp
, 0x15, 0x14e2);
2317 bnx2_write_phy(bp
, 0x18, 0x0400);
2320 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2321 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2322 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2323 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2325 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2328 if (bp
->dev
->mtu
> 1500) {
2329 /* Set extended packet length bit */
2330 bnx2_write_phy(bp
, 0x18, 0x7);
2331 bnx2_read_phy(bp
, 0x18, &val
);
2332 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2334 bnx2_read_phy(bp
, 0x10, &val
);
2335 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2338 bnx2_write_phy(bp
, 0x18, 0x7);
2339 bnx2_read_phy(bp
, 0x18, &val
);
2340 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2342 bnx2_read_phy(bp
, 0x10, &val
);
2343 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2346 /* ethernet@wirespeed */
2347 bnx2_write_phy(bp
, 0x18, 0x7007);
2348 bnx2_read_phy(bp
, 0x18, &val
);
2349 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2355 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2356 __releases(&bp
->phy_lock
)
2357 __acquires(&bp
->phy_lock
)
2362 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2363 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2365 bp
->mii_bmcr
= MII_BMCR
;
2366 bp
->mii_bmsr
= MII_BMSR
;
2367 bp
->mii_bmsr1
= MII_BMSR
;
2368 bp
->mii_adv
= MII_ADVERTISE
;
2369 bp
->mii_lpa
= MII_LPA
;
2371 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2373 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2376 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2377 bp
->phy_id
= val
<< 16;
2378 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2379 bp
->phy_id
|= val
& 0xffff;
2381 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2382 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2383 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2384 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2385 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2386 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2387 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2390 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2395 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2401 bnx2_set_mac_loopback(struct bnx2
*bp
)
2405 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2406 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2407 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2408 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2413 static int bnx2_test_link(struct bnx2
*);
2416 bnx2_set_phy_loopback(struct bnx2
*bp
)
2421 spin_lock_bh(&bp
->phy_lock
);
2422 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2424 spin_unlock_bh(&bp
->phy_lock
);
2428 for (i
= 0; i
< 10; i
++) {
2429 if (bnx2_test_link(bp
) == 0)
2434 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2435 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2436 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2437 BNX2_EMAC_MODE_25G_MODE
);
2439 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2440 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2446 bnx2_dump_mcp_state(struct bnx2
*bp
)
2448 struct net_device
*dev
= bp
->dev
;
2451 netdev_err(dev
, "<--- start MCP states dump --->\n");
2452 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
2453 mcp_p0
= BNX2_MCP_STATE_P0
;
2454 mcp_p1
= BNX2_MCP_STATE_P1
;
2456 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2457 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2459 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2460 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2461 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2462 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2463 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2464 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2465 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2466 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2467 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2468 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2469 netdev_err(dev
, "DEBUG: shmem states:\n");
2470 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2471 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2472 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2473 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2474 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2475 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2476 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2477 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2478 pr_cont(" condition[%08x]\n",
2479 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2480 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2481 DP_SHMEM_LINE(bp
, 0x3cc);
2482 DP_SHMEM_LINE(bp
, 0x3dc);
2483 DP_SHMEM_LINE(bp
, 0x3ec);
2484 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2485 netdev_err(dev
, "<--- end MCP states dump --->\n");
2489 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2495 msg_data
|= bp
->fw_wr_seq
;
2497 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2502 /* wait for an acknowledgement. */
2503 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2506 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2508 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2511 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2514 /* If we timed out, inform the firmware that this is the case. */
2515 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2516 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2517 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2519 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2521 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2522 bnx2_dump_mcp_state(bp
);
2528 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2535 bnx2_init_5709_context(struct bnx2
*bp
)
2540 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2541 val
|= (BCM_PAGE_BITS
- 8) << 16;
2542 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2543 for (i
= 0; i
< 10; i
++) {
2544 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2545 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2549 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2552 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2556 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2560 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2561 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2562 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2563 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2564 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2565 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2566 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2567 for (j
= 0; j
< 10; j
++) {
2569 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2570 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2574 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2583 bnx2_init_context(struct bnx2
*bp
)
2589 u32 vcid_addr
, pcid_addr
, offset
;
2594 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2597 vcid_addr
= GET_PCID_ADDR(vcid
);
2599 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2604 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2607 vcid_addr
= GET_CID_ADDR(vcid
);
2608 pcid_addr
= vcid_addr
;
2611 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2612 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2613 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2615 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2616 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2618 /* Zero out the context. */
2619 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2620 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2626 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2632 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2633 if (good_mbuf
== NULL
)
2636 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2637 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2641 /* Allocate a bunch of mbufs and save the good ones in an array. */
2642 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2643 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2644 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2645 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2647 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2649 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2651 /* The addresses with Bit 9 set are bad memory blocks. */
2652 if (!(val
& (1 << 9))) {
2653 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2657 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2660 /* Free the good ones back to the mbuf pool thus discarding
2661 * all the bad ones. */
2662 while (good_mbuf_cnt
) {
2665 val
= good_mbuf
[good_mbuf_cnt
];
2666 val
= (val
<< 9) | val
| 1;
2668 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2675 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2679 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2681 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2683 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2684 (mac_addr
[4] << 8) | mac_addr
[5];
2686 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2690 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2693 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2694 struct rx_bd
*rxbd
=
2695 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2696 struct page
*page
= alloc_page(gfp
);
2700 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2701 PCI_DMA_FROMDEVICE
);
2702 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2708 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2709 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2710 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2715 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2717 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2718 struct page
*page
= rx_pg
->page
;
2723 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2724 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2731 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2734 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2736 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2738 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2742 mapping
= dma_map_single(&bp
->pdev
->dev
,
2744 bp
->rx_buf_use_size
,
2745 PCI_DMA_FROMDEVICE
);
2746 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2751 rx_buf
->data
= data
;
2752 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2754 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2755 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2757 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2763 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2765 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2766 u32 new_link_state
, old_link_state
;
2769 new_link_state
= sblk
->status_attn_bits
& event
;
2770 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2771 if (new_link_state
!= old_link_state
) {
2773 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2775 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2783 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2785 spin_lock(&bp
->phy_lock
);
2787 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2789 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2790 bnx2_set_remote_link(bp
);
2792 spin_unlock(&bp
->phy_lock
);
2797 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2801 /* Tell compiler that status block fields can change. */
2803 cons
= *bnapi
->hw_tx_cons_ptr
;
2805 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2811 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2813 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2814 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2815 int tx_pkt
= 0, index
;
2816 unsigned int tx_bytes
= 0;
2817 struct netdev_queue
*txq
;
2819 index
= (bnapi
- bp
->bnx2_napi
);
2820 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2822 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2823 sw_cons
= txr
->tx_cons
;
2825 while (sw_cons
!= hw_cons
) {
2826 struct sw_tx_bd
*tx_buf
;
2827 struct sk_buff
*skb
;
2830 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2832 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2835 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2836 prefetch(&skb
->end
);
2838 /* partial BD completions possible with TSO packets */
2839 if (tx_buf
->is_gso
) {
2840 u16 last_idx
, last_ring_idx
;
2842 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2843 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2844 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2847 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2852 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2853 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2856 last
= tx_buf
->nr_frags
;
2858 for (i
= 0; i
< last
; i
++) {
2859 sw_cons
= NEXT_TX_BD(sw_cons
);
2861 dma_unmap_page(&bp
->pdev
->dev
,
2863 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2865 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2869 sw_cons
= NEXT_TX_BD(sw_cons
);
2871 tx_bytes
+= skb
->len
;
2874 if (tx_pkt
== budget
)
2877 if (hw_cons
== sw_cons
)
2878 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2881 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2882 txr
->hw_tx_cons
= hw_cons
;
2883 txr
->tx_cons
= sw_cons
;
2885 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2886 * before checking for netif_tx_queue_stopped(). Without the
2887 * memory barrier, there is a small possibility that bnx2_start_xmit()
2888 * will miss it and cause the queue to be stopped forever.
2892 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2893 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2894 __netif_tx_lock(txq
, smp_processor_id());
2895 if ((netif_tx_queue_stopped(txq
)) &&
2896 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2897 netif_tx_wake_queue(txq
);
2898 __netif_tx_unlock(txq
);
2905 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2906 struct sk_buff
*skb
, int count
)
2908 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2909 struct rx_bd
*cons_bd
, *prod_bd
;
2912 u16 cons
= rxr
->rx_pg_cons
;
2914 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2916 /* The caller was unable to allocate a new page to replace the
2917 * last one in the frags array, so we need to recycle that page
2918 * and then free the skb.
2922 struct skb_shared_info
*shinfo
;
2924 shinfo
= skb_shinfo(skb
);
2926 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2927 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2929 cons_rx_pg
->page
= page
;
2933 hw_prod
= rxr
->rx_pg_prod
;
2935 for (i
= 0; i
< count
; i
++) {
2936 prod
= RX_PG_RING_IDX(hw_prod
);
2938 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2939 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2940 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2941 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2944 prod_rx_pg
->page
= cons_rx_pg
->page
;
2945 cons_rx_pg
->page
= NULL
;
2946 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2947 dma_unmap_addr(cons_rx_pg
, mapping
));
2949 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2950 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2953 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2954 hw_prod
= NEXT_RX_BD(hw_prod
);
2956 rxr
->rx_pg_prod
= hw_prod
;
2957 rxr
->rx_pg_cons
= cons
;
2961 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2962 u8
*data
, u16 cons
, u16 prod
)
2964 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2965 struct rx_bd
*cons_bd
, *prod_bd
;
2967 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2968 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2970 dma_sync_single_for_device(&bp
->pdev
->dev
,
2971 dma_unmap_addr(cons_rx_buf
, mapping
),
2972 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2974 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2976 prod_rx_buf
->data
= data
;
2981 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2982 dma_unmap_addr(cons_rx_buf
, mapping
));
2984 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2985 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2986 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2987 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2990 static struct sk_buff
*
2991 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
2992 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2996 u16 prod
= ring_idx
& 0xffff;
2997 struct sk_buff
*skb
;
2999 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3000 if (unlikely(err
)) {
3001 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3004 unsigned int raw_len
= len
+ 4;
3005 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3007 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3012 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3013 PCI_DMA_FROMDEVICE
);
3014 skb
= build_skb(data
, 0);
3019 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3024 unsigned int i
, frag_len
, frag_size
, pages
;
3025 struct sw_pg
*rx_pg
;
3026 u16 pg_cons
= rxr
->rx_pg_cons
;
3027 u16 pg_prod
= rxr
->rx_pg_prod
;
3029 frag_size
= len
+ 4 - hdr_len
;
3030 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3031 skb_put(skb
, hdr_len
);
3033 for (i
= 0; i
< pages
; i
++) {
3034 dma_addr_t mapping_old
;
3036 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3037 if (unlikely(frag_len
<= 4)) {
3038 unsigned int tail
= 4 - frag_len
;
3040 rxr
->rx_pg_cons
= pg_cons
;
3041 rxr
->rx_pg_prod
= pg_prod
;
3042 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3049 &skb_shinfo(skb
)->frags
[i
- 1];
3050 skb_frag_size_sub(frag
, tail
);
3051 skb
->data_len
-= tail
;
3055 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3057 /* Don't unmap yet. If we're unable to allocate a new
3058 * page, we need to recycle the page and the DMA addr.
3060 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3064 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3067 err
= bnx2_alloc_rx_page(bp
, rxr
,
3068 RX_PG_RING_IDX(pg_prod
),
3070 if (unlikely(err
)) {
3071 rxr
->rx_pg_cons
= pg_cons
;
3072 rxr
->rx_pg_prod
= pg_prod
;
3073 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3078 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3079 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3081 frag_size
-= frag_len
;
3082 skb
->data_len
+= frag_len
;
3083 skb
->truesize
+= PAGE_SIZE
;
3084 skb
->len
+= frag_len
;
3086 pg_prod
= NEXT_RX_BD(pg_prod
);
3087 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3089 rxr
->rx_pg_prod
= pg_prod
;
3090 rxr
->rx_pg_cons
= pg_cons
;
3096 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3100 /* Tell compiler that status block fields can change. */
3102 cons
= *bnapi
->hw_rx_cons_ptr
;
3104 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3110 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3112 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3113 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3114 struct l2_fhdr
*rx_hdr
;
3115 int rx_pkt
= 0, pg_ring_used
= 0;
3117 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3118 sw_cons
= rxr
->rx_cons
;
3119 sw_prod
= rxr
->rx_prod
;
3121 /* Memory barrier necessary as speculative reads of the rx
3122 * buffer can be ahead of the index in the status block
3125 while (sw_cons
!= hw_cons
) {
3126 unsigned int len
, hdr_len
;
3128 struct sw_bd
*rx_buf
, *next_rx_buf
;
3129 struct sk_buff
*skb
;
3130 dma_addr_t dma_addr
;
3133 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3134 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3136 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3137 data
= rx_buf
->data
;
3138 rx_buf
->data
= NULL
;
3140 rx_hdr
= get_l2_fhdr(data
);
3143 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3145 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3146 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3147 PCI_DMA_FROMDEVICE
);
3150 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3151 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3153 len
= rx_hdr
->l2_fhdr_pkt_len
;
3154 status
= rx_hdr
->l2_fhdr_status
;
3157 if (status
& L2_FHDR_STATUS_SPLIT
) {
3158 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3160 } else if (len
> bp
->rx_jumbo_thresh
) {
3161 hdr_len
= bp
->rx_jumbo_thresh
;
3165 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3166 L2_FHDR_ERRORS_PHY_DECODE
|
3167 L2_FHDR_ERRORS_ALIGNMENT
|
3168 L2_FHDR_ERRORS_TOO_SHORT
|
3169 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3171 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3176 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3178 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3185 if (len
<= bp
->rx_copy_thresh
) {
3186 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3188 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3195 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3197 skb_reserve(skb
, 6);
3200 bnx2_reuse_rx_data(bp
, rxr
, data
,
3201 sw_ring_cons
, sw_ring_prod
);
3204 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3205 (sw_ring_cons
<< 16) | sw_ring_prod
);
3209 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3210 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3211 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3213 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3215 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3216 (ntohs(skb
->protocol
) != 0x8100)) {
3223 skb_checksum_none_assert(skb
);
3224 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3225 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3226 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3228 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3229 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3230 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3232 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3233 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3234 L2_FHDR_STATUS_USE_RXHASH
))
3235 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3237 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3238 napi_gro_receive(&bnapi
->napi
, skb
);
3242 sw_cons
= NEXT_RX_BD(sw_cons
);
3243 sw_prod
= NEXT_RX_BD(sw_prod
);
3245 if ((rx_pkt
== budget
))
3248 /* Refresh hw_cons to see if there is new work */
3249 if (sw_cons
== hw_cons
) {
3250 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3254 rxr
->rx_cons
= sw_cons
;
3255 rxr
->rx_prod
= sw_prod
;
3258 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3260 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3262 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3270 /* MSI ISR - The only difference between this and the INTx ISR
3271 * is that the MSI interrupt is always serviced.
3274 bnx2_msi(int irq
, void *dev_instance
)
3276 struct bnx2_napi
*bnapi
= dev_instance
;
3277 struct bnx2
*bp
= bnapi
->bp
;
3279 prefetch(bnapi
->status_blk
.msi
);
3280 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3281 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3282 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3284 /* Return here if interrupt is disabled. */
3285 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3288 napi_schedule(&bnapi
->napi
);
3294 bnx2_msi_1shot(int irq
, void *dev_instance
)
3296 struct bnx2_napi
*bnapi
= dev_instance
;
3297 struct bnx2
*bp
= bnapi
->bp
;
3299 prefetch(bnapi
->status_blk
.msi
);
3301 /* Return here if interrupt is disabled. */
3302 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3305 napi_schedule(&bnapi
->napi
);
3311 bnx2_interrupt(int irq
, void *dev_instance
)
3313 struct bnx2_napi
*bnapi
= dev_instance
;
3314 struct bnx2
*bp
= bnapi
->bp
;
3315 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3317 /* When using INTx, it is possible for the interrupt to arrive
3318 * at the CPU before the status block posted prior to the
3319 * interrupt. Reading a register will flush the status block.
3320 * When using MSI, the MSI message will always complete after
3321 * the status block write.
3323 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3324 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3325 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3328 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3329 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3330 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3332 /* Read back to deassert IRQ immediately to avoid too many
3333 * spurious interrupts.
3335 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3337 /* Return here if interrupt is shared and is disabled. */
3338 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3341 if (napi_schedule_prep(&bnapi
->napi
)) {
3342 bnapi
->last_status_idx
= sblk
->status_idx
;
3343 __napi_schedule(&bnapi
->napi
);
3350 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3352 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3353 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3355 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3356 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3361 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3362 STATUS_ATTN_BITS_TIMER_ABORT)
3365 bnx2_has_work(struct bnx2_napi
*bnapi
)
3367 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3369 if (bnx2_has_fast_work(bnapi
))
3373 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3377 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3378 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3385 bnx2_chk_missed_msi(struct bnx2
*bp
)
3387 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3390 if (bnx2_has_work(bnapi
)) {
3391 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3392 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3395 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3396 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3397 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3398 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3399 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3403 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3407 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3409 struct cnic_ops
*c_ops
;
3411 if (!bnapi
->cnic_present
)
3415 c_ops
= rcu_dereference(bp
->cnic_ops
);
3417 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3418 bnapi
->status_blk
.msi
);
3423 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3425 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3426 u32 status_attn_bits
= sblk
->status_attn_bits
;
3427 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3429 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3430 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3432 bnx2_phy_int(bp
, bnapi
);
3434 /* This is needed to take care of transient status
3435 * during link changes.
3437 REG_WR(bp
, BNX2_HC_COMMAND
,
3438 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3439 REG_RD(bp
, BNX2_HC_COMMAND
);
3443 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3444 int work_done
, int budget
)
3446 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3447 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3449 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3450 bnx2_tx_int(bp
, bnapi
, 0);
3452 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3453 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3458 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3460 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3461 struct bnx2
*bp
= bnapi
->bp
;
3463 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3466 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3467 if (unlikely(work_done
>= budget
))
3470 bnapi
->last_status_idx
= sblk
->status_idx
;
3471 /* status idx must be read before checking for more work. */
3473 if (likely(!bnx2_has_fast_work(bnapi
))) {
3475 napi_complete(napi
);
3476 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3477 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3478 bnapi
->last_status_idx
);
3485 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3487 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3488 struct bnx2
*bp
= bnapi
->bp
;
3490 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3493 bnx2_poll_link(bp
, bnapi
);
3495 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3498 bnx2_poll_cnic(bp
, bnapi
);
3501 /* bnapi->last_status_idx is used below to tell the hw how
3502 * much work has been processed, so we must read it before
3503 * checking for more work.
3505 bnapi
->last_status_idx
= sblk
->status_idx
;
3507 if (unlikely(work_done
>= budget
))
3511 if (likely(!bnx2_has_work(bnapi
))) {
3512 napi_complete(napi
);
3513 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3514 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3515 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3516 bnapi
->last_status_idx
);
3519 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3520 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3521 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3522 bnapi
->last_status_idx
);
3524 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3525 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3526 bnapi
->last_status_idx
);
3534 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3535 * from set_multicast.
3538 bnx2_set_rx_mode(struct net_device
*dev
)
3540 struct bnx2
*bp
= netdev_priv(dev
);
3541 u32 rx_mode
, sort_mode
;
3542 struct netdev_hw_addr
*ha
;
3545 if (!netif_running(dev
))
3548 spin_lock_bh(&bp
->phy_lock
);
3550 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3551 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3552 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3553 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3554 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3555 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3556 if (dev
->flags
& IFF_PROMISC
) {
3557 /* Promiscuous mode. */
3558 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3559 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3560 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3562 else if (dev
->flags
& IFF_ALLMULTI
) {
3563 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3564 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3567 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3570 /* Accept one or more multicast(s). */
3571 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3576 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3578 netdev_for_each_mc_addr(ha
, dev
) {
3579 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3581 regidx
= (bit
& 0xe0) >> 5;
3583 mc_filter
[regidx
] |= (1 << bit
);
3586 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3587 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3591 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3594 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3595 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3596 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3597 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3598 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3599 /* Add all entries into to the match filter list */
3601 netdev_for_each_uc_addr(ha
, dev
) {
3602 bnx2_set_mac_addr(bp
, ha
->addr
,
3603 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3605 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3611 if (rx_mode
!= bp
->rx_mode
) {
3612 bp
->rx_mode
= rx_mode
;
3613 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3616 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3617 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3618 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3620 spin_unlock_bh(&bp
->phy_lock
);
3624 check_fw_section(const struct firmware
*fw
,
3625 const struct bnx2_fw_file_section
*section
,
3626 u32 alignment
, bool non_empty
)
3628 u32 offset
= be32_to_cpu(section
->offset
);
3629 u32 len
= be32_to_cpu(section
->len
);
3631 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3633 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3634 len
& (alignment
- 1))
3640 check_mips_fw_entry(const struct firmware
*fw
,
3641 const struct bnx2_mips_fw_file_entry
*entry
)
3643 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3644 check_fw_section(fw
, &entry
->data
, 4, false) ||
3645 check_fw_section(fw
, &entry
->rodata
, 4, false))
3650 static void bnx2_release_firmware(struct bnx2
*bp
)
3652 if (bp
->rv2p_firmware
) {
3653 release_firmware(bp
->mips_firmware
);
3654 release_firmware(bp
->rv2p_firmware
);
3655 bp
->rv2p_firmware
= NULL
;
3659 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3661 const char *mips_fw_file
, *rv2p_fw_file
;
3662 const struct bnx2_mips_fw_file
*mips_fw
;
3663 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3666 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3667 mips_fw_file
= FW_MIPS_FILE_09
;
3668 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3669 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3670 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3672 rv2p_fw_file
= FW_RV2P_FILE_09
;
3674 mips_fw_file
= FW_MIPS_FILE_06
;
3675 rv2p_fw_file
= FW_RV2P_FILE_06
;
3678 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3680 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3684 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3686 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3687 goto err_release_mips_firmware
;
3689 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3690 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3691 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3692 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3693 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3694 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3695 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3696 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3697 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3699 goto err_release_firmware
;
3701 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3702 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3703 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3704 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3706 goto err_release_firmware
;
3711 err_release_firmware
:
3712 release_firmware(bp
->rv2p_firmware
);
3713 bp
->rv2p_firmware
= NULL
;
3714 err_release_mips_firmware
:
3715 release_firmware(bp
->mips_firmware
);
3719 static int bnx2_request_firmware(struct bnx2
*bp
)
3721 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3725 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3728 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3729 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3730 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3737 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3738 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3740 u32 rv2p_code_len
, file_offset
;
3745 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3746 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3748 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3750 if (rv2p_proc
== RV2P_PROC1
) {
3751 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3752 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3754 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3755 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3758 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3759 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3761 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3764 val
= (i
/ 8) | cmd
;
3765 REG_WR(bp
, addr
, val
);
3768 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3769 for (i
= 0; i
< 8; i
++) {
3772 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3773 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3774 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3775 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3776 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3777 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3778 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3780 val
= (loc
/ 2) | cmd
;
3781 REG_WR(bp
, addr
, val
);
3785 /* Reset the processor, un-stall is done later. */
3786 if (rv2p_proc
== RV2P_PROC1
) {
3787 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3790 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3797 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3798 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3800 u32 addr
, len
, file_offset
;
3806 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3807 val
|= cpu_reg
->mode_value_halt
;
3808 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3809 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3811 /* Load the Text area. */
3812 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3813 len
= be32_to_cpu(fw_entry
->text
.len
);
3814 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3815 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3817 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3821 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3822 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3825 /* Load the Data area. */
3826 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3827 len
= be32_to_cpu(fw_entry
->data
.len
);
3828 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3829 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3831 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3835 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3836 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3839 /* Load the Read-Only area. */
3840 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3841 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3842 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3843 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3845 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3849 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3850 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3853 /* Clear the pre-fetch instruction. */
3854 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3856 val
= be32_to_cpu(fw_entry
->start_addr
);
3857 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3859 /* Start the CPU. */
3860 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3861 val
&= ~cpu_reg
->mode_value_halt
;
3862 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3863 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3869 bnx2_init_cpus(struct bnx2
*bp
)
3871 const struct bnx2_mips_fw_file
*mips_fw
=
3872 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3873 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3874 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3877 /* Initialize the RV2P processor. */
3878 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3879 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3881 /* Initialize the RX Processor. */
3882 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3886 /* Initialize the TX Processor. */
3887 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3891 /* Initialize the TX Patch-up Processor. */
3892 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3896 /* Initialize the Completion Processor. */
3897 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3901 /* Initialize the Command Processor. */
3902 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3909 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3913 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3919 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3920 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3921 PCI_PM_CTRL_PME_STATUS
);
3923 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3924 /* delay required during transition out of D3hot */
3927 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3928 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3929 val
&= ~BNX2_EMAC_MODE_MPKT
;
3930 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3932 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3933 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3934 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3945 autoneg
= bp
->autoneg
;
3946 advertising
= bp
->advertising
;
3948 if (bp
->phy_port
== PORT_TP
) {
3949 bp
->autoneg
= AUTONEG_SPEED
;
3950 bp
->advertising
= ADVERTISED_10baseT_Half
|
3951 ADVERTISED_10baseT_Full
|
3952 ADVERTISED_100baseT_Half
|
3953 ADVERTISED_100baseT_Full
|
3957 spin_lock_bh(&bp
->phy_lock
);
3958 bnx2_setup_phy(bp
, bp
->phy_port
);
3959 spin_unlock_bh(&bp
->phy_lock
);
3961 bp
->autoneg
= autoneg
;
3962 bp
->advertising
= advertising
;
3964 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3966 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3968 /* Enable port mode. */
3969 val
&= ~BNX2_EMAC_MODE_PORT
;
3970 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3971 BNX2_EMAC_MODE_ACPI_RCVD
|
3972 BNX2_EMAC_MODE_MPKT
;
3973 if (bp
->phy_port
== PORT_TP
)
3974 val
|= BNX2_EMAC_MODE_PORT_MII
;
3976 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3977 if (bp
->line_speed
== SPEED_2500
)
3978 val
|= BNX2_EMAC_MODE_25G_MODE
;
3981 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3983 /* receive all multicast */
3984 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3985 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3988 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3989 BNX2_EMAC_RX_MODE_SORT_MODE
);
3991 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3992 BNX2_RPM_SORT_USER0_MC_EN
;
3993 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3994 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3995 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3996 BNX2_RPM_SORT_USER0_ENA
);
3998 /* Need to enable EMAC and RPM for WOL. */
3999 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4000 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4001 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4002 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4004 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
4005 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4006 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
4008 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4011 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4014 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
4015 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
4018 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4019 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4020 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
4029 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
4031 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
4034 /* No more memory access after this point until
4035 * device is brought back to D0.
4047 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4052 /* Request access to the flash interface. */
4053 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4054 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4055 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4056 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4062 if (j
>= NVRAM_TIMEOUT_COUNT
)
4069 bnx2_release_nvram_lock(struct bnx2
*bp
)
4074 /* Relinquish nvram interface. */
4075 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4077 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4078 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4079 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4085 if (j
>= NVRAM_TIMEOUT_COUNT
)
4093 bnx2_enable_nvram_write(struct bnx2
*bp
)
4097 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4098 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4100 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4103 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4104 REG_WR(bp
, BNX2_NVM_COMMAND
,
4105 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4107 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4110 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4111 if (val
& BNX2_NVM_COMMAND_DONE
)
4115 if (j
>= NVRAM_TIMEOUT_COUNT
)
4122 bnx2_disable_nvram_write(struct bnx2
*bp
)
4126 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4127 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4132 bnx2_enable_nvram_access(struct bnx2
*bp
)
4136 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4137 /* Enable both bits, even on read. */
4138 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4139 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4143 bnx2_disable_nvram_access(struct bnx2
*bp
)
4147 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4148 /* Disable both bits, even after read. */
4149 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4150 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4151 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4155 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4160 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4161 /* Buffered flash, no erase needed */
4164 /* Build an erase command */
4165 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4166 BNX2_NVM_COMMAND_DOIT
;
4168 /* Need to clear DONE bit separately. */
4169 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4171 /* Address of the NVRAM to read from. */
4172 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4174 /* Issue an erase command. */
4175 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4177 /* Wait for completion. */
4178 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4183 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4184 if (val
& BNX2_NVM_COMMAND_DONE
)
4188 if (j
>= NVRAM_TIMEOUT_COUNT
)
4195 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4200 /* Build the command word. */
4201 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4203 /* Calculate an offset of a buffered flash, not needed for 5709. */
4204 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4205 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4206 bp
->flash_info
->page_bits
) +
4207 (offset
% bp
->flash_info
->page_size
);
4210 /* Need to clear DONE bit separately. */
4211 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4213 /* Address of the NVRAM to read from. */
4214 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4216 /* Issue a read command. */
4217 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4219 /* Wait for completion. */
4220 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4225 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4226 if (val
& BNX2_NVM_COMMAND_DONE
) {
4227 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4228 memcpy(ret_val
, &v
, 4);
4232 if (j
>= NVRAM_TIMEOUT_COUNT
)
4240 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4246 /* Build the command word. */
4247 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4249 /* Calculate an offset of a buffered flash, not needed for 5709. */
4250 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4251 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4252 bp
->flash_info
->page_bits
) +
4253 (offset
% bp
->flash_info
->page_size
);
4256 /* Need to clear DONE bit separately. */
4257 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4259 memcpy(&val32
, val
, 4);
4261 /* Write the data. */
4262 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4264 /* Address of the NVRAM to write to. */
4265 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4267 /* Issue the write command. */
4268 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4270 /* Wait for completion. */
4271 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4274 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4277 if (j
>= NVRAM_TIMEOUT_COUNT
)
4284 bnx2_init_nvram(struct bnx2
*bp
)
4287 int j
, entry_count
, rc
= 0;
4288 const struct flash_spec
*flash
;
4290 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4291 bp
->flash_info
= &flash_5709
;
4292 goto get_flash_size
;
4295 /* Determine the selected interface. */
4296 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4298 entry_count
= ARRAY_SIZE(flash_table
);
4300 if (val
& 0x40000000) {
4302 /* Flash interface has been reconfigured */
4303 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4305 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4306 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4307 bp
->flash_info
= flash
;
4314 /* Not yet been reconfigured */
4316 if (val
& (1 << 23))
4317 mask
= FLASH_BACKUP_STRAP_MASK
;
4319 mask
= FLASH_STRAP_MASK
;
4321 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4324 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4325 bp
->flash_info
= flash
;
4327 /* Request access to the flash interface. */
4328 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4331 /* Enable access to flash interface */
4332 bnx2_enable_nvram_access(bp
);
4334 /* Reconfigure the flash interface */
4335 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4336 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4337 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4338 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4340 /* Disable access to flash interface */
4341 bnx2_disable_nvram_access(bp
);
4342 bnx2_release_nvram_lock(bp
);
4347 } /* if (val & 0x40000000) */
4349 if (j
== entry_count
) {
4350 bp
->flash_info
= NULL
;
4351 pr_alert("Unknown flash/EEPROM type\n");
4356 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4357 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4359 bp
->flash_size
= val
;
4361 bp
->flash_size
= bp
->flash_info
->total_size
;
4367 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4371 u32 cmd_flags
, offset32
, len32
, extra
;
4376 /* Request access to the flash interface. */
4377 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4380 /* Enable access to flash interface */
4381 bnx2_enable_nvram_access(bp
);
4394 pre_len
= 4 - (offset
& 3);
4396 if (pre_len
>= len32
) {
4398 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4399 BNX2_NVM_COMMAND_LAST
;
4402 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4405 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4410 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4417 extra
= 4 - (len32
& 3);
4418 len32
= (len32
+ 4) & ~3;
4425 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4427 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4428 BNX2_NVM_COMMAND_LAST
;
4430 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4432 memcpy(ret_buf
, buf
, 4 - extra
);
4434 else if (len32
> 0) {
4437 /* Read the first word. */
4441 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4443 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4445 /* Advance to the next dword. */
4450 while (len32
> 4 && rc
== 0) {
4451 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4453 /* Advance to the next dword. */
4462 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4463 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4465 memcpy(ret_buf
, buf
, 4 - extra
);
4468 /* Disable access to flash interface */
4469 bnx2_disable_nvram_access(bp
);
4471 bnx2_release_nvram_lock(bp
);
4477 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4480 u32 written
, offset32
, len32
;
4481 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4483 int align_start
, align_end
;
4488 align_start
= align_end
= 0;
4490 if ((align_start
= (offset32
& 3))) {
4492 len32
+= align_start
;
4495 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4500 align_end
= 4 - (len32
& 3);
4502 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4506 if (align_start
|| align_end
) {
4507 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4508 if (align_buf
== NULL
)
4511 memcpy(align_buf
, start
, 4);
4514 memcpy(align_buf
+ len32
- 4, end
, 4);
4516 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4520 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4521 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4522 if (flash_buffer
== NULL
) {
4524 goto nvram_write_end
;
4529 while ((written
< len32
) && (rc
== 0)) {
4530 u32 page_start
, page_end
, data_start
, data_end
;
4531 u32 addr
, cmd_flags
;
4534 /* Find the page_start addr */
4535 page_start
= offset32
+ written
;
4536 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4537 /* Find the page_end addr */
4538 page_end
= page_start
+ bp
->flash_info
->page_size
;
4539 /* Find the data_start addr */
4540 data_start
= (written
== 0) ? offset32
: page_start
;
4541 /* Find the data_end addr */
4542 data_end
= (page_end
> offset32
+ len32
) ?
4543 (offset32
+ len32
) : page_end
;
4545 /* Request access to the flash interface. */
4546 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4547 goto nvram_write_end
;
4549 /* Enable access to flash interface */
4550 bnx2_enable_nvram_access(bp
);
4552 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4553 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4556 /* Read the whole page into the buffer
4557 * (non-buffer flash only) */
4558 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4559 if (j
== (bp
->flash_info
->page_size
- 4)) {
4560 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4562 rc
= bnx2_nvram_read_dword(bp
,
4568 goto nvram_write_end
;
4574 /* Enable writes to flash interface (unlock write-protect) */
4575 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4576 goto nvram_write_end
;
4578 /* Loop to write back the buffer data from page_start to
4581 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4582 /* Erase the page */
4583 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4584 goto nvram_write_end
;
4586 /* Re-enable the write again for the actual write */
4587 bnx2_enable_nvram_write(bp
);
4589 for (addr
= page_start
; addr
< data_start
;
4590 addr
+= 4, i
+= 4) {
4592 rc
= bnx2_nvram_write_dword(bp
, addr
,
4593 &flash_buffer
[i
], cmd_flags
);
4596 goto nvram_write_end
;
4602 /* Loop to write the new data from data_start to data_end */
4603 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4604 if ((addr
== page_end
- 4) ||
4605 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4606 (addr
== data_end
- 4))) {
4608 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4610 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4614 goto nvram_write_end
;
4620 /* Loop to write back the buffer data from data_end
4622 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4623 for (addr
= data_end
; addr
< page_end
;
4624 addr
+= 4, i
+= 4) {
4626 if (addr
== page_end
-4) {
4627 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4629 rc
= bnx2_nvram_write_dword(bp
, addr
,
4630 &flash_buffer
[i
], cmd_flags
);
4633 goto nvram_write_end
;
4639 /* Disable writes to flash interface (lock write-protect) */
4640 bnx2_disable_nvram_write(bp
);
4642 /* Disable access to flash interface */
4643 bnx2_disable_nvram_access(bp
);
4644 bnx2_release_nvram_lock(bp
);
4646 /* Increment written */
4647 written
+= data_end
- data_start
;
4651 kfree(flash_buffer
);
4657 bnx2_init_fw_cap(struct bnx2
*bp
)
4661 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4662 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4664 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4665 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4667 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4668 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4671 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4672 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4673 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4676 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4677 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4680 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4682 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4683 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4684 bp
->phy_port
= PORT_FIBRE
;
4686 bp
->phy_port
= PORT_TP
;
4688 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4689 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4692 if (netif_running(bp
->dev
) && sig
)
4693 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4697 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4699 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4701 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4702 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4706 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4712 /* Wait for the current PCI transaction to complete before
4713 * issuing a reset. */
4714 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4715 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
4716 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4717 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4718 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4719 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4720 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4721 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4724 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4725 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4726 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4727 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4729 for (i
= 0; i
< 100; i
++) {
4731 val
= REG_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4732 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4737 /* Wait for the firmware to tell us it is ok to issue a reset. */
4738 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4740 /* Deposit a driver reset signature so the firmware knows that
4741 * this is a soft reset. */
4742 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4743 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4745 /* Do a dummy read to force the chip to complete all current transaction
4746 * before we issue a reset. */
4747 val
= REG_RD(bp
, BNX2_MISC_ID
);
4749 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4750 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4751 REG_RD(bp
, BNX2_MISC_COMMAND
);
4754 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4755 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4757 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4760 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4761 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4762 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4765 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4767 /* Reading back any register after chip reset will hang the
4768 * bus on 5706 A0 and A1. The msleep below provides plenty
4769 * of margin for write posting.
4771 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4772 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4775 /* Reset takes approximate 30 usec */
4776 for (i
= 0; i
< 10; i
++) {
4777 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4778 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4779 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4784 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4785 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4786 pr_err("Chip reset did not complete\n");
4791 /* Make sure byte swapping is properly configured. */
4792 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4793 if (val
!= 0x01020304) {
4794 pr_err("Chip not in correct endian mode\n");
4798 /* Wait for the firmware to finish its initialization. */
4799 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4803 spin_lock_bh(&bp
->phy_lock
);
4804 old_port
= bp
->phy_port
;
4805 bnx2_init_fw_cap(bp
);
4806 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4807 old_port
!= bp
->phy_port
)
4808 bnx2_set_default_remote_link(bp
);
4809 spin_unlock_bh(&bp
->phy_lock
);
4811 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4812 /* Adjust the voltage regular to two steps lower. The default
4813 * of this register is 0x0000000e. */
4814 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4816 /* Remove bad rbuf memory from the free pool. */
4817 rc
= bnx2_alloc_bad_rbuf(bp
);
4820 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4821 bnx2_setup_msix_tbl(bp
);
4822 /* Prevent MSIX table reads and write from timing out */
4823 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4824 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4831 bnx2_init_chip(struct bnx2
*bp
)
4836 /* Make sure the interrupt is not active. */
4837 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4839 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4840 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4842 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4844 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4845 DMA_READ_CHANS
<< 12 |
4846 DMA_WRITE_CHANS
<< 16;
4848 val
|= (0x2 << 20) | (1 << 11);
4850 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4853 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4854 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4855 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4857 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4859 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4860 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4861 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4862 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4865 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4868 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4870 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4871 val16
& ~PCI_X_CMD_ERO
);
4874 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4875 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4876 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4877 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4879 /* Initialize context mapping and zero out the quick contexts. The
4880 * context block must have already been enabled. */
4881 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4882 rc
= bnx2_init_5709_context(bp
);
4886 bnx2_init_context(bp
);
4888 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4891 bnx2_init_nvram(bp
);
4893 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4895 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4896 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4897 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4898 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4899 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4900 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4901 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4904 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4906 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4907 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4908 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4910 val
= (BCM_PAGE_BITS
- 8) << 24;
4911 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4913 /* Configure page size. */
4914 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4915 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4916 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4917 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4919 val
= bp
->mac_addr
[0] +
4920 (bp
->mac_addr
[1] << 8) +
4921 (bp
->mac_addr
[2] << 16) +
4923 (bp
->mac_addr
[4] << 8) +
4924 (bp
->mac_addr
[5] << 16);
4925 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4927 /* Program the MTU. Also include 4 bytes for CRC32. */
4929 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4930 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4931 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4932 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4937 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4938 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4939 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4941 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4942 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4943 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4945 bp
->idle_chk_status_idx
= 0xffff;
4947 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4949 /* Set up how to generate a link change interrupt. */
4950 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4952 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4953 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4954 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4956 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4957 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4958 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4959 (u64
) bp
->stats_blk_mapping
>> 32);
4961 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4962 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4964 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4965 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4967 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4968 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4970 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4972 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4974 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4975 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4977 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4978 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4980 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4981 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4983 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4984 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4986 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4987 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4989 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4990 BNX2_HC_CONFIG_COLLECT_STATS
;
4993 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4994 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4995 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4997 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5000 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5001 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5003 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
5005 if (bp
->rx_ticks
< 25)
5006 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5008 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5010 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5011 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5012 BNX2_HC_SB_CONFIG_1
;
5015 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5016 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5017 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5019 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5020 (bp
->tx_quick_cons_trip_int
<< 16) |
5021 bp
->tx_quick_cons_trip
);
5023 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5024 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5026 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5027 (bp
->rx_quick_cons_trip_int
<< 16) |
5028 bp
->rx_quick_cons_trip
);
5030 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5031 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5034 /* Clear internal stats counters. */
5035 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5037 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5039 /* Initialize the receive filter. */
5040 bnx2_set_rx_mode(bp
->dev
);
5042 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5043 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5044 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5045 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5047 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5050 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5051 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5055 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5061 bnx2_clear_ring_states(struct bnx2
*bp
)
5063 struct bnx2_napi
*bnapi
;
5064 struct bnx2_tx_ring_info
*txr
;
5065 struct bnx2_rx_ring_info
*rxr
;
5068 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5069 bnapi
= &bp
->bnx2_napi
[i
];
5070 txr
= &bnapi
->tx_ring
;
5071 rxr
= &bnapi
->rx_ring
;
5074 txr
->hw_tx_cons
= 0;
5075 rxr
->rx_prod_bseq
= 0;
5078 rxr
->rx_pg_prod
= 0;
5079 rxr
->rx_pg_cons
= 0;
5084 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5086 u32 val
, offset0
, offset1
, offset2
, offset3
;
5087 u32 cid_addr
= GET_CID_ADDR(cid
);
5089 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5090 offset0
= BNX2_L2CTX_TYPE_XI
;
5091 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5092 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5093 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5095 offset0
= BNX2_L2CTX_TYPE
;
5096 offset1
= BNX2_L2CTX_CMD_TYPE
;
5097 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5098 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5100 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5101 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5103 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5104 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5106 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5107 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5109 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5110 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5114 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5118 struct bnx2_napi
*bnapi
;
5119 struct bnx2_tx_ring_info
*txr
;
5121 bnapi
= &bp
->bnx2_napi
[ring_num
];
5122 txr
= &bnapi
->tx_ring
;
5127 cid
= TX_TSS_CID
+ ring_num
- 1;
5129 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5131 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5133 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5134 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5137 txr
->tx_prod_bseq
= 0;
5139 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5140 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5142 bnx2_init_tx_context(bp
, cid
, txr
);
5146 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5152 for (i
= 0; i
< num_rings
; i
++) {
5155 rxbd
= &rx_ring
[i
][0];
5156 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5157 rxbd
->rx_bd_len
= buf_size
;
5158 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5160 if (i
== (num_rings
- 1))
5164 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5165 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5170 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5173 u16 prod
, ring_prod
;
5174 u32 cid
, rx_cid_addr
, val
;
5175 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5176 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5181 cid
= RX_RSS_CID
+ ring_num
- 1;
5183 rx_cid_addr
= GET_CID_ADDR(cid
);
5185 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5186 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5188 bnx2_init_rx_context(bp
, cid
);
5190 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5191 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5192 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5195 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5196 if (bp
->rx_pg_ring_size
) {
5197 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5198 rxr
->rx_pg_desc_mapping
,
5199 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5200 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5201 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5202 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5203 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5205 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5206 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5208 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5209 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5211 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5212 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5215 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5216 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5218 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5219 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5221 ring_prod
= prod
= rxr
->rx_pg_prod
;
5222 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5223 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5224 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5225 ring_num
, i
, bp
->rx_pg_ring_size
);
5228 prod
= NEXT_RX_BD(prod
);
5229 ring_prod
= RX_PG_RING_IDX(prod
);
5231 rxr
->rx_pg_prod
= prod
;
5233 ring_prod
= prod
= rxr
->rx_prod
;
5234 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5235 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5236 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5237 ring_num
, i
, bp
->rx_ring_size
);
5240 prod
= NEXT_RX_BD(prod
);
5241 ring_prod
= RX_RING_IDX(prod
);
5243 rxr
->rx_prod
= prod
;
5245 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5246 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5247 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5249 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5250 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5252 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5256 bnx2_init_all_rings(struct bnx2
*bp
)
5261 bnx2_clear_ring_states(bp
);
5263 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5264 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5265 bnx2_init_tx_ring(bp
, i
);
5267 if (bp
->num_tx_rings
> 1)
5268 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5271 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5272 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5274 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5275 bnx2_init_rx_ring(bp
, i
);
5277 if (bp
->num_rx_rings
> 1) {
5280 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5281 int shift
= (i
% 8) << 2;
5283 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5285 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5286 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5287 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5288 BNX2_RLUP_RSS_COMMAND_WRITE
|
5289 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5294 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5295 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5297 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5302 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5304 u32 max
, num_rings
= 1;
5306 while (ring_size
> MAX_RX_DESC_CNT
) {
5307 ring_size
-= MAX_RX_DESC_CNT
;
5310 /* round to next power of 2 */
5312 while ((max
& num_rings
) == 0)
5315 if (num_rings
!= max
)
5322 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5324 u32 rx_size
, rx_space
, jumbo_size
;
5326 /* 8 for CRC and VLAN */
5327 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5329 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5330 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5332 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5333 bp
->rx_pg_ring_size
= 0;
5334 bp
->rx_max_pg_ring
= 0;
5335 bp
->rx_max_pg_ring_idx
= 0;
5336 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5337 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5339 jumbo_size
= size
* pages
;
5340 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5341 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5343 bp
->rx_pg_ring_size
= jumbo_size
;
5344 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5346 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5347 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5348 bp
->rx_copy_thresh
= 0;
5351 bp
->rx_buf_use_size
= rx_size
;
5352 /* hw alignment + build_skb() overhead*/
5353 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5354 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5355 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5356 bp
->rx_ring_size
= size
;
5357 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5358 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5362 bnx2_free_tx_skbs(struct bnx2
*bp
)
5366 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5367 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5368 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5371 if (txr
->tx_buf_ring
== NULL
)
5374 for (j
= 0; j
< TX_DESC_CNT
; ) {
5375 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5376 struct sk_buff
*skb
= tx_buf
->skb
;
5384 dma_unmap_single(&bp
->pdev
->dev
,
5385 dma_unmap_addr(tx_buf
, mapping
),
5391 last
= tx_buf
->nr_frags
;
5393 for (k
= 0; k
< last
; k
++, j
= NEXT_TX_BD(j
)) {
5394 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5395 dma_unmap_page(&bp
->pdev
->dev
,
5396 dma_unmap_addr(tx_buf
, mapping
),
5397 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5402 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5407 bnx2_free_rx_skbs(struct bnx2
*bp
)
5411 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5412 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5413 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5416 if (rxr
->rx_buf_ring
== NULL
)
5419 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5420 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5421 u8
*data
= rx_buf
->data
;
5426 dma_unmap_single(&bp
->pdev
->dev
,
5427 dma_unmap_addr(rx_buf
, mapping
),
5428 bp
->rx_buf_use_size
,
5429 PCI_DMA_FROMDEVICE
);
5431 rx_buf
->data
= NULL
;
5435 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5436 bnx2_free_rx_page(bp
, rxr
, j
);
5441 bnx2_free_skbs(struct bnx2
*bp
)
5443 bnx2_free_tx_skbs(bp
);
5444 bnx2_free_rx_skbs(bp
);
5448 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5452 rc
= bnx2_reset_chip(bp
, reset_code
);
5457 if ((rc
= bnx2_init_chip(bp
)) != 0)
5460 bnx2_init_all_rings(bp
);
5465 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5469 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5472 spin_lock_bh(&bp
->phy_lock
);
5473 bnx2_init_phy(bp
, reset_phy
);
5475 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5476 bnx2_remote_phy_event(bp
);
5477 spin_unlock_bh(&bp
->phy_lock
);
5482 bnx2_shutdown_chip(struct bnx2
*bp
)
5486 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5487 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5489 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5491 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5493 return bnx2_reset_chip(bp
, reset_code
);
5497 bnx2_test_registers(struct bnx2
*bp
)
5501 static const struct {
5504 #define BNX2_FL_NOT_5709 1
5508 { 0x006c, 0, 0x00000000, 0x0000003f },
5509 { 0x0090, 0, 0xffffffff, 0x00000000 },
5510 { 0x0094, 0, 0x00000000, 0x00000000 },
5512 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5513 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5514 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5515 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5516 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5517 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5518 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5519 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5520 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5522 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5523 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5524 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5525 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5526 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5527 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5529 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5530 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5531 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5533 { 0x1000, 0, 0x00000000, 0x00000001 },
5534 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5536 { 0x1408, 0, 0x01c00800, 0x00000000 },
5537 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5538 { 0x14a8, 0, 0x00000000, 0x000001ff },
5539 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5540 { 0x14b0, 0, 0x00000002, 0x00000001 },
5541 { 0x14b8, 0, 0x00000000, 0x00000000 },
5542 { 0x14c0, 0, 0x00000000, 0x00000009 },
5543 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5544 { 0x14cc, 0, 0x00000000, 0x00000001 },
5545 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5547 { 0x1800, 0, 0x00000000, 0x00000001 },
5548 { 0x1804, 0, 0x00000000, 0x00000003 },
5550 { 0x2800, 0, 0x00000000, 0x00000001 },
5551 { 0x2804, 0, 0x00000000, 0x00003f01 },
5552 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5553 { 0x2810, 0, 0xffff0000, 0x00000000 },
5554 { 0x2814, 0, 0xffff0000, 0x00000000 },
5555 { 0x2818, 0, 0xffff0000, 0x00000000 },
5556 { 0x281c, 0, 0xffff0000, 0x00000000 },
5557 { 0x2834, 0, 0xffffffff, 0x00000000 },
5558 { 0x2840, 0, 0x00000000, 0xffffffff },
5559 { 0x2844, 0, 0x00000000, 0xffffffff },
5560 { 0x2848, 0, 0xffffffff, 0x00000000 },
5561 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5563 { 0x2c00, 0, 0x00000000, 0x00000011 },
5564 { 0x2c04, 0, 0x00000000, 0x00030007 },
5566 { 0x3c00, 0, 0x00000000, 0x00000001 },
5567 { 0x3c04, 0, 0x00000000, 0x00070000 },
5568 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5569 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5570 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5571 { 0x3c14, 0, 0x00000000, 0xffffffff },
5572 { 0x3c18, 0, 0x00000000, 0xffffffff },
5573 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5574 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5576 { 0x5004, 0, 0x00000000, 0x0000007f },
5577 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5579 { 0x5c00, 0, 0x00000000, 0x00000001 },
5580 { 0x5c04, 0, 0x00000000, 0x0003000f },
5581 { 0x5c08, 0, 0x00000003, 0x00000000 },
5582 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5583 { 0x5c10, 0, 0x00000000, 0xffffffff },
5584 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5585 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5586 { 0x5c88, 0, 0x00000000, 0x00077373 },
5587 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5589 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5590 { 0x680c, 0, 0xffffffff, 0x00000000 },
5591 { 0x6810, 0, 0xffffffff, 0x00000000 },
5592 { 0x6814, 0, 0xffffffff, 0x00000000 },
5593 { 0x6818, 0, 0xffffffff, 0x00000000 },
5594 { 0x681c, 0, 0xffffffff, 0x00000000 },
5595 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5596 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5597 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5598 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5599 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5600 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5601 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5602 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5603 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5604 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5605 { 0x684c, 0, 0xffffffff, 0x00000000 },
5606 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5607 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5608 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5609 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5610 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5611 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5613 { 0xffff, 0, 0x00000000, 0x00000000 },
5618 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5621 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5622 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5623 u16 flags
= reg_tbl
[i
].flags
;
5625 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5628 offset
= (u32
) reg_tbl
[i
].offset
;
5629 rw_mask
= reg_tbl
[i
].rw_mask
;
5630 ro_mask
= reg_tbl
[i
].ro_mask
;
5632 save_val
= readl(bp
->regview
+ offset
);
5634 writel(0, bp
->regview
+ offset
);
5636 val
= readl(bp
->regview
+ offset
);
5637 if ((val
& rw_mask
) != 0) {
5641 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5645 writel(0xffffffff, bp
->regview
+ offset
);
5647 val
= readl(bp
->regview
+ offset
);
5648 if ((val
& rw_mask
) != rw_mask
) {
5652 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5656 writel(save_val
, bp
->regview
+ offset
);
5660 writel(save_val
, bp
->regview
+ offset
);
5668 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5670 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5671 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5674 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5677 for (offset
= 0; offset
< size
; offset
+= 4) {
5679 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5681 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5691 bnx2_test_memory(struct bnx2
*bp
)
5695 static struct mem_entry
{
5698 } mem_tbl_5706
[] = {
5699 { 0x60000, 0x4000 },
5700 { 0xa0000, 0x3000 },
5701 { 0xe0000, 0x4000 },
5702 { 0x120000, 0x4000 },
5703 { 0x1a0000, 0x4000 },
5704 { 0x160000, 0x4000 },
5708 { 0x60000, 0x4000 },
5709 { 0xa0000, 0x3000 },
5710 { 0xe0000, 0x4000 },
5711 { 0x120000, 0x4000 },
5712 { 0x1a0000, 0x4000 },
5715 struct mem_entry
*mem_tbl
;
5717 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5718 mem_tbl
= mem_tbl_5709
;
5720 mem_tbl
= mem_tbl_5706
;
5722 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5723 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5724 mem_tbl
[i
].len
)) != 0) {
5732 #define BNX2_MAC_LOOPBACK 0
5733 #define BNX2_PHY_LOOPBACK 1
5736 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5738 unsigned int pkt_size
, num_pkts
, i
;
5739 struct sk_buff
*skb
;
5741 unsigned char *packet
;
5742 u16 rx_start_idx
, rx_idx
;
5745 struct sw_bd
*rx_buf
;
5746 struct l2_fhdr
*rx_hdr
;
5748 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5749 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5750 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5754 txr
= &tx_napi
->tx_ring
;
5755 rxr
= &bnapi
->rx_ring
;
5756 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5757 bp
->loopback
= MAC_LOOPBACK
;
5758 bnx2_set_mac_loopback(bp
);
5760 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5761 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5764 bp
->loopback
= PHY_LOOPBACK
;
5765 bnx2_set_phy_loopback(bp
);
5770 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5771 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5774 packet
= skb_put(skb
, pkt_size
);
5775 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5776 memset(packet
+ 6, 0x0, 8);
5777 for (i
= 14; i
< pkt_size
; i
++)
5778 packet
[i
] = (unsigned char) (i
& 0xff);
5780 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5782 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5787 REG_WR(bp
, BNX2_HC_COMMAND
,
5788 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5790 REG_RD(bp
, BNX2_HC_COMMAND
);
5793 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5797 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5799 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5800 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5801 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5802 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5805 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5806 txr
->tx_prod_bseq
+= pkt_size
;
5808 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5809 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5813 REG_WR(bp
, BNX2_HC_COMMAND
,
5814 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5816 REG_RD(bp
, BNX2_HC_COMMAND
);
5820 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5823 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5824 goto loopback_test_done
;
5826 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5827 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5828 goto loopback_test_done
;
5831 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5832 data
= rx_buf
->data
;
5834 rx_hdr
= get_l2_fhdr(data
);
5835 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5837 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5838 dma_unmap_addr(rx_buf
, mapping
),
5839 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5841 if (rx_hdr
->l2_fhdr_status
&
5842 (L2_FHDR_ERRORS_BAD_CRC
|
5843 L2_FHDR_ERRORS_PHY_DECODE
|
5844 L2_FHDR_ERRORS_ALIGNMENT
|
5845 L2_FHDR_ERRORS_TOO_SHORT
|
5846 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5848 goto loopback_test_done
;
5851 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5852 goto loopback_test_done
;
5855 for (i
= 14; i
< pkt_size
; i
++) {
5856 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5857 goto loopback_test_done
;
5868 #define BNX2_MAC_LOOPBACK_FAILED 1
5869 #define BNX2_PHY_LOOPBACK_FAILED 2
5870 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5871 BNX2_PHY_LOOPBACK_FAILED)
5874 bnx2_test_loopback(struct bnx2
*bp
)
5878 if (!netif_running(bp
->dev
))
5879 return BNX2_LOOPBACK_FAILED
;
5881 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5882 spin_lock_bh(&bp
->phy_lock
);
5883 bnx2_init_phy(bp
, 1);
5884 spin_unlock_bh(&bp
->phy_lock
);
5885 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5886 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5887 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5888 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5892 #define NVRAM_SIZE 0x200
5893 #define CRC32_RESIDUAL 0xdebb20e3
5896 bnx2_test_nvram(struct bnx2
*bp
)
5898 __be32 buf
[NVRAM_SIZE
/ 4];
5899 u8
*data
= (u8
*) buf
;
5903 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5904 goto test_nvram_done
;
5906 magic
= be32_to_cpu(buf
[0]);
5907 if (magic
!= 0x669955aa) {
5909 goto test_nvram_done
;
5912 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5913 goto test_nvram_done
;
5915 csum
= ether_crc_le(0x100, data
);
5916 if (csum
!= CRC32_RESIDUAL
) {
5918 goto test_nvram_done
;
5921 csum
= ether_crc_le(0x100, data
+ 0x100);
5922 if (csum
!= CRC32_RESIDUAL
) {
5931 bnx2_test_link(struct bnx2
*bp
)
5935 if (!netif_running(bp
->dev
))
5938 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5943 spin_lock_bh(&bp
->phy_lock
);
5944 bnx2_enable_bmsr1(bp
);
5945 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5946 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5947 bnx2_disable_bmsr1(bp
);
5948 spin_unlock_bh(&bp
->phy_lock
);
5950 if (bmsr
& BMSR_LSTATUS
) {
5957 bnx2_test_intr(struct bnx2
*bp
)
5962 if (!netif_running(bp
->dev
))
5965 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5967 /* This register is not touched during run-time. */
5968 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5969 REG_RD(bp
, BNX2_HC_COMMAND
);
5971 for (i
= 0; i
< 10; i
++) {
5972 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5978 msleep_interruptible(10);
5986 /* Determining link for parallel detection. */
5988 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5990 u32 mode_ctl
, an_dbg
, exp
;
5992 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5995 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5996 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5998 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6001 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6002 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6003 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6005 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6008 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6009 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6010 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6012 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6019 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6023 spin_lock(&bp
->phy_lock
);
6024 if (bp
->serdes_an_pending
) {
6025 bp
->serdes_an_pending
--;
6027 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6030 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6032 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6034 if (bmcr
& BMCR_ANENABLE
) {
6035 if (bnx2_5706_serdes_has_link(bp
)) {
6036 bmcr
&= ~BMCR_ANENABLE
;
6037 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6038 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6039 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6043 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6044 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6047 bnx2_write_phy(bp
, 0x17, 0x0f01);
6048 bnx2_read_phy(bp
, 0x15, &phy2
);
6052 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6053 bmcr
|= BMCR_ANENABLE
;
6054 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6056 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6059 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6064 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6065 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6066 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6068 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6069 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6070 bnx2_5706s_force_link_dn(bp
, 1);
6071 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6074 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6077 spin_unlock(&bp
->phy_lock
);
6081 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6083 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6086 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6087 bp
->serdes_an_pending
= 0;
6091 spin_lock(&bp
->phy_lock
);
6092 if (bp
->serdes_an_pending
)
6093 bp
->serdes_an_pending
--;
6094 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6097 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6098 if (bmcr
& BMCR_ANENABLE
) {
6099 bnx2_enable_forced_2g5(bp
);
6100 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6102 bnx2_disable_forced_2g5(bp
);
6103 bp
->serdes_an_pending
= 2;
6104 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6108 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6110 spin_unlock(&bp
->phy_lock
);
6114 bnx2_timer(unsigned long data
)
6116 struct bnx2
*bp
= (struct bnx2
*) data
;
6118 if (!netif_running(bp
->dev
))
6121 if (atomic_read(&bp
->intr_sem
) != 0)
6122 goto bnx2_restart_timer
;
6124 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6125 BNX2_FLAG_USING_MSI
)
6126 bnx2_chk_missed_msi(bp
);
6128 bnx2_send_heart_beat(bp
);
6130 bp
->stats_blk
->stat_FwRxDrop
=
6131 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6133 /* workaround occasional corrupted counters */
6134 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6135 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6136 BNX2_HC_COMMAND_STATS_NOW
);
6138 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6139 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6140 bnx2_5706_serdes_timer(bp
);
6142 bnx2_5708_serdes_timer(bp
);
6146 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6150 bnx2_request_irq(struct bnx2
*bp
)
6152 unsigned long flags
;
6153 struct bnx2_irq
*irq
;
6156 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6159 flags
= IRQF_SHARED
;
6161 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6162 irq
= &bp
->irq_tbl
[i
];
6163 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6173 __bnx2_free_irq(struct bnx2
*bp
)
6175 struct bnx2_irq
*irq
;
6178 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6179 irq
= &bp
->irq_tbl
[i
];
6181 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6187 bnx2_free_irq(struct bnx2
*bp
)
6190 __bnx2_free_irq(bp
);
6191 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6192 pci_disable_msi(bp
->pdev
);
6193 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6194 pci_disable_msix(bp
->pdev
);
6196 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6200 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6202 int i
, total_vecs
, rc
;
6203 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6204 struct net_device
*dev
= bp
->dev
;
6205 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6207 bnx2_setup_msix_tbl(bp
);
6208 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6209 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6210 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6212 /* Need to flush the previous three writes to ensure MSI-X
6213 * is setup properly */
6214 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6216 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6217 msix_ent
[i
].entry
= i
;
6218 msix_ent
[i
].vector
= 0;
6221 total_vecs
= msix_vecs
;
6226 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6227 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6237 msix_vecs
= total_vecs
;
6241 bp
->irq_nvecs
= msix_vecs
;
6242 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6243 for (i
= 0; i
< total_vecs
; i
++) {
6244 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6245 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6246 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6251 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6253 int cpus
= netif_get_num_default_rss_queues();
6256 if (!bp
->num_req_rx_rings
)
6257 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6258 else if (!bp
->num_req_tx_rings
)
6259 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6261 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6263 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6265 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6266 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6268 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6270 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6271 bnx2_enable_msix(bp
, msix_vecs
);
6273 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6274 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6275 if (pci_enable_msi(bp
->pdev
) == 0) {
6276 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6277 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6278 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6279 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6281 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6283 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6287 if (!bp
->num_req_tx_rings
)
6288 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6290 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6292 if (!bp
->num_req_rx_rings
)
6293 bp
->num_rx_rings
= bp
->irq_nvecs
;
6295 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6297 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6299 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6302 /* Called with rtnl_lock */
6304 bnx2_open(struct net_device
*dev
)
6306 struct bnx2
*bp
= netdev_priv(dev
);
6309 rc
= bnx2_request_firmware(bp
);
6313 netif_carrier_off(dev
);
6315 bnx2_set_power_state(bp
, PCI_D0
);
6316 bnx2_disable_int(bp
);
6318 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6322 bnx2_napi_enable(bp
);
6323 rc
= bnx2_alloc_mem(bp
);
6327 rc
= bnx2_request_irq(bp
);
6331 rc
= bnx2_init_nic(bp
, 1);
6335 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6337 atomic_set(&bp
->intr_sem
, 0);
6339 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6341 bnx2_enable_int(bp
);
6343 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6344 /* Test MSI to make sure it is working
6345 * If MSI test fails, go back to INTx mode
6347 if (bnx2_test_intr(bp
) != 0) {
6348 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6350 bnx2_disable_int(bp
);
6353 bnx2_setup_int_mode(bp
, 1);
6355 rc
= bnx2_init_nic(bp
, 0);
6358 rc
= bnx2_request_irq(bp
);
6361 del_timer_sync(&bp
->timer
);
6364 bnx2_enable_int(bp
);
6367 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6368 netdev_info(dev
, "using MSI\n");
6369 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6370 netdev_info(dev
, "using MSIX\n");
6372 netif_tx_start_all_queues(dev
);
6377 bnx2_napi_disable(bp
);
6382 bnx2_release_firmware(bp
);
6387 bnx2_reset_task(struct work_struct
*work
)
6389 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6394 if (!netif_running(bp
->dev
)) {
6399 bnx2_netif_stop(bp
, true);
6401 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6402 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6403 /* in case PCI block has reset */
6404 pci_restore_state(bp
->pdev
);
6405 pci_save_state(bp
->pdev
);
6407 rc
= bnx2_init_nic(bp
, 1);
6409 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6410 bnx2_napi_enable(bp
);
6416 atomic_set(&bp
->intr_sem
, 1);
6417 bnx2_netif_start(bp
, true);
6421 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6424 bnx2_dump_ftq(struct bnx2
*bp
)
6427 u32 reg
, bdidx
, cid
, valid
;
6428 struct net_device
*dev
= bp
->dev
;
6429 static const struct ftq_reg
{
6433 BNX2_FTQ_ENTRY(RV2P_P
),
6434 BNX2_FTQ_ENTRY(RV2P_T
),
6435 BNX2_FTQ_ENTRY(RV2P_M
),
6436 BNX2_FTQ_ENTRY(TBDR_
),
6437 BNX2_FTQ_ENTRY(TDMA_
),
6438 BNX2_FTQ_ENTRY(TXP_
),
6439 BNX2_FTQ_ENTRY(TXP_
),
6440 BNX2_FTQ_ENTRY(TPAT_
),
6441 BNX2_FTQ_ENTRY(RXP_C
),
6442 BNX2_FTQ_ENTRY(RXP_
),
6443 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6444 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6445 BNX2_FTQ_ENTRY(COM_COMQ_
),
6446 BNX2_FTQ_ENTRY(CP_CPQ_
),
6449 netdev_err(dev
, "<--- start FTQ dump --->\n");
6450 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6451 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6452 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6454 netdev_err(dev
, "CPU states:\n");
6455 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6456 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6457 reg
, bnx2_reg_rd_ind(bp
, reg
),
6458 bnx2_reg_rd_ind(bp
, reg
+ 4),
6459 bnx2_reg_rd_ind(bp
, reg
+ 8),
6460 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6461 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6462 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6464 netdev_err(dev
, "<--- end FTQ dump --->\n");
6465 netdev_err(dev
, "<--- start TBDC dump --->\n");
6466 netdev_err(dev
, "TBDC free cnt: %ld\n",
6467 REG_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6468 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6469 for (i
= 0; i
< 0x20; i
++) {
6472 REG_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6473 REG_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6474 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6475 REG_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6476 while ((REG_RD(bp
, BNX2_TBDC_COMMAND
) &
6477 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6480 cid
= REG_RD(bp
, BNX2_TBDC_CID
);
6481 bdidx
= REG_RD(bp
, BNX2_TBDC_BIDX
);
6482 valid
= REG_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6483 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6484 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6485 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6487 netdev_err(dev
, "<--- end TBDC dump --->\n");
6491 bnx2_dump_state(struct bnx2
*bp
)
6493 struct net_device
*dev
= bp
->dev
;
6496 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6497 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6498 atomic_read(&bp
->intr_sem
), val1
);
6499 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6500 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6501 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6502 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6503 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6504 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6505 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6506 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6507 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6508 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6509 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6510 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6511 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6515 bnx2_tx_timeout(struct net_device
*dev
)
6517 struct bnx2
*bp
= netdev_priv(dev
);
6520 bnx2_dump_state(bp
);
6521 bnx2_dump_mcp_state(bp
);
6523 /* This allows the netif to be shutdown gracefully before resetting */
6524 schedule_work(&bp
->reset_task
);
6527 /* Called with netif_tx_lock.
6528 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6529 * netif_wake_queue().
6532 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6534 struct bnx2
*bp
= netdev_priv(dev
);
6537 struct sw_tx_bd
*tx_buf
;
6538 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6539 u16 prod
, ring_prod
;
6541 struct bnx2_napi
*bnapi
;
6542 struct bnx2_tx_ring_info
*txr
;
6543 struct netdev_queue
*txq
;
6545 /* Determine which tx ring we will be placed on */
6546 i
= skb_get_queue_mapping(skb
);
6547 bnapi
= &bp
->bnx2_napi
[i
];
6548 txr
= &bnapi
->tx_ring
;
6549 txq
= netdev_get_tx_queue(dev
, i
);
6551 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6552 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6553 netif_tx_stop_queue(txq
);
6554 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6556 return NETDEV_TX_BUSY
;
6558 len
= skb_headlen(skb
);
6559 prod
= txr
->tx_prod
;
6560 ring_prod
= TX_RING_IDX(prod
);
6563 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6564 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6567 if (vlan_tx_tag_present(skb
)) {
6569 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6572 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6576 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6578 tcp_opt_len
= tcp_optlen(skb
);
6580 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6581 u32 tcp_off
= skb_transport_offset(skb
) -
6582 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6584 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6585 TX_BD_FLAGS_SW_FLAGS
;
6586 if (likely(tcp_off
== 0))
6587 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6590 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6591 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6592 ((tcp_off
& 0x10) <<
6593 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6594 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6598 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6599 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6600 (tcp_opt_len
>> 2)) << 8;
6606 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6607 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6609 return NETDEV_TX_OK
;
6612 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6614 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6616 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6618 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6619 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6620 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6621 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6623 last_frag
= skb_shinfo(skb
)->nr_frags
;
6624 tx_buf
->nr_frags
= last_frag
;
6625 tx_buf
->is_gso
= skb_is_gso(skb
);
6627 for (i
= 0; i
< last_frag
; i
++) {
6628 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6630 prod
= NEXT_TX_BD(prod
);
6631 ring_prod
= TX_RING_IDX(prod
);
6632 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6634 len
= skb_frag_size(frag
);
6635 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6637 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6639 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6642 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6643 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6644 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6645 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6648 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6650 /* Sync BD data before updating TX mailbox */
6653 netdev_tx_sent_queue(txq
, skb
->len
);
6655 prod
= NEXT_TX_BD(prod
);
6656 txr
->tx_prod_bseq
+= skb
->len
;
6658 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6659 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6663 txr
->tx_prod
= prod
;
6665 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6666 netif_tx_stop_queue(txq
);
6668 /* netif_tx_stop_queue() must be done before checking
6669 * tx index in bnx2_tx_avail() below, because in
6670 * bnx2_tx_int(), we update tx index before checking for
6671 * netif_tx_queue_stopped().
6674 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6675 netif_tx_wake_queue(txq
);
6678 return NETDEV_TX_OK
;
6680 /* save value of frag that failed */
6683 /* start back at beginning and unmap skb */
6684 prod
= txr
->tx_prod
;
6685 ring_prod
= TX_RING_IDX(prod
);
6686 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6688 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6689 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6691 /* unmap remaining mapped pages */
6692 for (i
= 0; i
< last_frag
; i
++) {
6693 prod
= NEXT_TX_BD(prod
);
6694 ring_prod
= TX_RING_IDX(prod
);
6695 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6696 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6697 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6702 return NETDEV_TX_OK
;
6705 /* Called with rtnl_lock */
6707 bnx2_close(struct net_device
*dev
)
6709 struct bnx2
*bp
= netdev_priv(dev
);
6711 bnx2_disable_int_sync(bp
);
6712 bnx2_napi_disable(bp
);
6713 netif_tx_disable(dev
);
6714 del_timer_sync(&bp
->timer
);
6715 bnx2_shutdown_chip(bp
);
6721 netif_carrier_off(bp
->dev
);
6722 bnx2_set_power_state(bp
, PCI_D3hot
);
6727 bnx2_save_stats(struct bnx2
*bp
)
6729 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6730 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6733 /* The 1st 10 counters are 64-bit counters */
6734 for (i
= 0; i
< 20; i
+= 2) {
6738 hi
= temp_stats
[i
] + hw_stats
[i
];
6739 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6740 if (lo
> 0xffffffff)
6743 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6746 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6747 temp_stats
[i
] += hw_stats
[i
];
6750 #define GET_64BIT_NET_STATS64(ctr) \
6751 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6753 #define GET_64BIT_NET_STATS(ctr) \
6754 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6755 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6757 #define GET_32BIT_NET_STATS(ctr) \
6758 (unsigned long) (bp->stats_blk->ctr + \
6759 bp->temp_stats_blk->ctr)
6761 static struct rtnl_link_stats64
*
6762 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6764 struct bnx2
*bp
= netdev_priv(dev
);
6766 if (bp
->stats_blk
== NULL
)
6769 net_stats
->rx_packets
=
6770 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6771 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6772 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6774 net_stats
->tx_packets
=
6775 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6776 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6777 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6779 net_stats
->rx_bytes
=
6780 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6782 net_stats
->tx_bytes
=
6783 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6785 net_stats
->multicast
=
6786 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6788 net_stats
->collisions
=
6789 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6791 net_stats
->rx_length_errors
=
6792 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6793 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6795 net_stats
->rx_over_errors
=
6796 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6797 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6799 net_stats
->rx_frame_errors
=
6800 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6802 net_stats
->rx_crc_errors
=
6803 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6805 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6806 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6807 net_stats
->rx_crc_errors
;
6809 net_stats
->tx_aborted_errors
=
6810 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6811 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6813 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6814 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6815 net_stats
->tx_carrier_errors
= 0;
6817 net_stats
->tx_carrier_errors
=
6818 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6821 net_stats
->tx_errors
=
6822 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6823 net_stats
->tx_aborted_errors
+
6824 net_stats
->tx_carrier_errors
;
6826 net_stats
->rx_missed_errors
=
6827 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6828 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6829 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6834 /* All ethtool functions called with rtnl_lock */
6837 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6839 struct bnx2
*bp
= netdev_priv(dev
);
6840 int support_serdes
= 0, support_copper
= 0;
6842 cmd
->supported
= SUPPORTED_Autoneg
;
6843 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6846 } else if (bp
->phy_port
== PORT_FIBRE
)
6851 if (support_serdes
) {
6852 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6854 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6855 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6858 if (support_copper
) {
6859 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6860 SUPPORTED_10baseT_Full
|
6861 SUPPORTED_100baseT_Half
|
6862 SUPPORTED_100baseT_Full
|
6863 SUPPORTED_1000baseT_Full
|
6868 spin_lock_bh(&bp
->phy_lock
);
6869 cmd
->port
= bp
->phy_port
;
6870 cmd
->advertising
= bp
->advertising
;
6872 if (bp
->autoneg
& AUTONEG_SPEED
) {
6873 cmd
->autoneg
= AUTONEG_ENABLE
;
6875 cmd
->autoneg
= AUTONEG_DISABLE
;
6878 if (netif_carrier_ok(dev
)) {
6879 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6880 cmd
->duplex
= bp
->duplex
;
6883 ethtool_cmd_speed_set(cmd
, -1);
6886 spin_unlock_bh(&bp
->phy_lock
);
6888 cmd
->transceiver
= XCVR_INTERNAL
;
6889 cmd
->phy_address
= bp
->phy_addr
;
6895 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6897 struct bnx2
*bp
= netdev_priv(dev
);
6898 u8 autoneg
= bp
->autoneg
;
6899 u8 req_duplex
= bp
->req_duplex
;
6900 u16 req_line_speed
= bp
->req_line_speed
;
6901 u32 advertising
= bp
->advertising
;
6904 spin_lock_bh(&bp
->phy_lock
);
6906 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6907 goto err_out_unlock
;
6909 if (cmd
->port
!= bp
->phy_port
&&
6910 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6911 goto err_out_unlock
;
6913 /* If device is down, we can store the settings only if the user
6914 * is setting the currently active port.
6916 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6917 goto err_out_unlock
;
6919 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6920 autoneg
|= AUTONEG_SPEED
;
6922 advertising
= cmd
->advertising
;
6923 if (cmd
->port
== PORT_TP
) {
6924 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6926 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6928 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6930 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6932 advertising
|= ADVERTISED_Autoneg
;
6935 u32 speed
= ethtool_cmd_speed(cmd
);
6936 if (cmd
->port
== PORT_FIBRE
) {
6937 if ((speed
!= SPEED_1000
&&
6938 speed
!= SPEED_2500
) ||
6939 (cmd
->duplex
!= DUPLEX_FULL
))
6940 goto err_out_unlock
;
6942 if (speed
== SPEED_2500
&&
6943 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6944 goto err_out_unlock
;
6945 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
6946 goto err_out_unlock
;
6948 autoneg
&= ~AUTONEG_SPEED
;
6949 req_line_speed
= speed
;
6950 req_duplex
= cmd
->duplex
;
6954 bp
->autoneg
= autoneg
;
6955 bp
->advertising
= advertising
;
6956 bp
->req_line_speed
= req_line_speed
;
6957 bp
->req_duplex
= req_duplex
;
6960 /* If device is down, the new settings will be picked up when it is
6963 if (netif_running(dev
))
6964 err
= bnx2_setup_phy(bp
, cmd
->port
);
6967 spin_unlock_bh(&bp
->phy_lock
);
6973 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6975 struct bnx2
*bp
= netdev_priv(dev
);
6977 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
6978 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
6979 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
6980 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
6983 #define BNX2_REGDUMP_LEN (32 * 1024)
6986 bnx2_get_regs_len(struct net_device
*dev
)
6988 return BNX2_REGDUMP_LEN
;
6992 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6994 u32
*p
= _p
, i
, offset
;
6996 struct bnx2
*bp
= netdev_priv(dev
);
6997 static const u32 reg_boundaries
[] = {
6998 0x0000, 0x0098, 0x0400, 0x045c,
6999 0x0800, 0x0880, 0x0c00, 0x0c10,
7000 0x0c30, 0x0d08, 0x1000, 0x101c,
7001 0x1040, 0x1048, 0x1080, 0x10a4,
7002 0x1400, 0x1490, 0x1498, 0x14f0,
7003 0x1500, 0x155c, 0x1580, 0x15dc,
7004 0x1600, 0x1658, 0x1680, 0x16d8,
7005 0x1800, 0x1820, 0x1840, 0x1854,
7006 0x1880, 0x1894, 0x1900, 0x1984,
7007 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7008 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7009 0x2000, 0x2030, 0x23c0, 0x2400,
7010 0x2800, 0x2820, 0x2830, 0x2850,
7011 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7012 0x3c00, 0x3c94, 0x4000, 0x4010,
7013 0x4080, 0x4090, 0x43c0, 0x4458,
7014 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7015 0x4fc0, 0x5010, 0x53c0, 0x5444,
7016 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7017 0x5fc0, 0x6000, 0x6400, 0x6428,
7018 0x6800, 0x6848, 0x684c, 0x6860,
7019 0x6888, 0x6910, 0x8000
7024 memset(p
, 0, BNX2_REGDUMP_LEN
);
7026 if (!netif_running(bp
->dev
))
7030 offset
= reg_boundaries
[0];
7032 while (offset
< BNX2_REGDUMP_LEN
) {
7033 *p
++ = REG_RD(bp
, offset
);
7035 if (offset
== reg_boundaries
[i
+ 1]) {
7036 offset
= reg_boundaries
[i
+ 2];
7037 p
= (u32
*) (orig_p
+ offset
);
7044 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7046 struct bnx2
*bp
= netdev_priv(dev
);
7048 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7053 wol
->supported
= WAKE_MAGIC
;
7055 wol
->wolopts
= WAKE_MAGIC
;
7059 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7063 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7065 struct bnx2
*bp
= netdev_priv(dev
);
7067 if (wol
->wolopts
& ~WAKE_MAGIC
)
7070 if (wol
->wolopts
& WAKE_MAGIC
) {
7071 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7083 bnx2_nway_reset(struct net_device
*dev
)
7085 struct bnx2
*bp
= netdev_priv(dev
);
7088 if (!netif_running(dev
))
7091 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7095 spin_lock_bh(&bp
->phy_lock
);
7097 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7100 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7101 spin_unlock_bh(&bp
->phy_lock
);
7105 /* Force a link down visible on the other side */
7106 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7107 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7108 spin_unlock_bh(&bp
->phy_lock
);
7112 spin_lock_bh(&bp
->phy_lock
);
7114 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7115 bp
->serdes_an_pending
= 1;
7116 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7119 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7120 bmcr
&= ~BMCR_LOOPBACK
;
7121 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7123 spin_unlock_bh(&bp
->phy_lock
);
7129 bnx2_get_link(struct net_device
*dev
)
7131 struct bnx2
*bp
= netdev_priv(dev
);
7137 bnx2_get_eeprom_len(struct net_device
*dev
)
7139 struct bnx2
*bp
= netdev_priv(dev
);
7141 if (bp
->flash_info
== NULL
)
7144 return (int) bp
->flash_size
;
7148 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7151 struct bnx2
*bp
= netdev_priv(dev
);
7154 if (!netif_running(dev
))
7157 /* parameters already validated in ethtool_get_eeprom */
7159 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7165 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7168 struct bnx2
*bp
= netdev_priv(dev
);
7171 if (!netif_running(dev
))
7174 /* parameters already validated in ethtool_set_eeprom */
7176 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7182 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7184 struct bnx2
*bp
= netdev_priv(dev
);
7186 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7188 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7189 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7190 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7191 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7193 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7194 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7195 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7196 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7198 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7204 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7206 struct bnx2
*bp
= netdev_priv(dev
);
7208 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7209 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7211 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7212 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7214 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7215 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7217 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7218 if (bp
->rx_quick_cons_trip_int
> 0xff)
7219 bp
->rx_quick_cons_trip_int
= 0xff;
7221 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7222 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7224 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7225 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7227 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7228 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7230 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7231 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7234 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7235 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7236 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7237 bp
->stats_ticks
= USEC_PER_SEC
;
7239 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7240 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7241 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7243 if (netif_running(bp
->dev
)) {
7244 bnx2_netif_stop(bp
, true);
7245 bnx2_init_nic(bp
, 0);
7246 bnx2_netif_start(bp
, true);
7253 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7255 struct bnx2
*bp
= netdev_priv(dev
);
7257 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7258 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7260 ering
->rx_pending
= bp
->rx_ring_size
;
7261 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7263 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7264 ering
->tx_pending
= bp
->tx_ring_size
;
7268 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7270 if (netif_running(bp
->dev
)) {
7271 /* Reset will erase chipset stats; save them */
7272 bnx2_save_stats(bp
);
7274 bnx2_netif_stop(bp
, true);
7275 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7280 __bnx2_free_irq(bp
);
7286 bnx2_set_rx_ring_size(bp
, rx
);
7287 bp
->tx_ring_size
= tx
;
7289 if (netif_running(bp
->dev
)) {
7293 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7298 rc
= bnx2_alloc_mem(bp
);
7301 rc
= bnx2_request_irq(bp
);
7304 rc
= bnx2_init_nic(bp
, 0);
7307 bnx2_napi_enable(bp
);
7312 mutex_lock(&bp
->cnic_lock
);
7313 /* Let cnic know about the new status block. */
7314 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7315 bnx2_setup_cnic_irq_info(bp
);
7316 mutex_unlock(&bp
->cnic_lock
);
7318 bnx2_netif_start(bp
, true);
7324 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7326 struct bnx2
*bp
= netdev_priv(dev
);
7329 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7330 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7331 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7335 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7341 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7343 struct bnx2
*bp
= netdev_priv(dev
);
7345 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7346 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7347 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7351 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7353 struct bnx2
*bp
= netdev_priv(dev
);
7355 bp
->req_flow_ctrl
= 0;
7356 if (epause
->rx_pause
)
7357 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7358 if (epause
->tx_pause
)
7359 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7361 if (epause
->autoneg
) {
7362 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7365 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7368 if (netif_running(dev
)) {
7369 spin_lock_bh(&bp
->phy_lock
);
7370 bnx2_setup_phy(bp
, bp
->phy_port
);
7371 spin_unlock_bh(&bp
->phy_lock
);
7378 char string
[ETH_GSTRING_LEN
];
7379 } bnx2_stats_str_arr
[] = {
7381 { "rx_error_bytes" },
7383 { "tx_error_bytes" },
7384 { "rx_ucast_packets" },
7385 { "rx_mcast_packets" },
7386 { "rx_bcast_packets" },
7387 { "tx_ucast_packets" },
7388 { "tx_mcast_packets" },
7389 { "tx_bcast_packets" },
7390 { "tx_mac_errors" },
7391 { "tx_carrier_errors" },
7392 { "rx_crc_errors" },
7393 { "rx_align_errors" },
7394 { "tx_single_collisions" },
7395 { "tx_multi_collisions" },
7397 { "tx_excess_collisions" },
7398 { "tx_late_collisions" },
7399 { "tx_total_collisions" },
7402 { "rx_undersize_packets" },
7403 { "rx_oversize_packets" },
7404 { "rx_64_byte_packets" },
7405 { "rx_65_to_127_byte_packets" },
7406 { "rx_128_to_255_byte_packets" },
7407 { "rx_256_to_511_byte_packets" },
7408 { "rx_512_to_1023_byte_packets" },
7409 { "rx_1024_to_1522_byte_packets" },
7410 { "rx_1523_to_9022_byte_packets" },
7411 { "tx_64_byte_packets" },
7412 { "tx_65_to_127_byte_packets" },
7413 { "tx_128_to_255_byte_packets" },
7414 { "tx_256_to_511_byte_packets" },
7415 { "tx_512_to_1023_byte_packets" },
7416 { "tx_1024_to_1522_byte_packets" },
7417 { "tx_1523_to_9022_byte_packets" },
7418 { "rx_xon_frames" },
7419 { "rx_xoff_frames" },
7420 { "tx_xon_frames" },
7421 { "tx_xoff_frames" },
7422 { "rx_mac_ctrl_frames" },
7423 { "rx_filtered_packets" },
7424 { "rx_ftq_discards" },
7426 { "rx_fw_discards" },
7429 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7431 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7433 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7434 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7435 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7436 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7437 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7438 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7439 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7440 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7441 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7442 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7443 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7444 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7445 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7446 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7447 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7448 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7449 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7450 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7451 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7452 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7453 STATS_OFFSET32(stat_EtherStatsCollisions
),
7454 STATS_OFFSET32(stat_EtherStatsFragments
),
7455 STATS_OFFSET32(stat_EtherStatsJabbers
),
7456 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7457 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7458 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7459 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7460 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7461 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7462 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7463 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7464 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7465 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7466 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7467 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7468 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7469 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7470 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7471 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7472 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7473 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7474 STATS_OFFSET32(stat_OutXonSent
),
7475 STATS_OFFSET32(stat_OutXoffSent
),
7476 STATS_OFFSET32(stat_MacControlFramesReceived
),
7477 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7478 STATS_OFFSET32(stat_IfInFTQDiscards
),
7479 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7480 STATS_OFFSET32(stat_FwRxDrop
),
7483 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7484 * skipped because of errata.
7486 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7487 8,0,8,8,8,8,8,8,8,8,
7488 4,0,4,4,4,4,4,4,4,4,
7489 4,4,4,4,4,4,4,4,4,4,
7490 4,4,4,4,4,4,4,4,4,4,
7494 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7495 8,0,8,8,8,8,8,8,8,8,
7496 4,4,4,4,4,4,4,4,4,4,
7497 4,4,4,4,4,4,4,4,4,4,
7498 4,4,4,4,4,4,4,4,4,4,
7502 #define BNX2_NUM_TESTS 6
7505 char string
[ETH_GSTRING_LEN
];
7506 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7507 { "register_test (offline)" },
7508 { "memory_test (offline)" },
7509 { "loopback_test (offline)" },
7510 { "nvram_test (online)" },
7511 { "interrupt_test (online)" },
7512 { "link_test (online)" },
7516 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7520 return BNX2_NUM_TESTS
;
7522 return BNX2_NUM_STATS
;
7529 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7531 struct bnx2
*bp
= netdev_priv(dev
);
7533 bnx2_set_power_state(bp
, PCI_D0
);
7535 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7536 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7539 bnx2_netif_stop(bp
, true);
7540 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7543 if (bnx2_test_registers(bp
) != 0) {
7545 etest
->flags
|= ETH_TEST_FL_FAILED
;
7547 if (bnx2_test_memory(bp
) != 0) {
7549 etest
->flags
|= ETH_TEST_FL_FAILED
;
7551 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7552 etest
->flags
|= ETH_TEST_FL_FAILED
;
7554 if (!netif_running(bp
->dev
))
7555 bnx2_shutdown_chip(bp
);
7557 bnx2_init_nic(bp
, 1);
7558 bnx2_netif_start(bp
, true);
7561 /* wait for link up */
7562 for (i
= 0; i
< 7; i
++) {
7565 msleep_interruptible(1000);
7569 if (bnx2_test_nvram(bp
) != 0) {
7571 etest
->flags
|= ETH_TEST_FL_FAILED
;
7573 if (bnx2_test_intr(bp
) != 0) {
7575 etest
->flags
|= ETH_TEST_FL_FAILED
;
7578 if (bnx2_test_link(bp
) != 0) {
7580 etest
->flags
|= ETH_TEST_FL_FAILED
;
7583 if (!netif_running(bp
->dev
))
7584 bnx2_set_power_state(bp
, PCI_D3hot
);
7588 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7590 switch (stringset
) {
7592 memcpy(buf
, bnx2_stats_str_arr
,
7593 sizeof(bnx2_stats_str_arr
));
7596 memcpy(buf
, bnx2_tests_str_arr
,
7597 sizeof(bnx2_tests_str_arr
));
7603 bnx2_get_ethtool_stats(struct net_device
*dev
,
7604 struct ethtool_stats
*stats
, u64
*buf
)
7606 struct bnx2
*bp
= netdev_priv(dev
);
7608 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7609 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7610 u8
*stats_len_arr
= NULL
;
7612 if (hw_stats
== NULL
) {
7613 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7617 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7618 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7619 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7620 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7621 stats_len_arr
= bnx2_5706_stats_len_arr
;
7623 stats_len_arr
= bnx2_5708_stats_len_arr
;
7625 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7626 unsigned long offset
;
7628 if (stats_len_arr
[i
] == 0) {
7629 /* skip this counter */
7634 offset
= bnx2_stats_offset_arr
[i
];
7635 if (stats_len_arr
[i
] == 4) {
7636 /* 4-byte counter */
7637 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7638 *(temp_stats
+ offset
);
7641 /* 8-byte counter */
7642 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7643 *(hw_stats
+ offset
+ 1) +
7644 (((u64
) *(temp_stats
+ offset
)) << 32) +
7645 *(temp_stats
+ offset
+ 1);
7650 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7652 struct bnx2
*bp
= netdev_priv(dev
);
7655 case ETHTOOL_ID_ACTIVE
:
7656 bnx2_set_power_state(bp
, PCI_D0
);
7658 bp
->leds_save
= REG_RD(bp
, BNX2_MISC_CFG
);
7659 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7660 return 1; /* cycle on/off once per second */
7663 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7664 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7665 BNX2_EMAC_LED_100MB_OVERRIDE
|
7666 BNX2_EMAC_LED_10MB_OVERRIDE
|
7667 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7668 BNX2_EMAC_LED_TRAFFIC
);
7671 case ETHTOOL_ID_OFF
:
7672 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7675 case ETHTOOL_ID_INACTIVE
:
7676 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7677 REG_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7679 if (!netif_running(dev
))
7680 bnx2_set_power_state(bp
, PCI_D3hot
);
7687 static netdev_features_t
7688 bnx2_fix_features(struct net_device
*dev
, netdev_features_t features
)
7690 struct bnx2
*bp
= netdev_priv(dev
);
7692 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
7693 features
|= NETIF_F_HW_VLAN_RX
;
7699 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7701 struct bnx2
*bp
= netdev_priv(dev
);
7703 /* TSO with VLAN tag won't work with current firmware */
7704 if (features
& NETIF_F_HW_VLAN_TX
)
7705 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7707 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7709 if ((!!(features
& NETIF_F_HW_VLAN_RX
) !=
7710 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7711 netif_running(dev
)) {
7712 bnx2_netif_stop(bp
, false);
7713 dev
->features
= features
;
7714 bnx2_set_rx_mode(dev
);
7715 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7716 bnx2_netif_start(bp
, false);
7723 static void bnx2_get_channels(struct net_device
*dev
,
7724 struct ethtool_channels
*channels
)
7726 struct bnx2
*bp
= netdev_priv(dev
);
7727 u32 max_rx_rings
= 1;
7728 u32 max_tx_rings
= 1;
7730 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7731 max_rx_rings
= RX_MAX_RINGS
;
7732 max_tx_rings
= TX_MAX_RINGS
;
7735 channels
->max_rx
= max_rx_rings
;
7736 channels
->max_tx
= max_tx_rings
;
7737 channels
->max_other
= 0;
7738 channels
->max_combined
= 0;
7739 channels
->rx_count
= bp
->num_rx_rings
;
7740 channels
->tx_count
= bp
->num_tx_rings
;
7741 channels
->other_count
= 0;
7742 channels
->combined_count
= 0;
7745 static int bnx2_set_channels(struct net_device
*dev
,
7746 struct ethtool_channels
*channels
)
7748 struct bnx2
*bp
= netdev_priv(dev
);
7749 u32 max_rx_rings
= 1;
7750 u32 max_tx_rings
= 1;
7753 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7754 max_rx_rings
= RX_MAX_RINGS
;
7755 max_tx_rings
= TX_MAX_RINGS
;
7757 if (channels
->rx_count
> max_rx_rings
||
7758 channels
->tx_count
> max_tx_rings
)
7761 bp
->num_req_rx_rings
= channels
->rx_count
;
7762 bp
->num_req_tx_rings
= channels
->tx_count
;
7764 if (netif_running(dev
))
7765 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7766 bp
->tx_ring_size
, true);
7771 static const struct ethtool_ops bnx2_ethtool_ops
= {
7772 .get_settings
= bnx2_get_settings
,
7773 .set_settings
= bnx2_set_settings
,
7774 .get_drvinfo
= bnx2_get_drvinfo
,
7775 .get_regs_len
= bnx2_get_regs_len
,
7776 .get_regs
= bnx2_get_regs
,
7777 .get_wol
= bnx2_get_wol
,
7778 .set_wol
= bnx2_set_wol
,
7779 .nway_reset
= bnx2_nway_reset
,
7780 .get_link
= bnx2_get_link
,
7781 .get_eeprom_len
= bnx2_get_eeprom_len
,
7782 .get_eeprom
= bnx2_get_eeprom
,
7783 .set_eeprom
= bnx2_set_eeprom
,
7784 .get_coalesce
= bnx2_get_coalesce
,
7785 .set_coalesce
= bnx2_set_coalesce
,
7786 .get_ringparam
= bnx2_get_ringparam
,
7787 .set_ringparam
= bnx2_set_ringparam
,
7788 .get_pauseparam
= bnx2_get_pauseparam
,
7789 .set_pauseparam
= bnx2_set_pauseparam
,
7790 .self_test
= bnx2_self_test
,
7791 .get_strings
= bnx2_get_strings
,
7792 .set_phys_id
= bnx2_set_phys_id
,
7793 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7794 .get_sset_count
= bnx2_get_sset_count
,
7795 .get_channels
= bnx2_get_channels
,
7796 .set_channels
= bnx2_set_channels
,
7799 /* Called with rtnl_lock */
7801 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7803 struct mii_ioctl_data
*data
= if_mii(ifr
);
7804 struct bnx2
*bp
= netdev_priv(dev
);
7809 data
->phy_id
= bp
->phy_addr
;
7815 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7818 if (!netif_running(dev
))
7821 spin_lock_bh(&bp
->phy_lock
);
7822 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7823 spin_unlock_bh(&bp
->phy_lock
);
7825 data
->val_out
= mii_regval
;
7831 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7834 if (!netif_running(dev
))
7837 spin_lock_bh(&bp
->phy_lock
);
7838 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7839 spin_unlock_bh(&bp
->phy_lock
);
7850 /* Called with rtnl_lock */
7852 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7854 struct sockaddr
*addr
= p
;
7855 struct bnx2
*bp
= netdev_priv(dev
);
7857 if (!is_valid_ether_addr(addr
->sa_data
))
7858 return -EADDRNOTAVAIL
;
7860 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7861 if (netif_running(dev
))
7862 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7867 /* Called with rtnl_lock */
7869 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7871 struct bnx2
*bp
= netdev_priv(dev
);
7873 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7874 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7878 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7882 #ifdef CONFIG_NET_POLL_CONTROLLER
7884 poll_bnx2(struct net_device
*dev
)
7886 struct bnx2
*bp
= netdev_priv(dev
);
7889 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7890 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7892 disable_irq(irq
->vector
);
7893 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7894 enable_irq(irq
->vector
);
7899 static void __devinit
7900 bnx2_get_5709_media(struct bnx2
*bp
)
7902 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7903 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7906 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7908 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7909 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7913 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7914 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7916 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7918 if (bp
->func
== 0) {
7923 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7931 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7937 static void __devinit
7938 bnx2_get_pci_speed(struct bnx2
*bp
)
7942 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7943 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7946 bp
->flags
|= BNX2_FLAG_PCIX
;
7948 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7950 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7952 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7953 bp
->bus_speed_mhz
= 133;
7956 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7957 bp
->bus_speed_mhz
= 100;
7960 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7961 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7962 bp
->bus_speed_mhz
= 66;
7965 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7966 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7967 bp
->bus_speed_mhz
= 50;
7970 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7971 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7972 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7973 bp
->bus_speed_mhz
= 33;
7978 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7979 bp
->bus_speed_mhz
= 66;
7981 bp
->bus_speed_mhz
= 33;
7984 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7985 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7989 static void __devinit
7990 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7994 unsigned int block_end
, rosize
, len
;
7996 #define BNX2_VPD_NVRAM_OFFSET 0x300
7997 #define BNX2_VPD_LEN 128
7998 #define BNX2_MAX_VER_SLEN 30
8000 data
= kmalloc(256, GFP_KERNEL
);
8004 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8009 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8010 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8011 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8012 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8013 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8016 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8020 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8021 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8022 block_end
= i
+ rosize
;
8024 if (block_end
> BNX2_VPD_LEN
)
8027 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8028 PCI_VPD_RO_KEYWORD_MFR_ID
);
8032 len
= pci_vpd_info_field_size(&data
[j
]);
8034 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8035 if (j
+ len
> block_end
|| len
!= 4 ||
8036 memcmp(&data
[j
], "1028", 4))
8039 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8040 PCI_VPD_RO_KEYWORD_VENDOR0
);
8044 len
= pci_vpd_info_field_size(&data
[j
]);
8046 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8047 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8050 memcpy(bp
->fw_version
, &data
[j
], len
);
8051 bp
->fw_version
[len
] = ' ';
8057 static int __devinit
8058 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8063 u64 dma_mask
, persist_dma_mask
;
8066 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8067 bp
= netdev_priv(dev
);
8072 bp
->temp_stats_blk
=
8073 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8075 if (bp
->temp_stats_blk
== NULL
) {
8080 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8081 rc
= pci_enable_device(pdev
);
8083 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8087 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8089 "Cannot find PCI device base address, aborting\n");
8091 goto err_out_disable
;
8094 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8096 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8097 goto err_out_disable
;
8100 pci_set_master(pdev
);
8102 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
8103 if (bp
->pm_cap
== 0) {
8105 "Cannot find power management capability, aborting\n");
8107 goto err_out_release
;
8113 spin_lock_init(&bp
->phy_lock
);
8114 spin_lock_init(&bp
->indirect_lock
);
8116 mutex_init(&bp
->cnic_lock
);
8118 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8120 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8121 TX_MAX_TSS_RINGS
+ 1));
8123 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8125 goto err_out_release
;
8128 bnx2_set_power_state(bp
, PCI_D0
);
8130 /* Configure byte swap and enable write to the reg_window registers.
8131 * Rely on CPU to do target byte swapping on big endian systems
8132 * The chip's target access swapping will not swap all accesses
8134 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8135 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8136 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8138 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
8140 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8141 if (!pci_is_pcie(pdev
)) {
8142 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8146 bp
->flags
|= BNX2_FLAG_PCIE
;
8147 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
8148 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8150 /* AER (Advanced Error Reporting) hooks */
8151 err
= pci_enable_pcie_error_reporting(pdev
);
8153 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8156 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8157 if (bp
->pcix_cap
== 0) {
8159 "Cannot find PCIX capability, aborting\n");
8163 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8166 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
8167 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
8168 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8171 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
8172 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
8173 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8176 /* 5708 cannot support DMA addresses > 40-bit. */
8177 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
8178 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8180 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8182 /* Configure DMA attributes. */
8183 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8184 dev
->features
|= NETIF_F_HIGHDMA
;
8185 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8188 "pci_set_consistent_dma_mask failed, aborting\n");
8191 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8192 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8196 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8197 bnx2_get_pci_speed(bp
);
8199 /* 5706A0 may falsely detect SERR and PERR. */
8200 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8201 reg
= REG_RD(bp
, PCI_COMMAND
);
8202 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8203 REG_WR(bp
, PCI_COMMAND
, reg
);
8205 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
8206 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8209 "5706 A1 can only be used in a PCIX bus, aborting\n");
8213 bnx2_init_nvram(bp
);
8215 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8217 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8220 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8221 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8222 u32 off
= bp
->func
<< 2;
8224 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8226 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8228 /* Get the permanent MAC address. First we need to make sure the
8229 * firmware is actually running.
8231 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8233 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8234 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8235 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8240 bnx2_read_vpd_fw_ver(bp
);
8242 j
= strlen(bp
->fw_version
);
8243 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8244 for (i
= 0; i
< 3 && j
< 24; i
++) {
8248 bp
->fw_version
[j
++] = 'b';
8249 bp
->fw_version
[j
++] = 'c';
8250 bp
->fw_version
[j
++] = ' ';
8252 num
= (u8
) (reg
>> (24 - (i
* 8)));
8253 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8254 if (num
>= k
|| !skip0
|| k
== 1) {
8255 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8260 bp
->fw_version
[j
++] = '.';
8262 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8263 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8266 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8267 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8269 for (i
= 0; i
< 30; i
++) {
8270 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8271 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8276 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8277 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8278 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8279 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8280 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8283 bp
->fw_version
[j
++] = ' ';
8284 for (i
= 0; i
< 3 && j
< 28; i
++) {
8285 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8286 reg
= be32_to_cpu(reg
);
8287 memcpy(&bp
->fw_version
[j
], ®
, 4);
8292 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8293 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8294 bp
->mac_addr
[1] = (u8
) reg
;
8296 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8297 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8298 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8299 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8300 bp
->mac_addr
[5] = (u8
) reg
;
8302 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8303 bnx2_set_rx_ring_size(bp
, 255);
8305 bp
->tx_quick_cons_trip_int
= 2;
8306 bp
->tx_quick_cons_trip
= 20;
8307 bp
->tx_ticks_int
= 18;
8310 bp
->rx_quick_cons_trip_int
= 2;
8311 bp
->rx_quick_cons_trip
= 12;
8312 bp
->rx_ticks_int
= 18;
8315 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8317 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8321 /* Disable WOL support if we are running on a SERDES chip. */
8322 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8323 bnx2_get_5709_media(bp
);
8324 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8325 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8327 bp
->phy_port
= PORT_TP
;
8328 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8329 bp
->phy_port
= PORT_FIBRE
;
8330 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8331 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8332 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8335 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8336 /* Don't do parallel detect on this board because of
8337 * some board problems. The link will not go down
8338 * if we do parallel detect.
8340 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8341 pdev
->subsystem_device
== 0x310c)
8342 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8345 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8346 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8348 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8349 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8350 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8351 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8352 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8353 CHIP_REV(bp
) == CHIP_REV_Bx
))
8354 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8356 bnx2_init_fw_cap(bp
);
8358 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8359 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8360 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8361 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8362 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8366 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8367 bp
->tx_quick_cons_trip_int
=
8368 bp
->tx_quick_cons_trip
;
8369 bp
->tx_ticks_int
= bp
->tx_ticks
;
8370 bp
->rx_quick_cons_trip_int
=
8371 bp
->rx_quick_cons_trip
;
8372 bp
->rx_ticks_int
= bp
->rx_ticks
;
8373 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8374 bp
->com_ticks_int
= bp
->com_ticks
;
8375 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8378 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8380 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8381 * with byte enables disabled on the unused 32-bit word. This is legal
8382 * but causes problems on the AMD 8132 which will eventually stop
8383 * responding after a while.
8385 * AMD believes this incompatibility is unique to the 5706, and
8386 * prefers to locally disable MSI rather than globally disabling it.
8388 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8389 struct pci_dev
*amd_8132
= NULL
;
8391 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8392 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8395 if (amd_8132
->revision
>= 0x10 &&
8396 amd_8132
->revision
<= 0x13) {
8398 pci_dev_put(amd_8132
);
8404 bnx2_set_default_link(bp
);
8405 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8407 init_timer(&bp
->timer
);
8408 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8409 bp
->timer
.data
= (unsigned long) bp
;
8410 bp
->timer
.function
= bnx2_timer
;
8413 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8414 bp
->cnic_eth_dev
.max_iscsi_conn
=
8415 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8416 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8418 pci_save_state(pdev
);
8423 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8424 pci_disable_pcie_error_reporting(pdev
);
8425 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8428 pci_iounmap(pdev
, bp
->regview
);
8432 pci_release_regions(pdev
);
8435 pci_disable_device(pdev
);
8436 pci_set_drvdata(pdev
, NULL
);
8442 static char * __devinit
8443 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8447 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8448 s
+= sprintf(s
, "PCI Express");
8450 s
+= sprintf(s
, "PCI");
8451 if (bp
->flags
& BNX2_FLAG_PCIX
)
8452 s
+= sprintf(s
, "-X");
8453 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8454 s
+= sprintf(s
, " 32-bit");
8456 s
+= sprintf(s
, " 64-bit");
8457 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8463 bnx2_del_napi(struct bnx2
*bp
)
8467 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8468 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8472 bnx2_init_napi(struct bnx2
*bp
)
8476 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8477 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8478 int (*poll
)(struct napi_struct
*, int);
8483 poll
= bnx2_poll_msix
;
8485 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8490 static const struct net_device_ops bnx2_netdev_ops
= {
8491 .ndo_open
= bnx2_open
,
8492 .ndo_start_xmit
= bnx2_start_xmit
,
8493 .ndo_stop
= bnx2_close
,
8494 .ndo_get_stats64
= bnx2_get_stats64
,
8495 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8496 .ndo_do_ioctl
= bnx2_ioctl
,
8497 .ndo_validate_addr
= eth_validate_addr
,
8498 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8499 .ndo_change_mtu
= bnx2_change_mtu
,
8500 .ndo_fix_features
= bnx2_fix_features
,
8501 .ndo_set_features
= bnx2_set_features
,
8502 .ndo_tx_timeout
= bnx2_tx_timeout
,
8503 #ifdef CONFIG_NET_POLL_CONTROLLER
8504 .ndo_poll_controller
= poll_bnx2
,
8508 static int __devinit
8509 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8511 static int version_printed
= 0;
8512 struct net_device
*dev
;
8517 if (version_printed
++ == 0)
8518 pr_info("%s", version
);
8520 /* dev zeroed in init_etherdev */
8521 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8525 rc
= bnx2_init_board(pdev
, dev
);
8529 dev
->netdev_ops
= &bnx2_netdev_ops
;
8530 dev
->watchdog_timeo
= TX_TIMEOUT
;
8531 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8533 bp
= netdev_priv(dev
);
8535 pci_set_drvdata(pdev
, dev
);
8537 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8538 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8540 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8541 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8542 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8544 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8545 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8547 dev
->vlan_features
= dev
->hw_features
;
8548 dev
->hw_features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8549 dev
->features
|= dev
->hw_features
;
8550 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8552 if ((rc
= register_netdev(dev
))) {
8553 dev_err(&pdev
->dev
, "Cannot register net device\n");
8557 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8558 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8559 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8560 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8561 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8562 pdev
->irq
, dev
->dev_addr
);
8567 pci_iounmap(pdev
, bp
->regview
);
8568 pci_release_regions(pdev
);
8569 pci_disable_device(pdev
);
8570 pci_set_drvdata(pdev
, NULL
);
8576 static void __devexit
8577 bnx2_remove_one(struct pci_dev
*pdev
)
8579 struct net_device
*dev
= pci_get_drvdata(pdev
);
8580 struct bnx2
*bp
= netdev_priv(dev
);
8582 unregister_netdev(dev
);
8584 del_timer_sync(&bp
->timer
);
8585 cancel_work_sync(&bp
->reset_task
);
8587 pci_iounmap(bp
->pdev
, bp
->regview
);
8589 kfree(bp
->temp_stats_blk
);
8591 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8592 pci_disable_pcie_error_reporting(pdev
);
8593 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8596 bnx2_release_firmware(bp
);
8600 pci_release_regions(pdev
);
8601 pci_disable_device(pdev
);
8602 pci_set_drvdata(pdev
, NULL
);
8606 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8608 struct net_device
*dev
= pci_get_drvdata(pdev
);
8609 struct bnx2
*bp
= netdev_priv(dev
);
8611 /* PCI register 4 needs to be saved whether netif_running() or not.
8612 * MSI address and data need to be saved if using MSI and
8615 pci_save_state(pdev
);
8616 if (!netif_running(dev
))
8619 cancel_work_sync(&bp
->reset_task
);
8620 bnx2_netif_stop(bp
, true);
8621 netif_device_detach(dev
);
8622 del_timer_sync(&bp
->timer
);
8623 bnx2_shutdown_chip(bp
);
8625 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8630 bnx2_resume(struct pci_dev
*pdev
)
8632 struct net_device
*dev
= pci_get_drvdata(pdev
);
8633 struct bnx2
*bp
= netdev_priv(dev
);
8635 pci_restore_state(pdev
);
8636 if (!netif_running(dev
))
8639 bnx2_set_power_state(bp
, PCI_D0
);
8640 netif_device_attach(dev
);
8641 bnx2_init_nic(bp
, 1);
8642 bnx2_netif_start(bp
, true);
8647 * bnx2_io_error_detected - called when PCI error is detected
8648 * @pdev: Pointer to PCI device
8649 * @state: The current pci connection state
8651 * This function is called after a PCI bus error affecting
8652 * this device has been detected.
8654 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8655 pci_channel_state_t state
)
8657 struct net_device
*dev
= pci_get_drvdata(pdev
);
8658 struct bnx2
*bp
= netdev_priv(dev
);
8661 netif_device_detach(dev
);
8663 if (state
== pci_channel_io_perm_failure
) {
8665 return PCI_ERS_RESULT_DISCONNECT
;
8668 if (netif_running(dev
)) {
8669 bnx2_netif_stop(bp
, true);
8670 del_timer_sync(&bp
->timer
);
8671 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8674 pci_disable_device(pdev
);
8677 /* Request a slot slot reset. */
8678 return PCI_ERS_RESULT_NEED_RESET
;
8682 * bnx2_io_slot_reset - called after the pci bus has been reset.
8683 * @pdev: Pointer to PCI device
8685 * Restart the card from scratch, as if from a cold-boot.
8687 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8689 struct net_device
*dev
= pci_get_drvdata(pdev
);
8690 struct bnx2
*bp
= netdev_priv(dev
);
8691 pci_ers_result_t result
;
8695 if (pci_enable_device(pdev
)) {
8697 "Cannot re-enable PCI device after reset\n");
8698 result
= PCI_ERS_RESULT_DISCONNECT
;
8700 pci_set_master(pdev
);
8701 pci_restore_state(pdev
);
8702 pci_save_state(pdev
);
8704 if (netif_running(dev
)) {
8705 bnx2_set_power_state(bp
, PCI_D0
);
8706 bnx2_init_nic(bp
, 1);
8708 result
= PCI_ERS_RESULT_RECOVERED
;
8712 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8715 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8718 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8719 err
); /* non-fatal, continue */
8726 * bnx2_io_resume - called when traffic can start flowing again.
8727 * @pdev: Pointer to PCI device
8729 * This callback is called when the error recovery driver tells us that
8730 * its OK to resume normal operation.
8732 static void bnx2_io_resume(struct pci_dev
*pdev
)
8734 struct net_device
*dev
= pci_get_drvdata(pdev
);
8735 struct bnx2
*bp
= netdev_priv(dev
);
8738 if (netif_running(dev
))
8739 bnx2_netif_start(bp
, true);
8741 netif_device_attach(dev
);
8745 static struct pci_error_handlers bnx2_err_handler
= {
8746 .error_detected
= bnx2_io_error_detected
,
8747 .slot_reset
= bnx2_io_slot_reset
,
8748 .resume
= bnx2_io_resume
,
8751 static struct pci_driver bnx2_pci_driver
= {
8752 .name
= DRV_MODULE_NAME
,
8753 .id_table
= bnx2_pci_tbl
,
8754 .probe
= bnx2_init_one
,
8755 .remove
= __devexit_p(bnx2_remove_one
),
8756 .suspend
= bnx2_suspend
,
8757 .resume
= bnx2_resume
,
8758 .err_handler
= &bnx2_err_handler
,
8761 static int __init
bnx2_init(void)
8763 return pci_register_driver(&bnx2_pci_driver
);
8766 static void __exit
bnx2_cleanup(void)
8768 pci_unregister_driver(&bnx2_pci_driver
);
8771 module_init(bnx2_init
);
8772 module_exit(bnx2_cleanup
);