Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
blobd49933ed551f7a4fca4d6b71f0528aaf9f6a80d6
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include "cxgb4.h"
47 #include "t4_regs.h"
48 #include "t4_msg.h"
49 #include "t4fw_api.h"
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
55 #if PAGE_SHIFT >= 16
56 # define FL_PG_ORDER 0
57 #else
58 # define FL_PG_ORDER (16 - PAGE_SHIFT)
59 #endif
61 /* RX_PULL_LEN should be <= RX_COPY_THRES */
62 #define RX_COPY_THRES 256
63 #define RX_PULL_LEN 128
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
69 #define RX_PKT_SKB_LEN 512
71 /* Ethernet header padding prepended to RX_PKTs */
72 #define RX_PKT_PAD 2
75 * Max number of Tx descriptors we clean up at a time. Should be modest as
76 * freeing skbs isn't cheap and it happens while holding locks. We just need
77 * to free packets faster than they arrive, we eventually catch up and keep
78 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
80 #define MAX_TX_RECLAIM 16
83 * Max number of Rx buffers we replenish at a time. Again keep this modest,
84 * allocating buffers isn't cheap either.
86 #define MAX_RX_REFILL 16U
89 * Period of the Rx queue check timer. This timer is infrequent as it has
90 * something to do only when the system experiences severe memory shortage.
92 #define RX_QCHECK_PERIOD (HZ / 2)
95 * Period of the Tx queue check timer.
97 #define TX_QCHECK_PERIOD (HZ / 2)
100 * Max number of Tx descriptors to be reclaimed by the Tx timer.
102 #define MAX_TIMER_TX_RECLAIM 100
105 * Timer index used when backing off due to memory shortage.
107 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
110 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
111 * attempt to refill it.
113 #define FL_STARVE_THRES 4
116 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
117 * This is the same as calc_tx_descs() for a TSO packet with
118 * nr_frags == MAX_SKB_FRAGS.
120 #define ETHTXQ_STOP_THRES \
121 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
124 * Suspension threshold for non-Ethernet Tx queues. We require enough room
125 * for a full sized WR.
127 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
130 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
131 * into a WR.
133 #define MAX_IMM_TX_PKT_LEN 128
136 * Max size of a WR sent through a control Tx queue.
138 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
140 enum {
141 /* packet alignment in FL buffers */
142 FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES,
143 /* egress status entry size */
144 STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64
147 struct tx_sw_desc { /* SW state per Tx descriptor */
148 struct sk_buff *skb;
149 struct ulptx_sgl *sgl;
152 struct rx_sw_desc { /* SW state per Rx descriptor */
153 struct page *page;
154 dma_addr_t dma_addr;
158 * The low bits of rx_sw_desc.dma_addr have special meaning.
160 enum {
161 RX_LARGE_BUF = 1 << 0, /* buffer is larger than PAGE_SIZE */
162 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
165 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
167 return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
170 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
172 return !(d->dma_addr & RX_UNMAPPED_BUF);
176 * txq_avail - return the number of available slots in a Tx queue
177 * @q: the Tx queue
179 * Returns the number of descriptors in a Tx queue available to write new
180 * packets.
182 static inline unsigned int txq_avail(const struct sge_txq *q)
184 return q->size - 1 - q->in_use;
188 * fl_cap - return the capacity of a free-buffer list
189 * @fl: the FL
191 * Returns the capacity of a free-buffer list. The capacity is less than
192 * the size because one descriptor needs to be left unpopulated, otherwise
193 * HW will think the FL is empty.
195 static inline unsigned int fl_cap(const struct sge_fl *fl)
197 return fl->size - 8; /* 1 descriptor = 8 buffers */
200 static inline bool fl_starving(const struct sge_fl *fl)
202 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
205 static int map_skb(struct device *dev, const struct sk_buff *skb,
206 dma_addr_t *addr)
208 const skb_frag_t *fp, *end;
209 const struct skb_shared_info *si;
211 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
212 if (dma_mapping_error(dev, *addr))
213 goto out_err;
215 si = skb_shinfo(skb);
216 end = &si->frags[si->nr_frags];
218 for (fp = si->frags; fp < end; fp++) {
219 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
220 DMA_TO_DEVICE);
221 if (dma_mapping_error(dev, *addr))
222 goto unwind;
224 return 0;
226 unwind:
227 while (fp-- > si->frags)
228 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
230 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
231 out_err:
232 return -ENOMEM;
235 #ifdef CONFIG_NEED_DMA_MAP_STATE
236 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
237 const dma_addr_t *addr)
239 const skb_frag_t *fp, *end;
240 const struct skb_shared_info *si;
242 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
244 si = skb_shinfo(skb);
245 end = &si->frags[si->nr_frags];
246 for (fp = si->frags; fp < end; fp++)
247 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
251 * deferred_unmap_destructor - unmap a packet when it is freed
252 * @skb: the packet
254 * This is the packet destructor used for Tx packets that need to remain
255 * mapped until they are freed rather than until their Tx descriptors are
256 * freed.
258 static void deferred_unmap_destructor(struct sk_buff *skb)
260 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
262 #endif
264 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
265 const struct ulptx_sgl *sgl, const struct sge_txq *q)
267 const struct ulptx_sge_pair *p;
268 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
270 if (likely(skb_headlen(skb)))
271 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
272 DMA_TO_DEVICE);
273 else {
274 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
275 DMA_TO_DEVICE);
276 nfrags--;
280 * the complexity below is because of the possibility of a wrap-around
281 * in the middle of an SGL
283 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
284 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
285 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
286 ntohl(p->len[0]), DMA_TO_DEVICE);
287 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
288 ntohl(p->len[1]), DMA_TO_DEVICE);
289 p++;
290 } else if ((u8 *)p == (u8 *)q->stat) {
291 p = (const struct ulptx_sge_pair *)q->desc;
292 goto unmap;
293 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
294 const __be64 *addr = (const __be64 *)q->desc;
296 dma_unmap_page(dev, be64_to_cpu(addr[0]),
297 ntohl(p->len[0]), DMA_TO_DEVICE);
298 dma_unmap_page(dev, be64_to_cpu(addr[1]),
299 ntohl(p->len[1]), DMA_TO_DEVICE);
300 p = (const struct ulptx_sge_pair *)&addr[2];
301 } else {
302 const __be64 *addr = (const __be64 *)q->desc;
304 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
305 ntohl(p->len[0]), DMA_TO_DEVICE);
306 dma_unmap_page(dev, be64_to_cpu(addr[0]),
307 ntohl(p->len[1]), DMA_TO_DEVICE);
308 p = (const struct ulptx_sge_pair *)&addr[1];
311 if (nfrags) {
312 __be64 addr;
314 if ((u8 *)p == (u8 *)q->stat)
315 p = (const struct ulptx_sge_pair *)q->desc;
316 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
317 *(const __be64 *)q->desc;
318 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
319 DMA_TO_DEVICE);
324 * free_tx_desc - reclaims Tx descriptors and their buffers
325 * @adapter: the adapter
326 * @q: the Tx queue to reclaim descriptors from
327 * @n: the number of descriptors to reclaim
328 * @unmap: whether the buffers should be unmapped for DMA
330 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
331 * Tx buffers. Called with the Tx queue lock held.
333 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
334 unsigned int n, bool unmap)
336 struct tx_sw_desc *d;
337 unsigned int cidx = q->cidx;
338 struct device *dev = adap->pdev_dev;
340 d = &q->sdesc[cidx];
341 while (n--) {
342 if (d->skb) { /* an SGL is present */
343 if (unmap)
344 unmap_sgl(dev, d->skb, d->sgl, q);
345 kfree_skb(d->skb);
346 d->skb = NULL;
348 ++d;
349 if (++cidx == q->size) {
350 cidx = 0;
351 d = q->sdesc;
354 q->cidx = cidx;
358 * Return the number of reclaimable descriptors in a Tx queue.
360 static inline int reclaimable(const struct sge_txq *q)
362 int hw_cidx = ntohs(q->stat->cidx);
363 hw_cidx -= q->cidx;
364 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
368 * reclaim_completed_tx - reclaims completed Tx descriptors
369 * @adap: the adapter
370 * @q: the Tx queue to reclaim completed descriptors from
371 * @unmap: whether the buffers should be unmapped for DMA
373 * Reclaims Tx descriptors that the SGE has indicated it has processed,
374 * and frees the associated buffers if possible. Called with the Tx
375 * queue locked.
377 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
378 bool unmap)
380 int avail = reclaimable(q);
382 if (avail) {
384 * Limit the amount of clean up work we do at a time to keep
385 * the Tx lock hold time O(1).
387 if (avail > MAX_TX_RECLAIM)
388 avail = MAX_TX_RECLAIM;
390 free_tx_desc(adap, q, avail, unmap);
391 q->in_use -= avail;
395 static inline int get_buf_size(const struct rx_sw_desc *d)
397 #if FL_PG_ORDER > 0
398 return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) :
399 PAGE_SIZE;
400 #else
401 return PAGE_SIZE;
402 #endif
406 * free_rx_bufs - free the Rx buffers on an SGE free list
407 * @adap: the adapter
408 * @q: the SGE free list to free buffers from
409 * @n: how many buffers to free
411 * Release the next @n buffers on an SGE free-buffer Rx queue. The
412 * buffers must be made inaccessible to HW before calling this function.
414 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
416 while (n--) {
417 struct rx_sw_desc *d = &q->sdesc[q->cidx];
419 if (is_buf_mapped(d))
420 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
421 get_buf_size(d), PCI_DMA_FROMDEVICE);
422 put_page(d->page);
423 d->page = NULL;
424 if (++q->cidx == q->size)
425 q->cidx = 0;
426 q->avail--;
431 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
432 * @adap: the adapter
433 * @q: the SGE free list
435 * Unmap the current buffer on an SGE free-buffer Rx queue. The
436 * buffer must be made inaccessible to HW before calling this function.
438 * This is similar to @free_rx_bufs above but does not free the buffer.
439 * Do note that the FL still loses any further access to the buffer.
441 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
443 struct rx_sw_desc *d = &q->sdesc[q->cidx];
445 if (is_buf_mapped(d))
446 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
447 get_buf_size(d), PCI_DMA_FROMDEVICE);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
454 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
456 if (q->pend_cred >= 8) {
457 wmb();
458 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO |
459 QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
460 q->pend_cred &= 7;
464 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
465 dma_addr_t mapping)
467 sd->page = pg;
468 sd->dma_addr = mapping; /* includes size low bits */
472 * refill_fl - refill an SGE Rx buffer ring
473 * @adap: the adapter
474 * @q: the ring to refill
475 * @n: the number of new buffers to allocate
476 * @gfp: the gfp flags for the allocations
478 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
479 * allocated with the supplied gfp flags. The caller must assure that
480 * @n does not exceed the queue's capacity. If afterwards the queue is
481 * found critically low mark it as starving in the bitmap of starving FLs.
483 * Returns the number of buffers allocated.
485 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
486 gfp_t gfp)
488 struct page *pg;
489 dma_addr_t mapping;
490 unsigned int cred = q->avail;
491 __be64 *d = &q->desc[q->pidx];
492 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
494 gfp |= __GFP_NOWARN | __GFP_COLD;
496 #if FL_PG_ORDER > 0
498 * Prefer large buffers
500 while (n) {
501 pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER);
502 if (unlikely(!pg)) {
503 q->large_alloc_failed++;
504 break; /* fall back to single pages */
507 mapping = dma_map_page(adap->pdev_dev, pg, 0,
508 PAGE_SIZE << FL_PG_ORDER,
509 PCI_DMA_FROMDEVICE);
510 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
511 __free_pages(pg, FL_PG_ORDER);
512 goto out; /* do not try small pages for this error */
514 mapping |= RX_LARGE_BUF;
515 *d++ = cpu_to_be64(mapping);
517 set_rx_sw_desc(sd, pg, mapping);
518 sd++;
520 q->avail++;
521 if (++q->pidx == q->size) {
522 q->pidx = 0;
523 sd = q->sdesc;
524 d = q->desc;
526 n--;
528 #endif
530 while (n--) {
531 pg = __skb_alloc_page(gfp, NULL);
532 if (unlikely(!pg)) {
533 q->alloc_failed++;
534 break;
537 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
538 PCI_DMA_FROMDEVICE);
539 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
540 put_page(pg);
541 goto out;
543 *d++ = cpu_to_be64(mapping);
545 set_rx_sw_desc(sd, pg, mapping);
546 sd++;
548 q->avail++;
549 if (++q->pidx == q->size) {
550 q->pidx = 0;
551 sd = q->sdesc;
552 d = q->desc;
556 out: cred = q->avail - cred;
557 q->pend_cred += cred;
558 ring_fl_db(adap, q);
560 if (unlikely(fl_starving(q))) {
561 smp_wmb();
562 set_bit(q->cntxt_id - adap->sge.egr_start,
563 adap->sge.starving_fl);
566 return cred;
569 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
571 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
572 GFP_ATOMIC);
576 * alloc_ring - allocate resources for an SGE descriptor ring
577 * @dev: the PCI device's core device
578 * @nelem: the number of descriptors
579 * @elem_size: the size of each descriptor
580 * @sw_size: the size of the SW state associated with each ring element
581 * @phys: the physical address of the allocated ring
582 * @metadata: address of the array holding the SW state for the ring
583 * @stat_size: extra space in HW ring for status information
584 * @node: preferred node for memory allocations
586 * Allocates resources for an SGE descriptor ring, such as Tx queues,
587 * free buffer lists, or response queues. Each SGE ring requires
588 * space for its HW descriptors plus, optionally, space for the SW state
589 * associated with each HW entry (the metadata). The function returns
590 * three values: the virtual address for the HW ring (the return value
591 * of the function), the bus address of the HW ring, and the address
592 * of the SW ring.
594 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
595 size_t sw_size, dma_addr_t *phys, void *metadata,
596 size_t stat_size, int node)
598 size_t len = nelem * elem_size + stat_size;
599 void *s = NULL;
600 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
602 if (!p)
603 return NULL;
604 if (sw_size) {
605 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
607 if (!s) {
608 dma_free_coherent(dev, len, p, *phys);
609 return NULL;
612 if (metadata)
613 *(void **)metadata = s;
614 memset(p, 0, len);
615 return p;
619 * sgl_len - calculates the size of an SGL of the given capacity
620 * @n: the number of SGL entries
622 * Calculates the number of flits needed for a scatter/gather list that
623 * can hold the given number of entries.
625 static inline unsigned int sgl_len(unsigned int n)
627 n--;
628 return (3 * n) / 2 + (n & 1) + 2;
632 * flits_to_desc - returns the num of Tx descriptors for the given flits
633 * @n: the number of flits
635 * Returns the number of Tx descriptors needed for the supplied number
636 * of flits.
638 static inline unsigned int flits_to_desc(unsigned int n)
640 BUG_ON(n > SGE_MAX_WR_LEN / 8);
641 return DIV_ROUND_UP(n, 8);
645 * is_eth_imm - can an Ethernet packet be sent as immediate data?
646 * @skb: the packet
648 * Returns whether an Ethernet packet is small enough to fit as
649 * immediate data.
651 static inline int is_eth_imm(const struct sk_buff *skb)
653 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
657 * calc_tx_flits - calculate the number of flits for a packet Tx WR
658 * @skb: the packet
660 * Returns the number of flits needed for a Tx WR for the given Ethernet
661 * packet, including the needed WR and CPL headers.
663 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
665 unsigned int flits;
667 if (is_eth_imm(skb))
668 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
670 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
671 if (skb_shinfo(skb)->gso_size)
672 flits += 2;
673 return flits;
677 * calc_tx_descs - calculate the number of Tx descriptors for a packet
678 * @skb: the packet
680 * Returns the number of Tx descriptors needed for the given Ethernet
681 * packet, including the needed WR and CPL headers.
683 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
685 return flits_to_desc(calc_tx_flits(skb));
689 * write_sgl - populate a scatter/gather list for a packet
690 * @skb: the packet
691 * @q: the Tx queue we are writing into
692 * @sgl: starting location for writing the SGL
693 * @end: points right after the end of the SGL
694 * @start: start offset into skb main-body data to include in the SGL
695 * @addr: the list of bus addresses for the SGL elements
697 * Generates a gather list for the buffers that make up a packet.
698 * The caller must provide adequate space for the SGL that will be written.
699 * The SGL includes all of the packet's page fragments and the data in its
700 * main body except for the first @start bytes. @sgl must be 16-byte
701 * aligned and within a Tx descriptor with available space. @end points
702 * right after the end of the SGL but does not account for any potential
703 * wrap around, i.e., @end > @sgl.
705 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
706 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
707 const dma_addr_t *addr)
709 unsigned int i, len;
710 struct ulptx_sge_pair *to;
711 const struct skb_shared_info *si = skb_shinfo(skb);
712 unsigned int nfrags = si->nr_frags;
713 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
715 len = skb_headlen(skb) - start;
716 if (likely(len)) {
717 sgl->len0 = htonl(len);
718 sgl->addr0 = cpu_to_be64(addr[0] + start);
719 nfrags++;
720 } else {
721 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
722 sgl->addr0 = cpu_to_be64(addr[1]);
725 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
726 if (likely(--nfrags == 0))
727 return;
729 * Most of the complexity below deals with the possibility we hit the
730 * end of the queue in the middle of writing the SGL. For this case
731 * only we create the SGL in a temporary buffer and then copy it.
733 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
735 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
736 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
737 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
738 to->addr[0] = cpu_to_be64(addr[i]);
739 to->addr[1] = cpu_to_be64(addr[++i]);
741 if (nfrags) {
742 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
743 to->len[1] = cpu_to_be32(0);
744 to->addr[0] = cpu_to_be64(addr[i + 1]);
746 if (unlikely((u8 *)end > (u8 *)q->stat)) {
747 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
749 if (likely(part0))
750 memcpy(sgl->sge, buf, part0);
751 part1 = (u8 *)end - (u8 *)q->stat;
752 memcpy(q->desc, (u8 *)buf + part0, part1);
753 end = (void *)q->desc + part1;
755 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
756 *end = 0;
760 * ring_tx_db - check and potentially ring a Tx queue's doorbell
761 * @adap: the adapter
762 * @q: the Tx queue
763 * @n: number of new descriptors to give to HW
765 * Ring the doorbel for a Tx queue.
767 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
769 wmb(); /* write descriptors before telling HW */
770 spin_lock(&q->db_lock);
771 if (!q->db_disabled) {
772 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
773 V_QID(q->cntxt_id) | V_PIDX(n));
775 q->db_pidx = q->pidx;
776 spin_unlock(&q->db_lock);
780 * inline_tx_skb - inline a packet's data into Tx descriptors
781 * @skb: the packet
782 * @q: the Tx queue where the packet will be inlined
783 * @pos: starting position in the Tx queue where to inline the packet
785 * Inline a packet's contents directly into Tx descriptors, starting at
786 * the given position within the Tx DMA ring.
787 * Most of the complexity of this operation is dealing with wrap arounds
788 * in the middle of the packet we want to inline.
790 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
791 void *pos)
793 u64 *p;
794 int left = (void *)q->stat - pos;
796 if (likely(skb->len <= left)) {
797 if (likely(!skb->data_len))
798 skb_copy_from_linear_data(skb, pos, skb->len);
799 else
800 skb_copy_bits(skb, 0, pos, skb->len);
801 pos += skb->len;
802 } else {
803 skb_copy_bits(skb, 0, pos, left);
804 skb_copy_bits(skb, left, q->desc, skb->len - left);
805 pos = (void *)q->desc + (skb->len - left);
808 /* 0-pad to multiple of 16 */
809 p = PTR_ALIGN(pos, 8);
810 if ((uintptr_t)p & 8)
811 *p = 0;
815 * Figure out what HW csum a packet wants and return the appropriate control
816 * bits.
818 static u64 hwcsum(const struct sk_buff *skb)
820 int csum_type;
821 const struct iphdr *iph = ip_hdr(skb);
823 if (iph->version == 4) {
824 if (iph->protocol == IPPROTO_TCP)
825 csum_type = TX_CSUM_TCPIP;
826 else if (iph->protocol == IPPROTO_UDP)
827 csum_type = TX_CSUM_UDPIP;
828 else {
829 nocsum: /*
830 * unknown protocol, disable HW csum
831 * and hope a bad packet is detected
833 return TXPKT_L4CSUM_DIS;
835 } else {
837 * this doesn't work with extension headers
839 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
841 if (ip6h->nexthdr == IPPROTO_TCP)
842 csum_type = TX_CSUM_TCPIP6;
843 else if (ip6h->nexthdr == IPPROTO_UDP)
844 csum_type = TX_CSUM_UDPIP6;
845 else
846 goto nocsum;
849 if (likely(csum_type >= TX_CSUM_TCPIP))
850 return TXPKT_CSUM_TYPE(csum_type) |
851 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
852 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
853 else {
854 int start = skb_transport_offset(skb);
856 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
857 TXPKT_CSUM_LOC(start + skb->csum_offset);
861 static void eth_txq_stop(struct sge_eth_txq *q)
863 netif_tx_stop_queue(q->txq);
864 q->q.stops++;
867 static inline void txq_advance(struct sge_txq *q, unsigned int n)
869 q->in_use += n;
870 q->pidx += n;
871 if (q->pidx >= q->size)
872 q->pidx -= q->size;
876 * t4_eth_xmit - add a packet to an Ethernet Tx queue
877 * @skb: the packet
878 * @dev: the egress net device
880 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
882 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
884 u32 wr_mid;
885 u64 cntrl, *end;
886 int qidx, credits;
887 unsigned int flits, ndesc;
888 struct adapter *adap;
889 struct sge_eth_txq *q;
890 const struct port_info *pi;
891 struct fw_eth_tx_pkt_wr *wr;
892 struct cpl_tx_pkt_core *cpl;
893 const struct skb_shared_info *ssi;
894 dma_addr_t addr[MAX_SKB_FRAGS + 1];
897 * The chip min packet length is 10 octets but play safe and reject
898 * anything shorter than an Ethernet header.
900 if (unlikely(skb->len < ETH_HLEN)) {
901 out_free: dev_kfree_skb(skb);
902 return NETDEV_TX_OK;
905 pi = netdev_priv(dev);
906 adap = pi->adapter;
907 qidx = skb_get_queue_mapping(skb);
908 q = &adap->sge.ethtxq[qidx + pi->first_qset];
910 reclaim_completed_tx(adap, &q->q, true);
912 flits = calc_tx_flits(skb);
913 ndesc = flits_to_desc(flits);
914 credits = txq_avail(&q->q) - ndesc;
916 if (unlikely(credits < 0)) {
917 eth_txq_stop(q);
918 dev_err(adap->pdev_dev,
919 "%s: Tx ring %u full while queue awake!\n",
920 dev->name, qidx);
921 return NETDEV_TX_BUSY;
924 if (!is_eth_imm(skb) &&
925 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
926 q->mapping_err++;
927 goto out_free;
930 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
931 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
932 eth_txq_stop(q);
933 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
936 wr = (void *)&q->q.desc[q->q.pidx];
937 wr->equiq_to_len16 = htonl(wr_mid);
938 wr->r3 = cpu_to_be64(0);
939 end = (u64 *)wr + flits;
941 ssi = skb_shinfo(skb);
942 if (ssi->gso_size) {
943 struct cpl_tx_pkt_lso *lso = (void *)wr;
944 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
945 int l3hdr_len = skb_network_header_len(skb);
946 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
948 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
949 FW_WR_IMMDLEN(sizeof(*lso)));
950 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
951 LSO_FIRST_SLICE | LSO_LAST_SLICE |
952 LSO_IPV6(v6) |
953 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
954 LSO_IPHDR_LEN(l3hdr_len / 4) |
955 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
956 lso->c.ipid_ofst = htons(0);
957 lso->c.mss = htons(ssi->gso_size);
958 lso->c.seqno_offset = htonl(0);
959 lso->c.len = htonl(skb->len);
960 cpl = (void *)(lso + 1);
961 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
962 TXPKT_IPHDR_LEN(l3hdr_len) |
963 TXPKT_ETHHDR_LEN(eth_xtra_len);
964 q->tso++;
965 q->tx_cso += ssi->gso_segs;
966 } else {
967 int len;
969 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
970 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
971 FW_WR_IMMDLEN(len));
972 cpl = (void *)(wr + 1);
973 if (skb->ip_summed == CHECKSUM_PARTIAL) {
974 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
975 q->tx_cso++;
976 } else
977 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
980 if (vlan_tx_tag_present(skb)) {
981 q->vlan_ins++;
982 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
985 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
986 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
987 cpl->pack = htons(0);
988 cpl->len = htons(skb->len);
989 cpl->ctrl1 = cpu_to_be64(cntrl);
991 if (is_eth_imm(skb)) {
992 inline_tx_skb(skb, &q->q, cpl + 1);
993 dev_kfree_skb(skb);
994 } else {
995 int last_desc;
997 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
998 addr);
999 skb_orphan(skb);
1001 last_desc = q->q.pidx + ndesc - 1;
1002 if (last_desc >= q->q.size)
1003 last_desc -= q->q.size;
1004 q->q.sdesc[last_desc].skb = skb;
1005 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1008 txq_advance(&q->q, ndesc);
1010 ring_tx_db(adap, &q->q, ndesc);
1011 return NETDEV_TX_OK;
1015 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1016 * @q: the SGE control Tx queue
1018 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1019 * that send only immediate data (presently just the control queues) and
1020 * thus do not have any sk_buffs to release.
1022 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1024 int hw_cidx = ntohs(q->stat->cidx);
1025 int reclaim = hw_cidx - q->cidx;
1027 if (reclaim < 0)
1028 reclaim += q->size;
1030 q->in_use -= reclaim;
1031 q->cidx = hw_cidx;
1035 * is_imm - check whether a packet can be sent as immediate data
1036 * @skb: the packet
1038 * Returns true if a packet can be sent as a WR with immediate data.
1040 static inline int is_imm(const struct sk_buff *skb)
1042 return skb->len <= MAX_CTRL_WR_LEN;
1046 * ctrlq_check_stop - check if a control queue is full and should stop
1047 * @q: the queue
1048 * @wr: most recent WR written to the queue
1050 * Check if a control queue has become full and should be stopped.
1051 * We clean up control queue descriptors very lazily, only when we are out.
1052 * If the queue is still full after reclaiming any completed descriptors
1053 * we suspend it and have the last WR wake it up.
1055 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1057 reclaim_completed_tx_imm(&q->q);
1058 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1059 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1060 q->q.stops++;
1061 q->full = 1;
1066 * ctrl_xmit - send a packet through an SGE control Tx queue
1067 * @q: the control queue
1068 * @skb: the packet
1070 * Send a packet through an SGE control Tx queue. Packets sent through
1071 * a control queue must fit entirely as immediate data.
1073 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1075 unsigned int ndesc;
1076 struct fw_wr_hdr *wr;
1078 if (unlikely(!is_imm(skb))) {
1079 WARN_ON(1);
1080 dev_kfree_skb(skb);
1081 return NET_XMIT_DROP;
1084 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1085 spin_lock(&q->sendq.lock);
1087 if (unlikely(q->full)) {
1088 skb->priority = ndesc; /* save for restart */
1089 __skb_queue_tail(&q->sendq, skb);
1090 spin_unlock(&q->sendq.lock);
1091 return NET_XMIT_CN;
1094 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1095 inline_tx_skb(skb, &q->q, wr);
1097 txq_advance(&q->q, ndesc);
1098 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1099 ctrlq_check_stop(q, wr);
1101 ring_tx_db(q->adap, &q->q, ndesc);
1102 spin_unlock(&q->sendq.lock);
1104 kfree_skb(skb);
1105 return NET_XMIT_SUCCESS;
1109 * restart_ctrlq - restart a suspended control queue
1110 * @data: the control queue to restart
1112 * Resumes transmission on a suspended Tx control queue.
1114 static void restart_ctrlq(unsigned long data)
1116 struct sk_buff *skb;
1117 unsigned int written = 0;
1118 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1120 spin_lock(&q->sendq.lock);
1121 reclaim_completed_tx_imm(&q->q);
1122 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1124 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1125 struct fw_wr_hdr *wr;
1126 unsigned int ndesc = skb->priority; /* previously saved */
1129 * Write descriptors and free skbs outside the lock to limit
1130 * wait times. q->full is still set so new skbs will be queued.
1132 spin_unlock(&q->sendq.lock);
1134 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1135 inline_tx_skb(skb, &q->q, wr);
1136 kfree_skb(skb);
1138 written += ndesc;
1139 txq_advance(&q->q, ndesc);
1140 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1141 unsigned long old = q->q.stops;
1143 ctrlq_check_stop(q, wr);
1144 if (q->q.stops != old) { /* suspended anew */
1145 spin_lock(&q->sendq.lock);
1146 goto ringdb;
1149 if (written > 16) {
1150 ring_tx_db(q->adap, &q->q, written);
1151 written = 0;
1153 spin_lock(&q->sendq.lock);
1155 q->full = 0;
1156 ringdb: if (written)
1157 ring_tx_db(q->adap, &q->q, written);
1158 spin_unlock(&q->sendq.lock);
1162 * t4_mgmt_tx - send a management message
1163 * @adap: the adapter
1164 * @skb: the packet containing the management message
1166 * Send a management message through control queue 0.
1168 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1170 int ret;
1172 local_bh_disable();
1173 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1174 local_bh_enable();
1175 return ret;
1179 * is_ofld_imm - check whether a packet can be sent as immediate data
1180 * @skb: the packet
1182 * Returns true if a packet can be sent as an offload WR with immediate
1183 * data. We currently use the same limit as for Ethernet packets.
1185 static inline int is_ofld_imm(const struct sk_buff *skb)
1187 return skb->len <= MAX_IMM_TX_PKT_LEN;
1191 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1192 * @skb: the packet
1194 * Returns the number of flits needed for the given offload packet.
1195 * These packets are already fully constructed and no additional headers
1196 * will be added.
1198 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1200 unsigned int flits, cnt;
1202 if (is_ofld_imm(skb))
1203 return DIV_ROUND_UP(skb->len, 8);
1205 flits = skb_transport_offset(skb) / 8U; /* headers */
1206 cnt = skb_shinfo(skb)->nr_frags;
1207 if (skb->tail != skb->transport_header)
1208 cnt++;
1209 return flits + sgl_len(cnt);
1213 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1214 * @adap: the adapter
1215 * @q: the queue to stop
1217 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1218 * inability to map packets. A periodic timer attempts to restart
1219 * queues so marked.
1221 static void txq_stop_maperr(struct sge_ofld_txq *q)
1223 q->mapping_err++;
1224 q->q.stops++;
1225 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1226 q->adap->sge.txq_maperr);
1230 * ofldtxq_stop - stop an offload Tx queue that has become full
1231 * @q: the queue to stop
1232 * @skb: the packet causing the queue to become full
1234 * Stops an offload Tx queue that has become full and modifies the packet
1235 * being written to request a wakeup.
1237 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1239 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1241 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1242 q->q.stops++;
1243 q->full = 1;
1247 * service_ofldq - restart a suspended offload queue
1248 * @q: the offload queue
1250 * Services an offload Tx queue by moving packets from its packet queue
1251 * to the HW Tx ring. The function starts and ends with the queue locked.
1253 static void service_ofldq(struct sge_ofld_txq *q)
1255 u64 *pos;
1256 int credits;
1257 struct sk_buff *skb;
1258 unsigned int written = 0;
1259 unsigned int flits, ndesc;
1261 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1263 * We drop the lock but leave skb on sendq, thus retaining
1264 * exclusive access to the state of the queue.
1266 spin_unlock(&q->sendq.lock);
1268 reclaim_completed_tx(q->adap, &q->q, false);
1270 flits = skb->priority; /* previously saved */
1271 ndesc = flits_to_desc(flits);
1272 credits = txq_avail(&q->q) - ndesc;
1273 BUG_ON(credits < 0);
1274 if (unlikely(credits < TXQ_STOP_THRES))
1275 ofldtxq_stop(q, skb);
1277 pos = (u64 *)&q->q.desc[q->q.pidx];
1278 if (is_ofld_imm(skb))
1279 inline_tx_skb(skb, &q->q, pos);
1280 else if (map_skb(q->adap->pdev_dev, skb,
1281 (dma_addr_t *)skb->head)) {
1282 txq_stop_maperr(q);
1283 spin_lock(&q->sendq.lock);
1284 break;
1285 } else {
1286 int last_desc, hdr_len = skb_transport_offset(skb);
1288 memcpy(pos, skb->data, hdr_len);
1289 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1290 pos + flits, hdr_len,
1291 (dma_addr_t *)skb->head);
1292 #ifdef CONFIG_NEED_DMA_MAP_STATE
1293 skb->dev = q->adap->port[0];
1294 skb->destructor = deferred_unmap_destructor;
1295 #endif
1296 last_desc = q->q.pidx + ndesc - 1;
1297 if (last_desc >= q->q.size)
1298 last_desc -= q->q.size;
1299 q->q.sdesc[last_desc].skb = skb;
1302 txq_advance(&q->q, ndesc);
1303 written += ndesc;
1304 if (unlikely(written > 32)) {
1305 ring_tx_db(q->adap, &q->q, written);
1306 written = 0;
1309 spin_lock(&q->sendq.lock);
1310 __skb_unlink(skb, &q->sendq);
1311 if (is_ofld_imm(skb))
1312 kfree_skb(skb);
1314 if (likely(written))
1315 ring_tx_db(q->adap, &q->q, written);
1319 * ofld_xmit - send a packet through an offload queue
1320 * @q: the Tx offload queue
1321 * @skb: the packet
1323 * Send an offload packet through an SGE offload queue.
1325 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1327 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1328 spin_lock(&q->sendq.lock);
1329 __skb_queue_tail(&q->sendq, skb);
1330 if (q->sendq.qlen == 1)
1331 service_ofldq(q);
1332 spin_unlock(&q->sendq.lock);
1333 return NET_XMIT_SUCCESS;
1337 * restart_ofldq - restart a suspended offload queue
1338 * @data: the offload queue to restart
1340 * Resumes transmission on a suspended Tx offload queue.
1342 static void restart_ofldq(unsigned long data)
1344 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1346 spin_lock(&q->sendq.lock);
1347 q->full = 0; /* the queue actually is completely empty now */
1348 service_ofldq(q);
1349 spin_unlock(&q->sendq.lock);
1353 * skb_txq - return the Tx queue an offload packet should use
1354 * @skb: the packet
1356 * Returns the Tx queue an offload packet should use as indicated by bits
1357 * 1-15 in the packet's queue_mapping.
1359 static inline unsigned int skb_txq(const struct sk_buff *skb)
1361 return skb->queue_mapping >> 1;
1365 * is_ctrl_pkt - return whether an offload packet is a control packet
1366 * @skb: the packet
1368 * Returns whether an offload packet should use an OFLD or a CTRL
1369 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1371 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1373 return skb->queue_mapping & 1;
1376 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1378 unsigned int idx = skb_txq(skb);
1380 if (unlikely(is_ctrl_pkt(skb)))
1381 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1382 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1386 * t4_ofld_send - send an offload packet
1387 * @adap: the adapter
1388 * @skb: the packet
1390 * Sends an offload packet. We use the packet queue_mapping to select the
1391 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1392 * should be sent as regular or control, bits 1-15 select the queue.
1394 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1396 int ret;
1398 local_bh_disable();
1399 ret = ofld_send(adap, skb);
1400 local_bh_enable();
1401 return ret;
1405 * cxgb4_ofld_send - send an offload packet
1406 * @dev: the net device
1407 * @skb: the packet
1409 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1410 * intended for ULDs.
1412 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1414 return t4_ofld_send(netdev2adap(dev), skb);
1416 EXPORT_SYMBOL(cxgb4_ofld_send);
1418 static inline void copy_frags(struct sk_buff *skb,
1419 const struct pkt_gl *gl, unsigned int offset)
1421 int i;
1423 /* usually there's just one frag */
1424 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1425 gl->frags[0].offset + offset,
1426 gl->frags[0].size - offset);
1427 skb_shinfo(skb)->nr_frags = gl->nfrags;
1428 for (i = 1; i < gl->nfrags; i++)
1429 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1430 gl->frags[i].offset,
1431 gl->frags[i].size);
1433 /* get a reference to the last page, we don't own it */
1434 get_page(gl->frags[gl->nfrags - 1].page);
1438 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1439 * @gl: the gather list
1440 * @skb_len: size of sk_buff main body if it carries fragments
1441 * @pull_len: amount of data to move to the sk_buff's main body
1443 * Builds an sk_buff from the given packet gather list. Returns the
1444 * sk_buff or %NULL if sk_buff allocation failed.
1446 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1447 unsigned int skb_len, unsigned int pull_len)
1449 struct sk_buff *skb;
1452 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1453 * size, which is expected since buffers are at least PAGE_SIZEd.
1454 * In this case packets up to RX_COPY_THRES have only one fragment.
1456 if (gl->tot_len <= RX_COPY_THRES) {
1457 skb = dev_alloc_skb(gl->tot_len);
1458 if (unlikely(!skb))
1459 goto out;
1460 __skb_put(skb, gl->tot_len);
1461 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1462 } else {
1463 skb = dev_alloc_skb(skb_len);
1464 if (unlikely(!skb))
1465 goto out;
1466 __skb_put(skb, pull_len);
1467 skb_copy_to_linear_data(skb, gl->va, pull_len);
1469 copy_frags(skb, gl, pull_len);
1470 skb->len = gl->tot_len;
1471 skb->data_len = skb->len - pull_len;
1472 skb->truesize += skb->data_len;
1474 out: return skb;
1476 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1479 * t4_pktgl_free - free a packet gather list
1480 * @gl: the gather list
1482 * Releases the pages of a packet gather list. We do not own the last
1483 * page on the list and do not free it.
1485 static void t4_pktgl_free(const struct pkt_gl *gl)
1487 int n;
1488 const struct page_frag *p;
1490 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1491 put_page(p->page);
1495 * Process an MPS trace packet. Give it an unused protocol number so it won't
1496 * be delivered to anyone and send it to the stack for capture.
1498 static noinline int handle_trace_pkt(struct adapter *adap,
1499 const struct pkt_gl *gl)
1501 struct sk_buff *skb;
1502 struct cpl_trace_pkt *p;
1504 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1505 if (unlikely(!skb)) {
1506 t4_pktgl_free(gl);
1507 return 0;
1510 p = (struct cpl_trace_pkt *)skb->data;
1511 __skb_pull(skb, sizeof(*p));
1512 skb_reset_mac_header(skb);
1513 skb->protocol = htons(0xffff);
1514 skb->dev = adap->port[0];
1515 netif_receive_skb(skb);
1516 return 0;
1519 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1520 const struct cpl_rx_pkt *pkt)
1522 int ret;
1523 struct sk_buff *skb;
1525 skb = napi_get_frags(&rxq->rspq.napi);
1526 if (unlikely(!skb)) {
1527 t4_pktgl_free(gl);
1528 rxq->stats.rx_drops++;
1529 return;
1532 copy_frags(skb, gl, RX_PKT_PAD);
1533 skb->len = gl->tot_len - RX_PKT_PAD;
1534 skb->data_len = skb->len;
1535 skb->truesize += skb->data_len;
1536 skb->ip_summed = CHECKSUM_UNNECESSARY;
1537 skb_record_rx_queue(skb, rxq->rspq.idx);
1538 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1539 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1541 if (unlikely(pkt->vlan_ex)) {
1542 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1543 rxq->stats.vlan_ex++;
1545 ret = napi_gro_frags(&rxq->rspq.napi);
1546 if (ret == GRO_HELD)
1547 rxq->stats.lro_pkts++;
1548 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1549 rxq->stats.lro_merged++;
1550 rxq->stats.pkts++;
1551 rxq->stats.rx_cso++;
1555 * t4_ethrx_handler - process an ingress ethernet packet
1556 * @q: the response queue that received the packet
1557 * @rsp: the response queue descriptor holding the RX_PKT message
1558 * @si: the gather list of packet fragments
1560 * Process an ingress ethernet packet and deliver it to the stack.
1562 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1563 const struct pkt_gl *si)
1565 bool csum_ok;
1566 struct sk_buff *skb;
1567 const struct cpl_rx_pkt *pkt;
1568 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1570 if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
1571 return handle_trace_pkt(q->adap, si);
1573 pkt = (const struct cpl_rx_pkt *)rsp;
1574 csum_ok = pkt->csum_calc && !pkt->err_vec;
1575 if ((pkt->l2info & htonl(RXF_TCP)) &&
1576 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1577 do_gro(rxq, si, pkt);
1578 return 0;
1581 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1582 if (unlikely(!skb)) {
1583 t4_pktgl_free(si);
1584 rxq->stats.rx_drops++;
1585 return 0;
1588 __skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */
1589 skb->protocol = eth_type_trans(skb, q->netdev);
1590 skb_record_rx_queue(skb, q->idx);
1591 if (skb->dev->features & NETIF_F_RXHASH)
1592 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1594 rxq->stats.pkts++;
1596 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
1597 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1598 if (!pkt->ip_frag) {
1599 skb->ip_summed = CHECKSUM_UNNECESSARY;
1600 rxq->stats.rx_cso++;
1601 } else if (pkt->l2info & htonl(RXF_IP)) {
1602 __sum16 c = (__force __sum16)pkt->csum;
1603 skb->csum = csum_unfold(c);
1604 skb->ip_summed = CHECKSUM_COMPLETE;
1605 rxq->stats.rx_cso++;
1607 } else
1608 skb_checksum_none_assert(skb);
1610 if (unlikely(pkt->vlan_ex)) {
1611 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1612 rxq->stats.vlan_ex++;
1614 netif_receive_skb(skb);
1615 return 0;
1619 * restore_rx_bufs - put back a packet's Rx buffers
1620 * @si: the packet gather list
1621 * @q: the SGE free list
1622 * @frags: number of FL buffers to restore
1624 * Puts back on an FL the Rx buffers associated with @si. The buffers
1625 * have already been unmapped and are left unmapped, we mark them so to
1626 * prevent further unmapping attempts.
1628 * This function undoes a series of @unmap_rx_buf calls when we find out
1629 * that the current packet can't be processed right away afterall and we
1630 * need to come back to it later. This is a very rare event and there's
1631 * no effort to make this particularly efficient.
1633 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1634 int frags)
1636 struct rx_sw_desc *d;
1638 while (frags--) {
1639 if (q->cidx == 0)
1640 q->cidx = q->size - 1;
1641 else
1642 q->cidx--;
1643 d = &q->sdesc[q->cidx];
1644 d->page = si->frags[frags].page;
1645 d->dma_addr |= RX_UNMAPPED_BUF;
1646 q->avail++;
1651 * is_new_response - check if a response is newly written
1652 * @r: the response descriptor
1653 * @q: the response queue
1655 * Returns true if a response descriptor contains a yet unprocessed
1656 * response.
1658 static inline bool is_new_response(const struct rsp_ctrl *r,
1659 const struct sge_rspq *q)
1661 return RSPD_GEN(r->type_gen) == q->gen;
1665 * rspq_next - advance to the next entry in a response queue
1666 * @q: the queue
1668 * Updates the state of a response queue to advance it to the next entry.
1670 static inline void rspq_next(struct sge_rspq *q)
1672 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1673 if (unlikely(++q->cidx == q->size)) {
1674 q->cidx = 0;
1675 q->gen ^= 1;
1676 q->cur_desc = q->desc;
1681 * process_responses - process responses from an SGE response queue
1682 * @q: the ingress queue to process
1683 * @budget: how many responses can be processed in this round
1685 * Process responses from an SGE response queue up to the supplied budget.
1686 * Responses include received packets as well as control messages from FW
1687 * or HW.
1689 * Additionally choose the interrupt holdoff time for the next interrupt
1690 * on this queue. If the system is under memory shortage use a fairly
1691 * long delay to help recovery.
1693 static int process_responses(struct sge_rspq *q, int budget)
1695 int ret, rsp_type;
1696 int budget_left = budget;
1697 const struct rsp_ctrl *rc;
1698 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1700 while (likely(budget_left)) {
1701 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1702 if (!is_new_response(rc, q))
1703 break;
1705 rmb();
1706 rsp_type = RSPD_TYPE(rc->type_gen);
1707 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1708 struct page_frag *fp;
1709 struct pkt_gl si;
1710 const struct rx_sw_desc *rsd;
1711 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1713 if (len & RSPD_NEWBUF) {
1714 if (likely(q->offset > 0)) {
1715 free_rx_bufs(q->adap, &rxq->fl, 1);
1716 q->offset = 0;
1718 len = RSPD_LEN(len);
1720 si.tot_len = len;
1722 /* gather packet fragments */
1723 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1724 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1725 bufsz = get_buf_size(rsd);
1726 fp->page = rsd->page;
1727 fp->offset = q->offset;
1728 fp->size = min(bufsz, len);
1729 len -= fp->size;
1730 if (!len)
1731 break;
1732 unmap_rx_buf(q->adap, &rxq->fl);
1736 * Last buffer remains mapped so explicitly make it
1737 * coherent for CPU access.
1739 dma_sync_single_for_cpu(q->adap->pdev_dev,
1740 get_buf_addr(rsd),
1741 fp->size, DMA_FROM_DEVICE);
1743 si.va = page_address(si.frags[0].page) +
1744 si.frags[0].offset;
1745 prefetch(si.va);
1747 si.nfrags = frags + 1;
1748 ret = q->handler(q, q->cur_desc, &si);
1749 if (likely(ret == 0))
1750 q->offset += ALIGN(fp->size, FL_ALIGN);
1751 else
1752 restore_rx_bufs(&si, &rxq->fl, frags);
1753 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1754 ret = q->handler(q, q->cur_desc, NULL);
1755 } else {
1756 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1759 if (unlikely(ret)) {
1760 /* couldn't process descriptor, back off for recovery */
1761 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1762 break;
1765 rspq_next(q);
1766 budget_left--;
1769 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1770 __refill_fl(q->adap, &rxq->fl);
1771 return budget - budget_left;
1775 * napi_rx_handler - the NAPI handler for Rx processing
1776 * @napi: the napi instance
1777 * @budget: how many packets we can process in this round
1779 * Handler for new data events when using NAPI. This does not need any
1780 * locking or protection from interrupts as data interrupts are off at
1781 * this point and other adapter interrupts do not interfere (the latter
1782 * in not a concern at all with MSI-X as non-data interrupts then have
1783 * a separate handler).
1785 static int napi_rx_handler(struct napi_struct *napi, int budget)
1787 unsigned int params;
1788 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1789 int work_done = process_responses(q, budget);
1791 if (likely(work_done < budget)) {
1792 napi_complete(napi);
1793 params = q->next_intr_params;
1794 q->next_intr_params = q->intr_params;
1795 } else
1796 params = QINTR_TIMER_IDX(7);
1798 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1799 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1800 return work_done;
1804 * The MSI-X interrupt handler for an SGE response queue.
1806 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1808 struct sge_rspq *q = cookie;
1810 napi_schedule(&q->napi);
1811 return IRQ_HANDLED;
1815 * Process the indirect interrupt entries in the interrupt queue and kick off
1816 * NAPI for each queue that has generated an entry.
1818 static unsigned int process_intrq(struct adapter *adap)
1820 unsigned int credits;
1821 const struct rsp_ctrl *rc;
1822 struct sge_rspq *q = &adap->sge.intrq;
1824 spin_lock(&adap->sge.intrq_lock);
1825 for (credits = 0; ; credits++) {
1826 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1827 if (!is_new_response(rc, q))
1828 break;
1830 rmb();
1831 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1832 unsigned int qid = ntohl(rc->pldbuflen_qid);
1834 qid -= adap->sge.ingr_start;
1835 napi_schedule(&adap->sge.ingr_map[qid]->napi);
1838 rspq_next(q);
1841 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1842 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1843 spin_unlock(&adap->sge.intrq_lock);
1844 return credits;
1848 * The MSI interrupt handler, which handles data events from SGE response queues
1849 * as well as error and other async events as they all use the same MSI vector.
1851 static irqreturn_t t4_intr_msi(int irq, void *cookie)
1853 struct adapter *adap = cookie;
1855 t4_slow_intr_handler(adap);
1856 process_intrq(adap);
1857 return IRQ_HANDLED;
1861 * Interrupt handler for legacy INTx interrupts.
1862 * Handles data events from SGE response queues as well as error and other
1863 * async events as they all use the same interrupt line.
1865 static irqreturn_t t4_intr_intx(int irq, void *cookie)
1867 struct adapter *adap = cookie;
1869 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1870 if (t4_slow_intr_handler(adap) | process_intrq(adap))
1871 return IRQ_HANDLED;
1872 return IRQ_NONE; /* probably shared interrupt */
1876 * t4_intr_handler - select the top-level interrupt handler
1877 * @adap: the adapter
1879 * Selects the top-level interrupt handler based on the type of interrupts
1880 * (MSI-X, MSI, or INTx).
1882 irq_handler_t t4_intr_handler(struct adapter *adap)
1884 if (adap->flags & USING_MSIX)
1885 return t4_sge_intr_msix;
1886 if (adap->flags & USING_MSI)
1887 return t4_intr_msi;
1888 return t4_intr_intx;
1891 static void sge_rx_timer_cb(unsigned long data)
1893 unsigned long m;
1894 unsigned int i, cnt[2];
1895 struct adapter *adap = (struct adapter *)data;
1896 struct sge *s = &adap->sge;
1898 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1899 for (m = s->starving_fl[i]; m; m &= m - 1) {
1900 struct sge_eth_rxq *rxq;
1901 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1902 struct sge_fl *fl = s->egr_map[id];
1904 clear_bit(id, s->starving_fl);
1905 smp_mb__after_clear_bit();
1907 if (fl_starving(fl)) {
1908 rxq = container_of(fl, struct sge_eth_rxq, fl);
1909 if (napi_reschedule(&rxq->rspq.napi))
1910 fl->starving++;
1911 else
1912 set_bit(id, s->starving_fl);
1916 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1917 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1918 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1920 for (i = 0; i < 2; i++)
1921 if (cnt[i] >= s->starve_thres) {
1922 if (s->idma_state[i] || cnt[i] == 0xffffffff)
1923 continue;
1924 s->idma_state[i] = 1;
1925 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1926 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1927 dev_warn(adap->pdev_dev,
1928 "SGE idma%u starvation detected for "
1929 "queue %lu\n", i, m & 0xffff);
1930 } else if (s->idma_state[i])
1931 s->idma_state[i] = 0;
1933 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1936 static void sge_tx_timer_cb(unsigned long data)
1938 unsigned long m;
1939 unsigned int i, budget;
1940 struct adapter *adap = (struct adapter *)data;
1941 struct sge *s = &adap->sge;
1943 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
1944 for (m = s->txq_maperr[i]; m; m &= m - 1) {
1945 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
1946 struct sge_ofld_txq *txq = s->egr_map[id];
1948 clear_bit(id, s->txq_maperr);
1949 tasklet_schedule(&txq->qresume_tsk);
1952 budget = MAX_TIMER_TX_RECLAIM;
1953 i = s->ethtxq_rover;
1954 do {
1955 struct sge_eth_txq *q = &s->ethtxq[i];
1957 if (q->q.in_use &&
1958 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
1959 __netif_tx_trylock(q->txq)) {
1960 int avail = reclaimable(&q->q);
1962 if (avail) {
1963 if (avail > budget)
1964 avail = budget;
1966 free_tx_desc(adap, &q->q, avail, true);
1967 q->q.in_use -= avail;
1968 budget -= avail;
1970 __netif_tx_unlock(q->txq);
1973 if (++i >= s->ethqsets)
1974 i = 0;
1975 } while (budget && i != s->ethtxq_rover);
1976 s->ethtxq_rover = i;
1977 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
1980 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1981 struct net_device *dev, int intr_idx,
1982 struct sge_fl *fl, rspq_handler_t hnd)
1984 int ret, flsz = 0;
1985 struct fw_iq_cmd c;
1986 struct port_info *pi = netdev_priv(dev);
1988 /* Size needs to be multiple of 16, including status entry. */
1989 iq->size = roundup(iq->size, 16);
1991 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
1992 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
1993 if (!iq->desc)
1994 return -ENOMEM;
1996 memset(&c, 0, sizeof(c));
1997 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
1998 FW_CMD_WRITE | FW_CMD_EXEC |
1999 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
2000 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2001 FW_LEN16(c));
2002 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2003 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2004 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2005 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2006 -intr_idx - 1));
2007 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2008 FW_IQ_CMD_IQGTSMODE |
2009 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2010 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2011 c.iqsize = htons(iq->size);
2012 c.iqaddr = cpu_to_be64(iq->phys_addr);
2014 if (fl) {
2015 fl->size = roundup(fl->size, 8);
2016 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2017 sizeof(struct rx_sw_desc), &fl->addr,
2018 &fl->sdesc, STAT_LEN, NUMA_NO_NODE);
2019 if (!fl->desc)
2020 goto fl_nomem;
2022 flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc);
2023 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN |
2024 FW_IQ_CMD_FL0FETCHRO(1) |
2025 FW_IQ_CMD_FL0DATARO(1) |
2026 FW_IQ_CMD_FL0PADEN);
2027 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2028 FW_IQ_CMD_FL0FBMAX(3));
2029 c.fl0size = htons(flsz);
2030 c.fl0addr = cpu_to_be64(fl->addr);
2033 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2034 if (ret)
2035 goto err;
2037 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2038 iq->cur_desc = iq->desc;
2039 iq->cidx = 0;
2040 iq->gen = 1;
2041 iq->next_intr_params = iq->intr_params;
2042 iq->cntxt_id = ntohs(c.iqid);
2043 iq->abs_id = ntohs(c.physiqid);
2044 iq->size--; /* subtract status entry */
2045 iq->adap = adap;
2046 iq->netdev = dev;
2047 iq->handler = hnd;
2049 /* set offset to -1 to distinguish ingress queues without FL */
2050 iq->offset = fl ? 0 : -1;
2052 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2054 if (fl) {
2055 fl->cntxt_id = ntohs(c.fl0id);
2056 fl->avail = fl->pend_cred = 0;
2057 fl->pidx = fl->cidx = 0;
2058 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2059 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2060 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2062 return 0;
2064 fl_nomem:
2065 ret = -ENOMEM;
2066 err:
2067 if (iq->desc) {
2068 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2069 iq->desc, iq->phys_addr);
2070 iq->desc = NULL;
2072 if (fl && fl->desc) {
2073 kfree(fl->sdesc);
2074 fl->sdesc = NULL;
2075 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2076 fl->desc, fl->addr);
2077 fl->desc = NULL;
2079 return ret;
2082 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2084 q->in_use = 0;
2085 q->cidx = q->pidx = 0;
2086 q->stops = q->restarts = 0;
2087 q->stat = (void *)&q->desc[q->size];
2088 q->cntxt_id = id;
2089 spin_lock_init(&q->db_lock);
2090 adap->sge.egr_map[id - adap->sge.egr_start] = q;
2093 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2094 struct net_device *dev, struct netdev_queue *netdevq,
2095 unsigned int iqid)
2097 int ret, nentries;
2098 struct fw_eq_eth_cmd c;
2099 struct port_info *pi = netdev_priv(dev);
2101 /* Add status entries */
2102 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2104 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2105 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2106 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2107 netdev_queue_numa_node_read(netdevq));
2108 if (!txq->q.desc)
2109 return -ENOMEM;
2111 memset(&c, 0, sizeof(c));
2112 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2113 FW_CMD_WRITE | FW_CMD_EXEC |
2114 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2115 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2116 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2117 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2118 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2119 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2120 FW_EQ_ETH_CMD_FETCHRO(1) |
2121 FW_EQ_ETH_CMD_IQID(iqid));
2122 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2123 FW_EQ_ETH_CMD_FBMAX(3) |
2124 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2125 FW_EQ_ETH_CMD_EQSIZE(nentries));
2126 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2128 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2129 if (ret) {
2130 kfree(txq->q.sdesc);
2131 txq->q.sdesc = NULL;
2132 dma_free_coherent(adap->pdev_dev,
2133 nentries * sizeof(struct tx_desc),
2134 txq->q.desc, txq->q.phys_addr);
2135 txq->q.desc = NULL;
2136 return ret;
2139 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2140 txq->txq = netdevq;
2141 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2142 txq->mapping_err = 0;
2143 return 0;
2146 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2147 struct net_device *dev, unsigned int iqid,
2148 unsigned int cmplqid)
2150 int ret, nentries;
2151 struct fw_eq_ctrl_cmd c;
2152 struct port_info *pi = netdev_priv(dev);
2154 /* Add status entries */
2155 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2157 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2158 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2159 NULL, 0, NUMA_NO_NODE);
2160 if (!txq->q.desc)
2161 return -ENOMEM;
2163 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2164 FW_CMD_WRITE | FW_CMD_EXEC |
2165 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2166 FW_EQ_CTRL_CMD_VFN(0));
2167 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2168 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2169 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2170 c.physeqid_pkd = htonl(0);
2171 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2172 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2173 FW_EQ_CTRL_CMD_FETCHRO |
2174 FW_EQ_CTRL_CMD_IQID(iqid));
2175 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2176 FW_EQ_CTRL_CMD_FBMAX(3) |
2177 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2178 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2179 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2181 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2182 if (ret) {
2183 dma_free_coherent(adap->pdev_dev,
2184 nentries * sizeof(struct tx_desc),
2185 txq->q.desc, txq->q.phys_addr);
2186 txq->q.desc = NULL;
2187 return ret;
2190 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2191 txq->adap = adap;
2192 skb_queue_head_init(&txq->sendq);
2193 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2194 txq->full = 0;
2195 return 0;
2198 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2199 struct net_device *dev, unsigned int iqid)
2201 int ret, nentries;
2202 struct fw_eq_ofld_cmd c;
2203 struct port_info *pi = netdev_priv(dev);
2205 /* Add status entries */
2206 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2208 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2209 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2210 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2211 NUMA_NO_NODE);
2212 if (!txq->q.desc)
2213 return -ENOMEM;
2215 memset(&c, 0, sizeof(c));
2216 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2217 FW_CMD_WRITE | FW_CMD_EXEC |
2218 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2219 FW_EQ_OFLD_CMD_VFN(0));
2220 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2221 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2222 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2223 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2224 FW_EQ_OFLD_CMD_FETCHRO(1) |
2225 FW_EQ_OFLD_CMD_IQID(iqid));
2226 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2227 FW_EQ_OFLD_CMD_FBMAX(3) |
2228 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2229 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2230 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2232 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2233 if (ret) {
2234 kfree(txq->q.sdesc);
2235 txq->q.sdesc = NULL;
2236 dma_free_coherent(adap->pdev_dev,
2237 nentries * sizeof(struct tx_desc),
2238 txq->q.desc, txq->q.phys_addr);
2239 txq->q.desc = NULL;
2240 return ret;
2243 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2244 txq->adap = adap;
2245 skb_queue_head_init(&txq->sendq);
2246 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2247 txq->full = 0;
2248 txq->mapping_err = 0;
2249 return 0;
2252 static void free_txq(struct adapter *adap, struct sge_txq *q)
2254 dma_free_coherent(adap->pdev_dev,
2255 q->size * sizeof(struct tx_desc) + STAT_LEN,
2256 q->desc, q->phys_addr);
2257 q->cntxt_id = 0;
2258 q->sdesc = NULL;
2259 q->desc = NULL;
2262 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2263 struct sge_fl *fl)
2265 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2267 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2268 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2269 rq->cntxt_id, fl_id, 0xffff);
2270 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2271 rq->desc, rq->phys_addr);
2272 netif_napi_del(&rq->napi);
2273 rq->netdev = NULL;
2274 rq->cntxt_id = rq->abs_id = 0;
2275 rq->desc = NULL;
2277 if (fl) {
2278 free_rx_bufs(adap, fl, fl->avail);
2279 dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN,
2280 fl->desc, fl->addr);
2281 kfree(fl->sdesc);
2282 fl->sdesc = NULL;
2283 fl->cntxt_id = 0;
2284 fl->desc = NULL;
2289 * t4_free_sge_resources - free SGE resources
2290 * @adap: the adapter
2292 * Frees resources used by the SGE queue sets.
2294 void t4_free_sge_resources(struct adapter *adap)
2296 int i;
2297 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2298 struct sge_eth_txq *etq = adap->sge.ethtxq;
2299 struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2301 /* clean up Ethernet Tx/Rx queues */
2302 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2303 if (eq->rspq.desc)
2304 free_rspq_fl(adap, &eq->rspq, &eq->fl);
2305 if (etq->q.desc) {
2306 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2307 etq->q.cntxt_id);
2308 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2309 kfree(etq->q.sdesc);
2310 free_txq(adap, &etq->q);
2314 /* clean up RDMA and iSCSI Rx queues */
2315 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2316 if (oq->rspq.desc)
2317 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2319 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2320 if (oq->rspq.desc)
2321 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2324 /* clean up offload Tx queues */
2325 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2326 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2328 if (q->q.desc) {
2329 tasklet_kill(&q->qresume_tsk);
2330 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2331 q->q.cntxt_id);
2332 free_tx_desc(adap, &q->q, q->q.in_use, false);
2333 kfree(q->q.sdesc);
2334 __skb_queue_purge(&q->sendq);
2335 free_txq(adap, &q->q);
2339 /* clean up control Tx queues */
2340 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2341 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2343 if (cq->q.desc) {
2344 tasklet_kill(&cq->qresume_tsk);
2345 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2346 cq->q.cntxt_id);
2347 __skb_queue_purge(&cq->sendq);
2348 free_txq(adap, &cq->q);
2352 if (adap->sge.fw_evtq.desc)
2353 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2355 if (adap->sge.intrq.desc)
2356 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2358 /* clear the reverse egress queue map */
2359 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2362 void t4_sge_start(struct adapter *adap)
2364 adap->sge.ethtxq_rover = 0;
2365 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2366 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2370 * t4_sge_stop - disable SGE operation
2371 * @adap: the adapter
2373 * Stop tasklets and timers associated with the DMA engine. Note that
2374 * this is effective only if measures have been taken to disable any HW
2375 * events that may restart them.
2377 void t4_sge_stop(struct adapter *adap)
2379 int i;
2380 struct sge *s = &adap->sge;
2382 if (in_interrupt()) /* actions below require waiting */
2383 return;
2385 if (s->rx_timer.function)
2386 del_timer_sync(&s->rx_timer);
2387 if (s->tx_timer.function)
2388 del_timer_sync(&s->tx_timer);
2390 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2391 struct sge_ofld_txq *q = &s->ofldtxq[i];
2393 if (q->q.desc)
2394 tasklet_kill(&q->qresume_tsk);
2396 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2397 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2399 if (cq->q.desc)
2400 tasklet_kill(&cq->qresume_tsk);
2405 * t4_sge_init - initialize SGE
2406 * @adap: the adapter
2408 * Performs SGE initialization needed every time after a chip reset.
2409 * We do not initialize any of the queues here, instead the driver
2410 * top-level must request them individually.
2412 void t4_sge_init(struct adapter *adap)
2414 unsigned int i, v;
2415 struct sge *s = &adap->sge;
2416 unsigned int fl_align_log = ilog2(FL_ALIGN);
2418 t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK |
2419 INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE,
2420 INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) |
2421 RXPKTCPLMODE |
2422 (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0));
2425 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2426 * and generate an interrupt when this occurs so we can recover.
2428 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2429 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2430 V_LP_INT_THRESH(M_LP_INT_THRESH),
2431 V_HP_INT_THRESH(dbfifo_int_thresh) |
2432 V_LP_INT_THRESH(dbfifo_int_thresh));
2433 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2434 F_ENABLE_DROP);
2436 for (i = v = 0; i < 32; i += 4)
2437 v |= (PAGE_SHIFT - 10) << i;
2438 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v);
2439 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE);
2440 #if FL_PG_ORDER > 0
2441 t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER);
2442 #endif
2443 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2444 THRESHOLD_0(s->counter_val[0]) |
2445 THRESHOLD_1(s->counter_val[1]) |
2446 THRESHOLD_2(s->counter_val[2]) |
2447 THRESHOLD_3(s->counter_val[3]));
2448 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2449 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2450 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2451 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2452 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) |
2453 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3])));
2454 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2455 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) |
2456 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5])));
2457 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2458 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2459 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2460 s->idma_state[0] = s->idma_state[1] = 0;
2461 spin_lock_init(&s->intrq_lock);