1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS
, E1000_STATS
};
37 char stat_string
[ETH_GSTRING_LEN
];
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats
[] = {
51 { "rx_packets", E1000_STAT(stats
.gprc
) },
52 { "tx_packets", E1000_STAT(stats
.gptc
) },
53 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
54 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
55 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
56 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
57 { "rx_multicast", E1000_STAT(stats
.mprc
) },
58 { "tx_multicast", E1000_STAT(stats
.mptc
) },
59 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
60 { "tx_errors", E1000_STAT(stats
.txerrc
) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
62 { "multicast", E1000_STAT(stats
.mprc
) },
63 { "collisions", E1000_STAT(stats
.colc
) },
64 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
66 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
68 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
69 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
70 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
71 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
74 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
75 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
76 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
77 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
78 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
80 { "tx_restart_queue", E1000_STAT(restart_queue
) },
81 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
82 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
83 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
84 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
86 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
87 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
88 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
89 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
90 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
94 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
95 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
96 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device
*netdev
,
110 struct ethtool_cmd
*ecmd
)
112 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
113 struct e1000_hw
*hw
= &adapter
->hw
;
115 if (hw
->media_type
== e1000_media_type_copper
) {
117 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
118 SUPPORTED_10baseT_Full
|
119 SUPPORTED_100baseT_Half
|
120 SUPPORTED_100baseT_Full
|
121 SUPPORTED_1000baseT_Full
|
124 ecmd
->advertising
= ADVERTISED_TP
;
126 if (hw
->autoneg
== 1) {
127 ecmd
->advertising
|= ADVERTISED_Autoneg
;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd
->advertising
|= hw
->autoneg_advertised
;
132 ecmd
->port
= PORT_TP
;
133 ecmd
->phy_address
= hw
->phy_addr
;
135 if (hw
->mac_type
== e1000_82543
)
136 ecmd
->transceiver
= XCVR_EXTERNAL
;
138 ecmd
->transceiver
= XCVR_INTERNAL
;
141 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
145 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
149 ecmd
->port
= PORT_FIBRE
;
151 if (hw
->mac_type
>= e1000_82545
)
152 ecmd
->transceiver
= XCVR_INTERNAL
;
154 ecmd
->transceiver
= XCVR_EXTERNAL
;
157 if (er32(STATUS
) & E1000_STATUS_LU
) {
159 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
160 &adapter
->link_duplex
);
161 ethtool_cmd_speed_set(ecmd
, adapter
->link_speed
);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter
->link_duplex
== FULL_DUPLEX
)
167 ecmd
->duplex
= DUPLEX_FULL
;
169 ecmd
->duplex
= DUPLEX_HALF
;
171 ethtool_cmd_speed_set(ecmd
, -1);
175 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
176 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
180 static int e1000_set_settings(struct net_device
*netdev
,
181 struct ethtool_cmd
*ecmd
)
183 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
184 struct e1000_hw
*hw
= &adapter
->hw
;
186 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
189 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
191 if (hw
->media_type
== e1000_media_type_fiber
)
192 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
196 hw
->autoneg_advertised
= ecmd
->advertising
|
199 ecmd
->advertising
= hw
->autoneg_advertised
;
201 u32 speed
= ethtool_cmd_speed(ecmd
);
202 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
203 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
210 if (netif_running(adapter
->netdev
)) {
214 e1000_reset(adapter
);
216 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
220 static u32
e1000_get_link(struct net_device
*netdev
)
222 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
225 * If the link is not reported up to netdev, interrupts are disabled,
226 * and so the physical link state may have changed since we last
227 * looked. Set get_link_status to make sure that the true link
228 * state is interrogated, rather than pulling a cached and possibly
229 * stale link state from the driver.
231 if (!netif_carrier_ok(netdev
))
232 adapter
->hw
.get_link_status
= 1;
234 return e1000_has_link(adapter
);
237 static void e1000_get_pauseparam(struct net_device
*netdev
,
238 struct ethtool_pauseparam
*pause
)
240 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
241 struct e1000_hw
*hw
= &adapter
->hw
;
244 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
246 if (hw
->fc
== E1000_FC_RX_PAUSE
)
248 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
250 else if (hw
->fc
== E1000_FC_FULL
) {
256 static int e1000_set_pauseparam(struct net_device
*netdev
,
257 struct ethtool_pauseparam
*pause
)
259 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
260 struct e1000_hw
*hw
= &adapter
->hw
;
263 adapter
->fc_autoneg
= pause
->autoneg
;
265 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
268 if (pause
->rx_pause
&& pause
->tx_pause
)
269 hw
->fc
= E1000_FC_FULL
;
270 else if (pause
->rx_pause
&& !pause
->tx_pause
)
271 hw
->fc
= E1000_FC_RX_PAUSE
;
272 else if (!pause
->rx_pause
&& pause
->tx_pause
)
273 hw
->fc
= E1000_FC_TX_PAUSE
;
274 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
275 hw
->fc
= E1000_FC_NONE
;
277 hw
->original_fc
= hw
->fc
;
279 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
280 if (netif_running(adapter
->netdev
)) {
284 e1000_reset(adapter
);
286 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
287 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
289 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
293 static u32
e1000_get_msglevel(struct net_device
*netdev
)
295 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
296 return adapter
->msg_enable
;
299 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
302 adapter
->msg_enable
= data
;
305 static int e1000_get_regs_len(struct net_device
*netdev
)
307 #define E1000_REGS_LEN 32
308 return E1000_REGS_LEN
* sizeof(u32
);
311 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
314 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
315 struct e1000_hw
*hw
= &adapter
->hw
;
319 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
321 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
323 regs_buff
[0] = er32(CTRL
);
324 regs_buff
[1] = er32(STATUS
);
326 regs_buff
[2] = er32(RCTL
);
327 regs_buff
[3] = er32(RDLEN
);
328 regs_buff
[4] = er32(RDH
);
329 regs_buff
[5] = er32(RDT
);
330 regs_buff
[6] = er32(RDTR
);
332 regs_buff
[7] = er32(TCTL
);
333 regs_buff
[8] = er32(TDLEN
);
334 regs_buff
[9] = er32(TDH
);
335 regs_buff
[10] = er32(TDT
);
336 regs_buff
[11] = er32(TIDV
);
338 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
339 if (hw
->phy_type
== e1000_phy_igp
) {
340 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
341 IGP01E1000_PHY_AGC_A
);
342 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
343 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
344 regs_buff
[13] = (u32
)phy_data
; /* cable length */
345 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
346 IGP01E1000_PHY_AGC_B
);
347 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
348 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
349 regs_buff
[14] = (u32
)phy_data
; /* cable length */
350 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
351 IGP01E1000_PHY_AGC_C
);
352 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
353 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
354 regs_buff
[15] = (u32
)phy_data
; /* cable length */
355 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
356 IGP01E1000_PHY_AGC_D
);
357 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
358 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
359 regs_buff
[16] = (u32
)phy_data
; /* cable length */
360 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
361 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
362 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
363 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
364 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
365 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
366 IGP01E1000_PHY_PCS_INIT_REG
);
367 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
368 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
369 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
370 regs_buff
[20] = 0; /* polarity correction enabled (always) */
371 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
372 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
373 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
375 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
376 regs_buff
[13] = (u32
)phy_data
; /* cable length */
377 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
378 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
379 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
380 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
381 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
382 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
383 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
384 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
385 /* phy receive errors */
386 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
387 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
389 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
390 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
391 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
392 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
393 if (hw
->mac_type
>= e1000_82540
&&
394 hw
->media_type
== e1000_media_type_copper
) {
395 regs_buff
[26] = er32(MANC
);
399 static int e1000_get_eeprom_len(struct net_device
*netdev
)
401 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
402 struct e1000_hw
*hw
= &adapter
->hw
;
404 return hw
->eeprom
.word_size
* 2;
407 static int e1000_get_eeprom(struct net_device
*netdev
,
408 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
410 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
411 struct e1000_hw
*hw
= &adapter
->hw
;
413 int first_word
, last_word
;
417 if (eeprom
->len
== 0)
420 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
422 first_word
= eeprom
->offset
>> 1;
423 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
425 eeprom_buff
= kmalloc(sizeof(u16
) *
426 (last_word
- first_word
+ 1), GFP_KERNEL
);
430 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
431 ret_val
= e1000_read_eeprom(hw
, first_word
,
432 last_word
- first_word
+ 1,
435 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
436 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
443 /* Device's eeprom is always little-endian, word addressable */
444 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
445 le16_to_cpus(&eeprom_buff
[i
]);
447 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
454 static int e1000_set_eeprom(struct net_device
*netdev
,
455 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
457 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
458 struct e1000_hw
*hw
= &adapter
->hw
;
461 int max_len
, first_word
, last_word
, ret_val
= 0;
464 if (eeprom
->len
== 0)
467 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
470 max_len
= hw
->eeprom
.word_size
* 2;
472 first_word
= eeprom
->offset
>> 1;
473 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
474 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
478 ptr
= (void *)eeprom_buff
;
480 if (eeprom
->offset
& 1) {
481 /* need read/modify/write of first changed EEPROM word */
482 /* only the second byte of the word is being modified */
483 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
487 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
488 /* need read/modify/write of last changed EEPROM word */
489 /* only the first byte of the word is being modified */
490 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
491 &eeprom_buff
[last_word
- first_word
]);
494 /* Device's eeprom is always little-endian, word addressable */
495 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
496 le16_to_cpus(&eeprom_buff
[i
]);
498 memcpy(ptr
, bytes
, eeprom
->len
);
500 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
501 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
503 ret_val
= e1000_write_eeprom(hw
, first_word
,
504 last_word
- first_word
+ 1, eeprom_buff
);
506 /* Update the checksum over the first part of the EEPROM if needed */
507 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
508 e1000_update_eeprom_checksum(hw
);
514 static void e1000_get_drvinfo(struct net_device
*netdev
,
515 struct ethtool_drvinfo
*drvinfo
)
517 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
519 strlcpy(drvinfo
->driver
, e1000_driver_name
,
520 sizeof(drvinfo
->driver
));
521 strlcpy(drvinfo
->version
, e1000_driver_version
,
522 sizeof(drvinfo
->version
));
524 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
525 sizeof(drvinfo
->bus_info
));
526 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
527 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
530 static void e1000_get_ringparam(struct net_device
*netdev
,
531 struct ethtool_ringparam
*ring
)
533 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
534 struct e1000_hw
*hw
= &adapter
->hw
;
535 e1000_mac_type mac_type
= hw
->mac_type
;
536 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
537 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
539 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
541 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
543 ring
->rx_pending
= rxdr
->count
;
544 ring
->tx_pending
= txdr
->count
;
547 static int e1000_set_ringparam(struct net_device
*netdev
,
548 struct ethtool_ringparam
*ring
)
550 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
551 struct e1000_hw
*hw
= &adapter
->hw
;
552 e1000_mac_type mac_type
= hw
->mac_type
;
553 struct e1000_tx_ring
*txdr
, *tx_old
;
554 struct e1000_rx_ring
*rxdr
, *rx_old
;
557 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
560 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
563 if (netif_running(adapter
->netdev
))
566 tx_old
= adapter
->tx_ring
;
567 rx_old
= adapter
->rx_ring
;
570 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
574 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
578 adapter
->tx_ring
= txdr
;
579 adapter
->rx_ring
= rxdr
;
581 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
582 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
583 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
584 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
586 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
587 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
588 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
589 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
591 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
592 txdr
[i
].count
= txdr
->count
;
593 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
594 rxdr
[i
].count
= rxdr
->count
;
596 if (netif_running(adapter
->netdev
)) {
597 /* Try to get new resources before deleting old */
598 err
= e1000_setup_all_rx_resources(adapter
);
601 err
= e1000_setup_all_tx_resources(adapter
);
605 /* save the new, restore the old in order to free it,
606 * then restore the new back again */
608 adapter
->rx_ring
= rx_old
;
609 adapter
->tx_ring
= tx_old
;
610 e1000_free_all_rx_resources(adapter
);
611 e1000_free_all_tx_resources(adapter
);
614 adapter
->rx_ring
= rxdr
;
615 adapter
->tx_ring
= txdr
;
616 err
= e1000_up(adapter
);
621 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
624 e1000_free_all_rx_resources(adapter
);
626 adapter
->rx_ring
= rx_old
;
627 adapter
->tx_ring
= tx_old
;
634 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
638 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
641 struct e1000_hw
*hw
= &adapter
->hw
;
642 static const u32 test
[] =
643 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
644 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
648 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
649 writel(write
& test
[i
], address
);
650 read
= readl(address
);
651 if (read
!= (write
& test
[i
] & mask
)) {
652 e_err(drv
, "pattern test reg %04X failed: "
653 "got 0x%08X expected 0x%08X\n",
654 reg
, read
, (write
& test
[i
] & mask
));
662 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
665 struct e1000_hw
*hw
= &adapter
->hw
;
666 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
669 writel(write
& mask
, address
);
670 read
= readl(address
);
671 if ((read
& mask
) != (write
& mask
)) {
672 e_err(drv
, "set/check reg %04X test failed: "
673 "got 0x%08X expected 0x%08X\n",
674 reg
, (read
& mask
), (write
& mask
));
681 #define REG_PATTERN_TEST(reg, mask, write) \
683 if (reg_pattern_test(adapter, data, \
684 (hw->mac_type >= e1000_82543) \
685 ? E1000_##reg : E1000_82542_##reg, \
690 #define REG_SET_AND_CHECK(reg, mask, write) \
692 if (reg_set_and_check(adapter, data, \
693 (hw->mac_type >= e1000_82543) \
694 ? E1000_##reg : E1000_82542_##reg, \
699 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
701 u32 value
, before
, after
;
703 struct e1000_hw
*hw
= &adapter
->hw
;
705 /* The status register is Read Only, so a write should fail.
706 * Some bits that get toggled are ignored.
709 /* there are several bits on newer hardware that are r/w */
712 before
= er32(STATUS
);
713 value
= (er32(STATUS
) & toggle
);
714 ew32(STATUS
, toggle
);
715 after
= er32(STATUS
) & toggle
;
716 if (value
!= after
) {
717 e_err(drv
, "failed STATUS register test got: "
718 "0x%08X expected: 0x%08X\n", after
, value
);
722 /* restore previous status */
723 ew32(STATUS
, before
);
725 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
726 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
727 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
728 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
730 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
731 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
732 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
733 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
734 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
735 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
736 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
737 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
738 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
739 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
741 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
744 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
745 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
747 if (hw
->mac_type
>= e1000_82543
) {
749 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
750 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
751 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
752 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
753 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
754 value
= E1000_RAR_ENTRIES
;
755 for (i
= 0; i
< value
; i
++) {
756 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
762 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
763 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
764 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
765 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
769 value
= E1000_MC_TBL_SIZE
;
770 for (i
= 0; i
< value
; i
++)
771 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
777 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
779 struct e1000_hw
*hw
= &adapter
->hw
;
785 /* Read and add up the contents of the EEPROM */
786 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
787 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
794 /* If Checksum is not Correct return error else test passed */
795 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
801 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
803 struct net_device
*netdev
= (struct net_device
*)data
;
804 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
805 struct e1000_hw
*hw
= &adapter
->hw
;
807 adapter
->test_icr
|= er32(ICR
);
812 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
814 struct net_device
*netdev
= adapter
->netdev
;
816 bool shared_int
= true;
817 u32 irq
= adapter
->pdev
->irq
;
818 struct e1000_hw
*hw
= &adapter
->hw
;
822 /* NOTE: we don't test MSI interrupts here, yet */
823 /* Hook up test interrupt handler just for this test */
824 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
827 else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
828 netdev
->name
, netdev
)) {
832 e_info(hw
, "testing %s interrupt\n", (shared_int
?
833 "shared" : "unshared"));
835 /* Disable all the interrupts */
836 ew32(IMC
, 0xFFFFFFFF);
840 /* Test each interrupt */
841 for (; i
< 10; i
++) {
843 /* Interrupt to test */
847 /* Disable the interrupt to be reported in
848 * the cause register and then force the same
849 * interrupt and see if one gets posted. If
850 * an interrupt was posted to the bus, the
853 adapter
->test_icr
= 0;
859 if (adapter
->test_icr
& mask
) {
865 /* Enable the interrupt to be reported in
866 * the cause register and then force the same
867 * interrupt and see if one gets posted. If
868 * an interrupt was not posted to the bus, the
871 adapter
->test_icr
= 0;
877 if (!(adapter
->test_icr
& mask
)) {
883 /* Disable the other interrupts to be reported in
884 * the cause register and then force the other
885 * interrupts and see if any get posted. If
886 * an interrupt was posted to the bus, the
889 adapter
->test_icr
= 0;
890 ew32(IMC
, ~mask
& 0x00007FFF);
891 ew32(ICS
, ~mask
& 0x00007FFF);
895 if (adapter
->test_icr
) {
902 /* Disable all the interrupts */
903 ew32(IMC
, 0xFFFFFFFF);
907 /* Unhook test interrupt handler */
908 free_irq(irq
, netdev
);
913 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
915 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
916 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
917 struct pci_dev
*pdev
= adapter
->pdev
;
920 if (txdr
->desc
&& txdr
->buffer_info
) {
921 for (i
= 0; i
< txdr
->count
; i
++) {
922 if (txdr
->buffer_info
[i
].dma
)
923 dma_unmap_single(&pdev
->dev
,
924 txdr
->buffer_info
[i
].dma
,
925 txdr
->buffer_info
[i
].length
,
927 if (txdr
->buffer_info
[i
].skb
)
928 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
932 if (rxdr
->desc
&& rxdr
->buffer_info
) {
933 for (i
= 0; i
< rxdr
->count
; i
++) {
934 if (rxdr
->buffer_info
[i
].dma
)
935 dma_unmap_single(&pdev
->dev
,
936 rxdr
->buffer_info
[i
].dma
,
937 rxdr
->buffer_info
[i
].length
,
939 if (rxdr
->buffer_info
[i
].skb
)
940 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
945 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
950 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
955 kfree(txdr
->buffer_info
);
956 txdr
->buffer_info
= NULL
;
957 kfree(rxdr
->buffer_info
);
958 rxdr
->buffer_info
= NULL
;
961 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
963 struct e1000_hw
*hw
= &adapter
->hw
;
964 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
965 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
966 struct pci_dev
*pdev
= adapter
->pdev
;
970 /* Setup Tx descriptor ring and Tx buffers */
973 txdr
->count
= E1000_DEFAULT_TXD
;
975 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
977 if (!txdr
->buffer_info
) {
982 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
983 txdr
->size
= ALIGN(txdr
->size
, 4096);
984 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
990 memset(txdr
->desc
, 0, txdr
->size
);
991 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
993 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
994 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
995 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
998 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
999 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1000 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1002 for (i
= 0; i
< txdr
->count
; i
++) {
1003 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1004 struct sk_buff
*skb
;
1005 unsigned int size
= 1024;
1007 skb
= alloc_skb(size
, GFP_KERNEL
);
1013 txdr
->buffer_info
[i
].skb
= skb
;
1014 txdr
->buffer_info
[i
].length
= skb
->len
;
1015 txdr
->buffer_info
[i
].dma
=
1016 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1018 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1019 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1020 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1021 E1000_TXD_CMD_IFCS
|
1023 tx_desc
->upper
.data
= 0;
1026 /* Setup Rx descriptor ring and Rx buffers */
1029 rxdr
->count
= E1000_DEFAULT_RXD
;
1031 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1033 if (!rxdr
->buffer_info
) {
1038 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1039 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1045 memset(rxdr
->desc
, 0, rxdr
->size
);
1046 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1049 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1050 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1051 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1052 ew32(RDLEN
, rxdr
->size
);
1055 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1056 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1057 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1060 for (i
= 0; i
< rxdr
->count
; i
++) {
1061 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1062 struct sk_buff
*skb
;
1064 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1069 skb_reserve(skb
, NET_IP_ALIGN
);
1070 rxdr
->buffer_info
[i
].skb
= skb
;
1071 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1072 rxdr
->buffer_info
[i
].dma
=
1073 dma_map_single(&pdev
->dev
, skb
->data
,
1074 E1000_RXBUFFER_2048
, DMA_FROM_DEVICE
);
1075 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1076 memset(skb
->data
, 0x00, skb
->len
);
1082 e1000_free_desc_rings(adapter
);
1086 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1088 struct e1000_hw
*hw
= &adapter
->hw
;
1090 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1091 e1000_write_phy_reg(hw
, 29, 0x001F);
1092 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1093 e1000_write_phy_reg(hw
, 29, 0x001A);
1094 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1097 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1099 struct e1000_hw
*hw
= &adapter
->hw
;
1102 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1103 * Extended PHY Specific Control Register to 25MHz clock. This
1104 * value defaults back to a 2.5MHz clock when the PHY is reset.
1106 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1107 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1108 e1000_write_phy_reg(hw
,
1109 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1111 /* In addition, because of the s/w reset above, we need to enable
1112 * CRS on TX. This must be set for both full and half duplex
1115 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1116 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1117 e1000_write_phy_reg(hw
,
1118 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1121 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1123 struct e1000_hw
*hw
= &adapter
->hw
;
1127 /* Setup the Device Control Register for PHY loopback test. */
1129 ctrl_reg
= er32(CTRL
);
1130 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1131 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1132 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1133 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1134 E1000_CTRL_FD
); /* Force Duplex to FULL */
1136 ew32(CTRL
, ctrl_reg
);
1138 /* Read the PHY Specific Control Register (0x10) */
1139 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1141 /* Clear Auto-Crossover bits in PHY Specific Control Register
1144 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1145 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1147 /* Perform software reset on the PHY */
1148 e1000_phy_reset(hw
);
1150 /* Have to setup TX_CLK and TX_CRS after software reset */
1151 e1000_phy_reset_clk_and_crs(adapter
);
1153 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1155 /* Wait for reset to complete. */
1158 /* Have to setup TX_CLK and TX_CRS after software reset */
1159 e1000_phy_reset_clk_and_crs(adapter
);
1161 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1162 e1000_phy_disable_receiver(adapter
);
1164 /* Set the loopback bit in the PHY control register. */
1165 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1166 phy_reg
|= MII_CR_LOOPBACK
;
1167 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1169 /* Setup TX_CLK and TX_CRS one more time. */
1170 e1000_phy_reset_clk_and_crs(adapter
);
1172 /* Check Phy Configuration */
1173 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1174 if (phy_reg
!= 0x4100)
1177 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1178 if (phy_reg
!= 0x0070)
1181 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1182 if (phy_reg
!= 0x001A)
1188 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1190 struct e1000_hw
*hw
= &adapter
->hw
;
1194 hw
->autoneg
= false;
1196 if (hw
->phy_type
== e1000_phy_m88
) {
1197 /* Auto-MDI/MDIX Off */
1198 e1000_write_phy_reg(hw
,
1199 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1200 /* reset to update Auto-MDI/MDIX */
1201 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1203 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1206 ctrl_reg
= er32(CTRL
);
1208 /* force 1000, set loopback */
1209 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1211 /* Now set up the MAC to the same speed/duplex as the PHY. */
1212 ctrl_reg
= er32(CTRL
);
1213 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1214 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1215 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1216 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1217 E1000_CTRL_FD
); /* Force Duplex to FULL */
1219 if (hw
->media_type
== e1000_media_type_copper
&&
1220 hw
->phy_type
== e1000_phy_m88
)
1221 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1223 /* Set the ILOS bit on the fiber Nic is half
1224 * duplex link is detected. */
1225 stat_reg
= er32(STATUS
);
1226 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1227 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1230 ew32(CTRL
, ctrl_reg
);
1232 /* Disable the receiver on the PHY so when a cable is plugged in, the
1233 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1235 if (hw
->phy_type
== e1000_phy_m88
)
1236 e1000_phy_disable_receiver(adapter
);
1243 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1245 struct e1000_hw
*hw
= &adapter
->hw
;
1249 switch (hw
->mac_type
) {
1251 if (hw
->media_type
== e1000_media_type_copper
) {
1252 /* Attempt to setup Loopback mode on Non-integrated PHY.
1253 * Some PHY registers get corrupted at random, so
1254 * attempt this 10 times.
1256 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1266 case e1000_82545_rev_3
:
1268 case e1000_82546_rev_3
:
1270 case e1000_82541_rev_2
:
1272 case e1000_82547_rev_2
:
1273 return e1000_integrated_phy_loopback(adapter
);
1276 /* Default PHY loopback work is to read the MII
1277 * control register and assert bit 14 (loopback mode).
1279 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1280 phy_reg
|= MII_CR_LOOPBACK
;
1281 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1289 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1291 struct e1000_hw
*hw
= &adapter
->hw
;
1294 if (hw
->media_type
== e1000_media_type_fiber
||
1295 hw
->media_type
== e1000_media_type_internal_serdes
) {
1296 switch (hw
->mac_type
) {
1299 case e1000_82545_rev_3
:
1300 case e1000_82546_rev_3
:
1301 return e1000_set_phy_loopback(adapter
);
1305 rctl
|= E1000_RCTL_LBM_TCVR
;
1309 } else if (hw
->media_type
== e1000_media_type_copper
)
1310 return e1000_set_phy_loopback(adapter
);
1315 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1317 struct e1000_hw
*hw
= &adapter
->hw
;
1322 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1325 switch (hw
->mac_type
) {
1328 case e1000_82545_rev_3
:
1329 case e1000_82546_rev_3
:
1332 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1333 if (phy_reg
& MII_CR_LOOPBACK
) {
1334 phy_reg
&= ~MII_CR_LOOPBACK
;
1335 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1336 e1000_phy_reset(hw
);
1342 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1343 unsigned int frame_size
)
1345 memset(skb
->data
, 0xFF, frame_size
);
1347 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1348 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1349 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1352 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1353 unsigned int frame_size
)
1356 if (*(skb
->data
+ 3) == 0xFF) {
1357 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1358 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1365 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1367 struct e1000_hw
*hw
= &adapter
->hw
;
1368 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1369 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1370 struct pci_dev
*pdev
= adapter
->pdev
;
1371 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1374 ew32(RDT
, rxdr
->count
- 1);
1376 /* Calculate the loop count based on the largest descriptor ring
1377 * The idea is to wrap the largest ring a number of times using 64
1378 * send/receive pairs during each loop
1381 if (rxdr
->count
<= txdr
->count
)
1382 lc
= ((txdr
->count
/ 64) * 2) + 1;
1384 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1387 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1388 for (i
= 0; i
< 64; i
++) { /* send the packets */
1389 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1391 dma_sync_single_for_device(&pdev
->dev
,
1392 txdr
->buffer_info
[k
].dma
,
1393 txdr
->buffer_info
[k
].length
,
1395 if (unlikely(++k
== txdr
->count
)) k
= 0;
1398 E1000_WRITE_FLUSH();
1400 time
= jiffies
; /* set the start time for the receive */
1402 do { /* receive the sent packets */
1403 dma_sync_single_for_cpu(&pdev
->dev
,
1404 rxdr
->buffer_info
[l
].dma
,
1405 rxdr
->buffer_info
[l
].length
,
1408 ret_val
= e1000_check_lbtest_frame(
1409 rxdr
->buffer_info
[l
].skb
,
1413 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1414 /* time + 20 msecs (200 msecs on 2.4) is more than
1415 * enough time to complete the receives, if it's
1416 * exceeded, break and error off
1418 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1419 if (good_cnt
!= 64) {
1420 ret_val
= 13; /* ret_val is the same as mis-compare */
1423 if (jiffies
>= (time
+ 2)) {
1424 ret_val
= 14; /* error code for time out error */
1427 } /* end loop count loop */
1431 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1433 *data
= e1000_setup_desc_rings(adapter
);
1436 *data
= e1000_setup_loopback_test(adapter
);
1439 *data
= e1000_run_loopback_test(adapter
);
1440 e1000_loopback_cleanup(adapter
);
1443 e1000_free_desc_rings(adapter
);
1448 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1450 struct e1000_hw
*hw
= &adapter
->hw
;
1452 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1454 hw
->serdes_has_link
= false;
1456 /* On some blade server designs, link establishment
1457 * could take as long as 2-3 minutes */
1459 e1000_check_for_link(hw
);
1460 if (hw
->serdes_has_link
)
1463 } while (i
++ < 3750);
1467 e1000_check_for_link(hw
);
1468 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1471 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1478 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1482 return E1000_TEST_LEN
;
1484 return E1000_STATS_LEN
;
1490 static void e1000_diag_test(struct net_device
*netdev
,
1491 struct ethtool_test
*eth_test
, u64
*data
)
1493 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1494 struct e1000_hw
*hw
= &adapter
->hw
;
1495 bool if_running
= netif_running(netdev
);
1497 set_bit(__E1000_TESTING
, &adapter
->flags
);
1498 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1501 /* save speed, duplex, autoneg settings */
1502 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1503 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1504 u8 autoneg
= hw
->autoneg
;
1506 e_info(hw
, "offline testing starting\n");
1508 /* Link test performed before hardware reset so autoneg doesn't
1509 * interfere with test result */
1510 if (e1000_link_test(adapter
, &data
[4]))
1511 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1514 /* indicate we're in test mode */
1517 e1000_reset(adapter
);
1519 if (e1000_reg_test(adapter
, &data
[0]))
1520 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1522 e1000_reset(adapter
);
1523 if (e1000_eeprom_test(adapter
, &data
[1]))
1524 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1526 e1000_reset(adapter
);
1527 if (e1000_intr_test(adapter
, &data
[2]))
1528 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1530 e1000_reset(adapter
);
1531 /* make sure the phy is powered up */
1532 e1000_power_up_phy(adapter
);
1533 if (e1000_loopback_test(adapter
, &data
[3]))
1534 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1536 /* restore speed, duplex, autoneg settings */
1537 hw
->autoneg_advertised
= autoneg_advertised
;
1538 hw
->forced_speed_duplex
= forced_speed_duplex
;
1539 hw
->autoneg
= autoneg
;
1541 e1000_reset(adapter
);
1542 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1546 e_info(hw
, "online testing starting\n");
1548 if (e1000_link_test(adapter
, &data
[4]))
1549 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1551 /* Online tests aren't run; pass by default */
1557 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1559 msleep_interruptible(4 * 1000);
1562 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1563 struct ethtool_wolinfo
*wol
)
1565 struct e1000_hw
*hw
= &adapter
->hw
;
1566 int retval
= 1; /* fail by default */
1568 switch (hw
->device_id
) {
1569 case E1000_DEV_ID_82542
:
1570 case E1000_DEV_ID_82543GC_FIBER
:
1571 case E1000_DEV_ID_82543GC_COPPER
:
1572 case E1000_DEV_ID_82544EI_FIBER
:
1573 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1574 case E1000_DEV_ID_82545EM_FIBER
:
1575 case E1000_DEV_ID_82545EM_COPPER
:
1576 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1577 case E1000_DEV_ID_82546GB_PCIE
:
1578 /* these don't support WoL at all */
1581 case E1000_DEV_ID_82546EB_FIBER
:
1582 case E1000_DEV_ID_82546GB_FIBER
:
1583 /* Wake events not supported on port B */
1584 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1588 /* return success for non excluded adapter ports */
1591 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1592 /* quad port adapters only support WoL on port A */
1593 if (!adapter
->quad_port_a
) {
1597 /* return success for non excluded adapter ports */
1601 /* dual port cards only support WoL on port A from now on
1602 * unless it was enabled in the eeprom for port B
1603 * so exclude FUNC_1 ports from having WoL enabled */
1604 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1605 !adapter
->eeprom_wol
) {
1616 static void e1000_get_wol(struct net_device
*netdev
,
1617 struct ethtool_wolinfo
*wol
)
1619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1620 struct e1000_hw
*hw
= &adapter
->hw
;
1622 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1623 WAKE_BCAST
| WAKE_MAGIC
;
1626 /* this function will set ->supported = 0 and return 1 if wol is not
1627 * supported by this hardware */
1628 if (e1000_wol_exclusion(adapter
, wol
) ||
1629 !device_can_wakeup(&adapter
->pdev
->dev
))
1632 /* apply any specific unsupported masks here */
1633 switch (hw
->device_id
) {
1634 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1635 /* KSP3 does not suppport UCAST wake-ups */
1636 wol
->supported
&= ~WAKE_UCAST
;
1638 if (adapter
->wol
& E1000_WUFC_EX
)
1639 e_err(drv
, "Interface does not support directed "
1640 "(unicast) frame wake-up packets\n");
1646 if (adapter
->wol
& E1000_WUFC_EX
)
1647 wol
->wolopts
|= WAKE_UCAST
;
1648 if (adapter
->wol
& E1000_WUFC_MC
)
1649 wol
->wolopts
|= WAKE_MCAST
;
1650 if (adapter
->wol
& E1000_WUFC_BC
)
1651 wol
->wolopts
|= WAKE_BCAST
;
1652 if (adapter
->wol
& E1000_WUFC_MAG
)
1653 wol
->wolopts
|= WAKE_MAGIC
;
1656 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1658 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1659 struct e1000_hw
*hw
= &adapter
->hw
;
1661 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1664 if (e1000_wol_exclusion(adapter
, wol
) ||
1665 !device_can_wakeup(&adapter
->pdev
->dev
))
1666 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1668 switch (hw
->device_id
) {
1669 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1670 if (wol
->wolopts
& WAKE_UCAST
) {
1671 e_err(drv
, "Interface does not support directed "
1672 "(unicast) frame wake-up packets\n");
1680 /* these settings will always override what we currently have */
1683 if (wol
->wolopts
& WAKE_UCAST
)
1684 adapter
->wol
|= E1000_WUFC_EX
;
1685 if (wol
->wolopts
& WAKE_MCAST
)
1686 adapter
->wol
|= E1000_WUFC_MC
;
1687 if (wol
->wolopts
& WAKE_BCAST
)
1688 adapter
->wol
|= E1000_WUFC_BC
;
1689 if (wol
->wolopts
& WAKE_MAGIC
)
1690 adapter
->wol
|= E1000_WUFC_MAG
;
1692 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1697 static int e1000_set_phys_id(struct net_device
*netdev
,
1698 enum ethtool_phys_id_state state
)
1700 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1701 struct e1000_hw
*hw
= &adapter
->hw
;
1704 case ETHTOOL_ID_ACTIVE
:
1705 e1000_setup_led(hw
);
1712 case ETHTOOL_ID_OFF
:
1716 case ETHTOOL_ID_INACTIVE
:
1717 e1000_cleanup_led(hw
);
1723 static int e1000_get_coalesce(struct net_device
*netdev
,
1724 struct ethtool_coalesce
*ec
)
1726 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1728 if (adapter
->hw
.mac_type
< e1000_82545
)
1731 if (adapter
->itr_setting
<= 4)
1732 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1734 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1739 static int e1000_set_coalesce(struct net_device
*netdev
,
1740 struct ethtool_coalesce
*ec
)
1742 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1743 struct e1000_hw
*hw
= &adapter
->hw
;
1745 if (hw
->mac_type
< e1000_82545
)
1748 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1749 ((ec
->rx_coalesce_usecs
> 4) &&
1750 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1751 (ec
->rx_coalesce_usecs
== 2))
1754 if (ec
->rx_coalesce_usecs
== 4) {
1755 adapter
->itr
= adapter
->itr_setting
= 4;
1756 } else if (ec
->rx_coalesce_usecs
<= 3) {
1757 adapter
->itr
= 20000;
1758 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1760 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1761 adapter
->itr_setting
= adapter
->itr
& ~3;
1764 if (adapter
->itr_setting
!= 0)
1765 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1772 static int e1000_nway_reset(struct net_device
*netdev
)
1774 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1775 if (netif_running(netdev
))
1776 e1000_reinit_locked(adapter
);
1780 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1781 struct ethtool_stats
*stats
, u64
*data
)
1783 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1787 e1000_update_stats(adapter
);
1788 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1789 switch (e1000_gstrings_stats
[i
].type
) {
1791 p
= (char *) netdev
+
1792 e1000_gstrings_stats
[i
].stat_offset
;
1795 p
= (char *) adapter
+
1796 e1000_gstrings_stats
[i
].stat_offset
;
1800 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1801 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1803 /* BUG_ON(i != E1000_STATS_LEN); */
1806 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1812 switch (stringset
) {
1814 memcpy(data
, *e1000_gstrings_test
,
1815 sizeof(e1000_gstrings_test
));
1818 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1819 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1821 p
+= ETH_GSTRING_LEN
;
1823 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1828 static const struct ethtool_ops e1000_ethtool_ops
= {
1829 .get_settings
= e1000_get_settings
,
1830 .set_settings
= e1000_set_settings
,
1831 .get_drvinfo
= e1000_get_drvinfo
,
1832 .get_regs_len
= e1000_get_regs_len
,
1833 .get_regs
= e1000_get_regs
,
1834 .get_wol
= e1000_get_wol
,
1835 .set_wol
= e1000_set_wol
,
1836 .get_msglevel
= e1000_get_msglevel
,
1837 .set_msglevel
= e1000_set_msglevel
,
1838 .nway_reset
= e1000_nway_reset
,
1839 .get_link
= e1000_get_link
,
1840 .get_eeprom_len
= e1000_get_eeprom_len
,
1841 .get_eeprom
= e1000_get_eeprom
,
1842 .set_eeprom
= e1000_set_eeprom
,
1843 .get_ringparam
= e1000_get_ringparam
,
1844 .set_ringparam
= e1000_set_ringparam
,
1845 .get_pauseparam
= e1000_get_pauseparam
,
1846 .set_pauseparam
= e1000_set_pauseparam
,
1847 .self_test
= e1000_diag_test
,
1848 .get_strings
= e1000_get_strings
,
1849 .set_phys_id
= e1000_set_phys_id
,
1850 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1851 .get_sset_count
= e1000_get_sset_count
,
1852 .get_coalesce
= e1000_get_coalesce
,
1853 .set_coalesce
= e1000_set_coalesce
,
1854 .get_ts_info
= ethtool_op_get_ts_info
,
1857 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1859 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);