1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
65 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
66 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
67 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
68 u16 words
, u16
*data
);
69 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
71 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
73 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
75 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
79 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
81 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
82 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
88 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
90 struct e1000_phy_info
*phy
= &hw
->phy
;
93 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
94 phy
->type
= e1000_phy_none
;
99 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
100 phy
->reset_delay_us
= 100;
102 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
103 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
105 switch (hw
->mac
.type
) {
108 phy
->type
= e1000_phy_igp_2
;
111 phy
->type
= e1000_phy_m88
;
115 phy
->type
= e1000_phy_bm
;
116 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
117 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
118 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
119 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
122 return -E1000_ERR_PHY
;
126 /* This can only be done after all function pointers are setup. */
127 ret_val
= e1000_get_phy_id_82571(hw
);
129 e_dbg("Error getting PHY ID\n");
134 switch (hw
->mac
.type
) {
137 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
138 ret_val
= -E1000_ERR_PHY
;
141 if (phy
->id
!= M88E1111_I_PHY_ID
)
142 ret_val
= -E1000_ERR_PHY
;
146 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
147 ret_val
= -E1000_ERR_PHY
;
150 ret_val
= -E1000_ERR_PHY
;
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
166 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
167 u32 eecd
= er32(EECD
);
170 nvm
->opcode_bits
= 8;
172 switch (nvm
->override
) {
173 case e1000_nvm_override_spi_large
:
175 nvm
->address_bits
= 16;
177 case e1000_nvm_override_spi_small
:
179 nvm
->address_bits
= 8;
182 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
183 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
187 switch (hw
->mac
.type
) {
191 if (((eecd
>> 15) & 0x3) == 0x3) {
192 nvm
->type
= e1000_nvm_flash_hw
;
193 nvm
->word_size
= 2048;
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
198 eecd
&= ~E1000_EECD_AUPDEN
;
204 nvm
->type
= e1000_nvm_eeprom_spi
;
205 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
206 E1000_EECD_SIZE_EX_SHIFT
);
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
211 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
213 /* EEPROM access above 16k is unsupported */
216 nvm
->word_size
= 1 << size
;
220 /* Function Pointers */
221 switch (hw
->mac
.type
) {
224 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
225 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
238 static s32
e1000_init_mac_params_82571(struct e1000_hw
*hw
)
240 struct e1000_mac_info
*mac
= &hw
->mac
;
243 bool force_clear_smbi
= false;
245 /* Set media type and media-dependent function pointers */
246 switch (hw
->adapter
->pdev
->device
) {
247 case E1000_DEV_ID_82571EB_FIBER
:
248 case E1000_DEV_ID_82572EI_FIBER
:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
250 hw
->phy
.media_type
= e1000_media_type_fiber
;
251 mac
->ops
.setup_physical_interface
=
252 e1000_setup_fiber_serdes_link_82571
;
253 mac
->ops
.check_for_link
= e1000e_check_for_fiber_link
;
254 mac
->ops
.get_link_up_info
=
255 e1000e_get_speed_and_duplex_fiber_serdes
;
257 case E1000_DEV_ID_82571EB_SERDES
:
258 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
260 case E1000_DEV_ID_82572EI_SERDES
:
261 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
262 mac
->ops
.setup_physical_interface
=
263 e1000_setup_fiber_serdes_link_82571
;
264 mac
->ops
.check_for_link
= e1000_check_for_serdes_link_82571
;
265 mac
->ops
.get_link_up_info
=
266 e1000e_get_speed_and_duplex_fiber_serdes
;
269 hw
->phy
.media_type
= e1000_media_type_copper
;
270 mac
->ops
.setup_physical_interface
=
271 e1000_setup_copper_link_82571
;
272 mac
->ops
.check_for_link
= e1000e_check_for_copper_link
;
273 mac
->ops
.get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
277 /* Set mta register count */
278 mac
->mta_reg_count
= 128;
279 /* Set rar entry count */
280 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
281 /* Adaptive IFS supported */
282 mac
->adaptive_ifs
= true;
284 /* MAC-specific function pointers */
285 switch (hw
->mac
.type
) {
287 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
288 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
289 mac
->ops
.led_on
= e1000e_led_on_generic
;
290 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
293 mac
->has_fwsm
= true;
295 * ARC supported; valid only if manageability features are
298 mac
->arc_subsystem_valid
= !!(er32(FWSM
) &
299 E1000_FWSM_MODE_MASK
);
303 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
304 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_82574
;
305 mac
->ops
.led_on
= e1000_led_on_82574
;
308 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
309 mac
->ops
.led_on
= e1000e_led_on_generic
;
310 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
313 mac
->has_fwsm
= true;
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 * first NVM or PHY access. This should be done for single-port
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
324 switch (hw
->mac
.type
) {
329 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
330 /* Only do this for the first interface on this card */
331 ew32(SWSM2
, swsm2
| E1000_SWSM2_LOCK
);
332 force_clear_smbi
= true;
334 force_clear_smbi
= false;
338 force_clear_smbi
= true;
342 if (force_clear_smbi
) {
343 /* Make sure SWSM.SMBI is clear */
345 if (swsm
& E1000_SWSM_SMBI
) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
350 e_dbg("Please update your 82571 Bootagent\n");
352 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
356 * Initialize device specific counter of SMBI acquisition
359 hw
->dev_spec
.e82571
.smb_counter
= 0;
364 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
366 struct e1000_hw
*hw
= &adapter
->hw
;
367 static int global_quad_port_a
; /* global port a indication */
368 struct pci_dev
*pdev
= adapter
->pdev
;
369 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
372 rc
= e1000_init_mac_params_82571(hw
);
376 rc
= e1000_init_nvm_params_82571(hw
);
380 rc
= e1000_init_phy_params_82571(hw
);
384 /* tag quad port adapters first, it's used below */
385 switch (pdev
->device
) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
389 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
390 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
391 /* mark the first port */
392 if (global_quad_port_a
== 0)
393 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a
++;
396 if (global_quad_port_a
== 4)
397 global_quad_port_a
= 0;
403 switch (adapter
->hw
.mac
.type
) {
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
407 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
408 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
410 adapter
->flags
&= ~FLAG_HAS_WOL
;
411 /* quad ports only support WoL on port A */
412 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
413 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
414 adapter
->flags
&= ~FLAG_HAS_WOL
;
415 /* Does not support WoL on any port */
416 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
417 adapter
->flags
&= ~FLAG_HAS_WOL
;
420 if (pdev
->device
== E1000_DEV_ID_82573L
) {
421 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
422 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
433 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434 * @hw: pointer to the HW structure
436 * Reads the PHY registers and stores the PHY ID and possibly the PHY
437 * revision in the hardware structure.
439 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
441 struct e1000_phy_info
*phy
= &hw
->phy
;
445 switch (hw
->mac
.type
) {
449 * The 82571 firmware may still be configuring the PHY.
450 * In this case, we cannot access the PHY until the
451 * configuration is done. So we explicitly set the
454 phy
->id
= IGP01E1000_I_PHY_ID
;
457 return e1000e_get_phy_id(hw
);
461 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
465 phy
->id
= (u32
)(phy_id
<< 16);
467 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
471 phy
->id
|= (u32
)(phy_id
);
472 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
475 return -E1000_ERR_PHY
;
483 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484 * @hw: pointer to the HW structure
486 * Acquire the HW semaphore to access the PHY or NVM
488 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
491 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
492 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
496 * If we have timedout 3 times on trying to acquire
497 * the inter-port SMBI semaphore, there is old code
498 * operating on the other port, and it is not
499 * releasing SMBI. Modify the number of times that
500 * we try for the semaphore to interwork with this
503 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
506 /* Get the SW semaphore */
507 while (i
< sw_timeout
) {
509 if (!(swsm
& E1000_SWSM_SMBI
))
516 if (i
== sw_timeout
) {
517 e_dbg("Driver can't access device - SMBI bit is set.\n");
518 hw
->dev_spec
.e82571
.smb_counter
++;
520 /* Get the FW semaphore. */
521 for (i
= 0; i
< fw_timeout
; i
++) {
523 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
525 /* Semaphore acquired if bit latched */
526 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
532 if (i
== fw_timeout
) {
533 /* Release semaphores */
534 e1000_put_hw_semaphore_82571(hw
);
535 e_dbg("Driver can't access the NVM\n");
536 return -E1000_ERR_NVM
;
543 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
544 * @hw: pointer to the HW structure
546 * Release hardware semaphore used to access the PHY or NVM
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
553 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
557 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558 * @hw: pointer to the HW structure
560 * Acquire the HW semaphore during reset.
563 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
568 extcnf_ctrl
= er32(EXTCNF_CTRL
);
569 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
571 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
572 extcnf_ctrl
= er32(EXTCNF_CTRL
);
574 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
577 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
579 usleep_range(2000, 4000);
581 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
583 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
584 /* Release semaphores */
585 e1000_put_hw_semaphore_82573(hw
);
586 e_dbg("Driver can't access the PHY\n");
587 return -E1000_ERR_PHY
;
594 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
595 * @hw: pointer to the HW structure
597 * Release hardware semaphore used during reset.
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
604 extcnf_ctrl
= er32(EXTCNF_CTRL
);
605 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
606 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
609 static DEFINE_MUTEX(swflag_mutex
);
612 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613 * @hw: pointer to the HW structure
615 * Acquire the HW semaphore to access the PHY or NVM.
618 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
622 mutex_lock(&swflag_mutex
);
623 ret_val
= e1000_get_hw_semaphore_82573(hw
);
625 mutex_unlock(&swflag_mutex
);
630 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
631 * @hw: pointer to the HW structure
633 * Release hardware semaphore used to access the PHY or NVM
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
638 e1000_put_hw_semaphore_82573(hw
);
639 mutex_unlock(&swflag_mutex
);
643 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644 * @hw: pointer to the HW structure
645 * @active: true to enable LPLU, false to disable
647 * Sets the LPLU D0 state according to the active flag.
648 * LPLU will not be activated unless the
649 * device autonegotiation advertisement meets standards of
650 * either 10 or 10/100 or 10/100/1000 at all duplexes.
651 * This is a function pointer entry point only called by
652 * PHY setup routines.
654 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
656 u16 data
= er32(POEMB
);
659 data
|= E1000_PHY_CTRL_D0A_LPLU
;
661 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
668 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669 * @hw: pointer to the HW structure
670 * @active: boolean used to enable/disable lplu
672 * The low power link up (lplu) state is set to the power management level D3
673 * when active is true, else clear lplu for D3. LPLU
674 * is used during Dx states where the power conservation is most important.
675 * During driver activity, SmartSpeed should be enabled so performance is
678 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
680 u16 data
= er32(POEMB
);
683 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
684 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
685 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
686 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
687 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
695 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
696 * @hw: pointer to the HW structure
698 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
699 * Then for non-82573 hardware, set the EEPROM access request bit and wait
700 * for EEPROM access grant bit. If the access grant bit is not set, release
701 * hardware semaphore.
703 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
707 ret_val
= e1000_get_hw_semaphore_82571(hw
);
711 switch (hw
->mac
.type
) {
715 ret_val
= e1000e_acquire_nvm(hw
);
720 e1000_put_hw_semaphore_82571(hw
);
726 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
727 * @hw: pointer to the HW structure
729 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
731 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
733 e1000e_release_nvm(hw
);
734 e1000_put_hw_semaphore_82571(hw
);
738 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739 * @hw: pointer to the HW structure
740 * @offset: offset within the EEPROM to be written to
741 * @words: number of words to write
742 * @data: 16 bit word(s) to be written to the EEPROM
744 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
746 * If e1000e_update_nvm_checksum is not called after this function, the
747 * EEPROM will most likely contain an invalid checksum.
749 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
754 switch (hw
->mac
.type
) {
758 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
762 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
765 ret_val
= -E1000_ERR_NVM
;
773 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774 * @hw: pointer to the HW structure
776 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
777 * up to the checksum. Then calculates the EEPROM checksum and writes the
778 * value to the EEPROM.
780 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
786 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
791 * If our nvm is an EEPROM, then we're done
792 * otherwise, commit the checksum to the flash NVM.
794 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
797 /* Check for pending operations. */
798 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
799 usleep_range(1000, 2000);
800 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
804 if (i
== E1000_FLASH_UPDATES
)
805 return -E1000_ERR_NVM
;
807 /* Reset the firmware if using STM opcode. */
808 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
810 * The enabling of and the actual reset must be done
811 * in two write cycles.
813 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
815 ew32(HICR
, E1000_HICR_FW_RESET
);
818 /* Commit the write to flash */
819 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
822 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
823 usleep_range(1000, 2000);
824 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
828 if (i
== E1000_FLASH_UPDATES
)
829 return -E1000_ERR_NVM
;
835 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836 * @hw: pointer to the HW structure
838 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
841 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
843 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
844 e1000_fix_nvm_checksum_82571(hw
);
846 return e1000e_validate_nvm_checksum_generic(hw
);
850 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851 * @hw: pointer to the HW structure
852 * @offset: offset within the EEPROM to be written to
853 * @words: number of words to write
854 * @data: 16 bit word(s) to be written to the EEPROM
856 * After checking for invalid values, poll the EEPROM to ensure the previous
857 * command has completed before trying to write the next word. After write
858 * poll for completion.
860 * If e1000e_update_nvm_checksum is not called after this function, the
861 * EEPROM will most likely contain an invalid checksum.
863 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
864 u16 words
, u16
*data
)
866 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
871 * A check for invalid values: offset too large, too many words,
872 * and not enough words.
874 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
876 e_dbg("nvm parameter(s) out of bounds\n");
877 return -E1000_ERR_NVM
;
880 for (i
= 0; i
< words
; i
++) {
881 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
882 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
883 E1000_NVM_RW_REG_START
;
885 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
891 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
900 * e1000_get_cfg_done_82571 - Poll for configuration done
901 * @hw: pointer to the HW structure
903 * Reads the management control register for the config done bit to be set.
905 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
907 s32 timeout
= PHY_CFG_TIMEOUT
;
911 E1000_NVM_CFG_DONE_PORT_0
)
913 usleep_range(1000, 2000);
917 e_dbg("MNG configuration cycle has not completed.\n");
918 return -E1000_ERR_RESET
;
925 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926 * @hw: pointer to the HW structure
927 * @active: true to enable LPLU, false to disable
929 * Sets the LPLU D0 state according to the active flag. When activating LPLU
930 * this function also disables smart speed and vice versa. LPLU will not be
931 * activated unless the device autonegotiation advertisement meets standards
932 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
933 * pointer entry point only called by PHY setup routines.
935 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
937 struct e1000_phy_info
*phy
= &hw
->phy
;
941 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
946 data
|= IGP02E1000_PM_D0_LPLU
;
947 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
953 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
954 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
958 data
&= ~IGP02E1000_PM_D0_LPLU
;
959 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
961 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
962 * during Dx states where the power conservation is most
963 * important. During driver activity we should enable
964 * SmartSpeed, so performance is maintained.
966 if (phy
->smart_speed
== e1000_smart_speed_on
) {
967 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
972 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
973 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
977 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
978 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
983 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
984 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
995 * e1000_reset_hw_82571 - Reset hardware
996 * @hw: pointer to the HW structure
998 * This resets the hardware into a known state.
1000 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
1002 u32 ctrl
, ctrl_ext
, eecd
, tctl
;
1006 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 * on the last TLP read/write transaction when MAC is reset.
1009 ret_val
= e1000e_disable_pcie_master(hw
);
1011 e_dbg("PCI-E Master disable polling has failed.\n");
1013 e_dbg("Masking off all interrupts\n");
1014 ew32(IMC
, 0xffffffff);
1018 tctl
&= ~E1000_TCTL_EN
;
1022 usleep_range(10000, 20000);
1025 * Must acquire the MDIO ownership before MAC reset.
1026 * Ownership defaults to firmware after a reset.
1028 switch (hw
->mac
.type
) {
1030 ret_val
= e1000_get_hw_semaphore_82573(hw
);
1034 ret_val
= e1000_get_hw_semaphore_82574(hw
);
1040 e_dbg("Cannot acquire MDIO ownership\n");
1044 e_dbg("Issuing a global reset to MAC\n");
1045 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
1047 /* Must release MDIO ownership and mutex after MAC reset. */
1048 switch (hw
->mac
.type
) {
1051 e1000_put_hw_semaphore_82574(hw
);
1057 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1059 ctrl_ext
= er32(CTRL_EXT
);
1060 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1061 ew32(CTRL_EXT
, ctrl_ext
);
1065 ret_val
= e1000e_get_auto_rd_done(hw
);
1067 /* We don't want to continue accessing MAC registers. */
1071 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1072 * Need to wait for Phy configuration completion before accessing
1076 switch (hw
->mac
.type
) {
1080 * REQ and GNT bits need to be cleared when using AUTO_RD
1081 * to access the EEPROM.
1084 eecd
&= ~(E1000_EECD_REQ
| E1000_EECD_GNT
);
1096 /* Clear any pending interrupt events. */
1097 ew32(IMC
, 0xffffffff);
1100 if (hw
->mac
.type
== e1000_82571
) {
1101 /* Install any alternate MAC address into RAR0 */
1102 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1106 e1000e_set_laa_state_82571(hw
, true);
1109 /* Reinitialize the 82571 serdes link state machine */
1110 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1111 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1117 * e1000_init_hw_82571 - Initialize hardware
1118 * @hw: pointer to the HW structure
1120 * This inits the hardware readying it for operation.
1122 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1124 struct e1000_mac_info
*mac
= &hw
->mac
;
1127 u16 i
, rar_count
= mac
->rar_entry_count
;
1129 e1000_initialize_hw_bits_82571(hw
);
1131 /* Initialize identification LED */
1132 ret_val
= mac
->ops
.id_led_init(hw
);
1134 e_dbg("Error initializing identification LED\n");
1135 /* This is not fatal and we should not stop init due to this */
1137 /* Disabling VLAN filtering */
1138 e_dbg("Initializing the IEEE VLAN\n");
1139 mac
->ops
.clear_vfta(hw
);
1141 /* Setup the receive address. */
1143 * If, however, a locally administered address was assigned to the
1144 * 82571, we must reserve a RAR for it to work around an issue where
1145 * resetting one port will reload the MAC on the other port.
1147 if (e1000e_get_laa_state_82571(hw
))
1149 e1000e_init_rx_addrs(hw
, rar_count
);
1151 /* Zero out the Multicast HASH table */
1152 e_dbg("Zeroing the MTA\n");
1153 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1154 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1156 /* Setup link and flow control */
1157 ret_val
= mac
->ops
.setup_link(hw
);
1159 /* Set the transmit descriptor write-back policy */
1160 reg_data
= er32(TXDCTL(0));
1161 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1162 E1000_TXDCTL_FULL_TX_DESC_WB
|
1163 E1000_TXDCTL_COUNT_DESC
;
1164 ew32(TXDCTL(0), reg_data
);
1166 /* ...for both queues. */
1167 switch (mac
->type
) {
1169 e1000e_enable_tx_pkt_filtering(hw
);
1173 reg_data
= er32(GCR
);
1174 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1175 ew32(GCR
, reg_data
);
1178 reg_data
= er32(TXDCTL(1));
1179 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1180 E1000_TXDCTL_FULL_TX_DESC_WB
|
1181 E1000_TXDCTL_COUNT_DESC
;
1182 ew32(TXDCTL(1), reg_data
);
1187 * Clear all of the statistics registers (clear on read). It is
1188 * important that we do this after we have tried to establish link
1189 * because the symbol error count will increment wildly if there
1192 e1000_clear_hw_cntrs_82571(hw
);
1198 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1199 * @hw: pointer to the HW structure
1201 * Initializes required hardware-dependent bits needed for normal operation.
1203 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1207 /* Transmit Descriptor Control 0 */
1208 reg
= er32(TXDCTL(0));
1210 ew32(TXDCTL(0), reg
);
1212 /* Transmit Descriptor Control 1 */
1213 reg
= er32(TXDCTL(1));
1215 ew32(TXDCTL(1), reg
);
1217 /* Transmit Arbitration Control 0 */
1218 reg
= er32(TARC(0));
1219 reg
&= ~(0xF << 27); /* 30:27 */
1220 switch (hw
->mac
.type
) {
1223 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1234 /* Transmit Arbitration Control 1 */
1235 reg
= er32(TARC(1));
1236 switch (hw
->mac
.type
) {
1239 reg
&= ~((1 << 29) | (1 << 30));
1240 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1241 if (er32(TCTL
) & E1000_TCTL_MULR
)
1251 /* Device Control */
1252 switch (hw
->mac
.type
) {
1264 /* Extended Device Control */
1265 switch (hw
->mac
.type
) {
1269 reg
= er32(CTRL_EXT
);
1272 ew32(CTRL_EXT
, reg
);
1278 if (hw
->mac
.type
== e1000_82571
) {
1279 reg
= er32(PBA_ECC
);
1280 reg
|= E1000_PBA_ECC_CORR_EN
;
1285 * Workaround for hardware errata.
1286 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1288 if ((hw
->mac
.type
== e1000_82571
) || (hw
->mac
.type
== e1000_82572
)) {
1289 reg
= er32(CTRL_EXT
);
1290 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1291 ew32(CTRL_EXT
, reg
);
1295 * Disable IPv6 extension header parsing because some malformed
1296 * IPv6 headers can hang the Rx.
1298 if (hw
->mac
.type
<= e1000_82573
) {
1300 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1304 /* PCI-Ex Control Registers */
1305 switch (hw
->mac
.type
) {
1313 * Workaround for hardware errata.
1314 * apply workaround for hardware errata documented in errata
1315 * docs Fixes issue where some error prone or unreliable PCIe
1316 * completions are occurring, particularly with ASPM enabled.
1317 * Without fix, issue can cause Tx timeouts.
1329 * e1000_clear_vfta_82571 - Clear VLAN filter table
1330 * @hw: pointer to the HW structure
1332 * Clears the register array which contains the VLAN filter table by
1333 * setting all the values to 0.
1335 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1339 u32 vfta_offset
= 0;
1340 u32 vfta_bit_in_reg
= 0;
1342 switch (hw
->mac
.type
) {
1346 if (hw
->mng_cookie
.vlan_id
!= 0) {
1348 * The VFTA is a 4096b bit-field, each identifying
1349 * a single VLAN ID. The following operations
1350 * determine which 32b entry (i.e. offset) into the
1351 * array we want to set the VLAN ID (i.e. bit) of
1352 * the manageability unit.
1354 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1355 E1000_VFTA_ENTRY_SHIFT
) &
1356 E1000_VFTA_ENTRY_MASK
;
1357 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1358 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1364 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1366 * If the offset we want to clear is the same offset of the
1367 * manageability VLAN ID, then clear all bits except that of
1368 * the manageability unit.
1370 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1371 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1377 * e1000_check_mng_mode_82574 - Check manageability is enabled
1378 * @hw: pointer to the HW structure
1380 * Reads the NVM Initialization Control Word 2 and returns true
1381 * (>0) if any manageability is enabled, else false (0).
1383 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1387 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1388 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1392 * e1000_led_on_82574 - Turn LED on
1393 * @hw: pointer to the HW structure
1397 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1402 ctrl
= hw
->mac
.ledctl_mode2
;
1403 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1405 * If no link, then turn LED on by setting the invert bit
1406 * for each LED that's "on" (0x0E) in ledctl_mode2.
1408 for (i
= 0; i
< 4; i
++)
1409 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1410 E1000_LEDCTL_MODE_LED_ON
)
1411 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1419 * e1000_check_phy_82574 - check 82574 phy hung state
1420 * @hw: pointer to the HW structure
1422 * Returns whether phy is hung or not
1424 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1426 u16 status_1kbt
= 0;
1427 u16 receive_errors
= 0;
1431 * Read PHY Receive Error counter first, if its is max - all F's then
1432 * read the Base1000T status register If both are max then PHY is hung.
1434 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1437 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1438 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1441 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1442 E1000_IDLE_ERROR_COUNT_MASK
)
1450 * e1000_setup_link_82571 - Setup flow control and link settings
1451 * @hw: pointer to the HW structure
1453 * Determines which flow control settings to use, then configures flow
1454 * control. Calls the appropriate media-specific link configuration
1455 * function. Assuming the adapter has a valid link partner, a valid link
1456 * should be established. Assumes the hardware has previously been reset
1457 * and the transmitter and receiver are not enabled.
1459 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1462 * 82573 does not have a word in the NVM to determine
1463 * the default flow control setting, so we explicitly
1466 switch (hw
->mac
.type
) {
1470 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1471 hw
->fc
.requested_mode
= e1000_fc_full
;
1477 return e1000e_setup_link_generic(hw
);
1481 * e1000_setup_copper_link_82571 - Configure copper link settings
1482 * @hw: pointer to the HW structure
1484 * Configures the link for auto-neg or forced speed and duplex. Then we check
1485 * for link, once link is established calls to configure collision distance
1486 * and flow control are called.
1488 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1494 ctrl
|= E1000_CTRL_SLU
;
1495 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1498 switch (hw
->phy
.type
) {
1501 ret_val
= e1000e_copper_link_setup_m88(hw
);
1503 case e1000_phy_igp_2
:
1504 ret_val
= e1000e_copper_link_setup_igp(hw
);
1507 return -E1000_ERR_PHY
;
1514 return e1000e_setup_copper_link(hw
);
1518 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1519 * @hw: pointer to the HW structure
1521 * Configures collision distance and flow control for fiber and serdes links.
1522 * Upon successful setup, poll for link.
1524 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1526 switch (hw
->mac
.type
) {
1530 * If SerDes loopback mode is entered, there is no form
1531 * of reset to take the adapter out of that mode. So we
1532 * have to explicitly take the adapter out of loopback
1533 * mode. This prevents drivers from twiddling their thumbs
1534 * if another tool failed to take it out of loopback mode.
1536 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1542 return e1000e_setup_fiber_serdes_link(hw
);
1546 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1547 * @hw: pointer to the HW structure
1549 * Reports the link state as up or down.
1551 * If autonegotiation is supported by the link partner, the link state is
1552 * determined by the result of autonegotiation. This is the most likely case.
1553 * If autonegotiation is not supported by the link partner, and the link
1554 * has a valid signal, force the link up.
1556 * The link state is represented internally here by 4 states:
1559 * 2) autoneg_progress
1560 * 3) autoneg_complete (the link successfully autonegotiated)
1561 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1564 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1566 struct e1000_mac_info
*mac
= &hw
->mac
;
1575 status
= er32(STATUS
);
1577 /* SYNCH bit and IV bit are sticky */
1581 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1583 /* Receiver is synchronized with no invalid bits. */
1584 switch (mac
->serdes_link_state
) {
1585 case e1000_serdes_link_autoneg_complete
:
1586 if (!(status
& E1000_STATUS_LU
)) {
1588 * We have lost link, retry autoneg before
1589 * reporting link failure
1591 mac
->serdes_link_state
=
1592 e1000_serdes_link_autoneg_progress
;
1593 mac
->serdes_has_link
= false;
1594 e_dbg("AN_UP -> AN_PROG\n");
1596 mac
->serdes_has_link
= true;
1600 case e1000_serdes_link_forced_up
:
1602 * If we are receiving /C/ ordered sets, re-enable
1603 * auto-negotiation in the TXCW register and disable
1604 * forced link in the Device Control register in an
1605 * attempt to auto-negotiate with our link partner.
1607 if (rxcw
& E1000_RXCW_C
) {
1608 /* Enable autoneg, and unforce link up */
1609 ew32(TXCW
, mac
->txcw
);
1610 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1611 mac
->serdes_link_state
=
1612 e1000_serdes_link_autoneg_progress
;
1613 mac
->serdes_has_link
= false;
1614 e_dbg("FORCED_UP -> AN_PROG\n");
1616 mac
->serdes_has_link
= true;
1620 case e1000_serdes_link_autoneg_progress
:
1621 if (rxcw
& E1000_RXCW_C
) {
1623 * We received /C/ ordered sets, meaning the
1624 * link partner has autonegotiated, and we can
1625 * trust the Link Up (LU) status bit.
1627 if (status
& E1000_STATUS_LU
) {
1628 mac
->serdes_link_state
=
1629 e1000_serdes_link_autoneg_complete
;
1630 e_dbg("AN_PROG -> AN_UP\n");
1631 mac
->serdes_has_link
= true;
1633 /* Autoneg completed, but failed. */
1634 mac
->serdes_link_state
=
1635 e1000_serdes_link_down
;
1636 e_dbg("AN_PROG -> DOWN\n");
1640 * The link partner did not autoneg.
1641 * Force link up and full duplex, and change
1644 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1645 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1648 /* Configure Flow Control after link up. */
1649 ret_val
= e1000e_config_fc_after_link_up(hw
);
1651 e_dbg("Error config flow control\n");
1654 mac
->serdes_link_state
=
1655 e1000_serdes_link_forced_up
;
1656 mac
->serdes_has_link
= true;
1657 e_dbg("AN_PROG -> FORCED_UP\n");
1661 case e1000_serdes_link_down
:
1664 * The link was down but the receiver has now gained
1665 * valid sync, so lets see if we can bring the link
1668 ew32(TXCW
, mac
->txcw
);
1669 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1670 mac
->serdes_link_state
=
1671 e1000_serdes_link_autoneg_progress
;
1672 mac
->serdes_has_link
= false;
1673 e_dbg("DOWN -> AN_PROG\n");
1677 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1678 mac
->serdes_has_link
= false;
1679 mac
->serdes_link_state
= e1000_serdes_link_down
;
1680 e_dbg("ANYSTATE -> DOWN\n");
1683 * Check several times, if SYNCH bit and CONFIG
1684 * bit both are consistently 1 then simply ignore
1685 * the IV bit and restart Autoneg
1687 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1690 if ((rxcw
& E1000_RXCW_SYNCH
) &&
1691 (rxcw
& E1000_RXCW_C
))
1694 if (rxcw
& E1000_RXCW_IV
) {
1695 mac
->serdes_has_link
= false;
1696 mac
->serdes_link_state
=
1697 e1000_serdes_link_down
;
1698 e_dbg("ANYSTATE -> DOWN\n");
1703 if (i
== AN_RETRY_COUNT
) {
1705 txcw
|= E1000_TXCW_ANE
;
1707 mac
->serdes_link_state
=
1708 e1000_serdes_link_autoneg_progress
;
1709 mac
->serdes_has_link
= false;
1710 e_dbg("ANYSTATE -> AN_PROG\n");
1719 * e1000_valid_led_default_82571 - Verify a valid default LED config
1720 * @hw: pointer to the HW structure
1721 * @data: pointer to the NVM (EEPROM)
1723 * Read the EEPROM for the current default LED configuration. If the
1724 * LED configuration is not valid, set to a valid LED configuration.
1726 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1730 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1732 e_dbg("NVM Read Error\n");
1736 switch (hw
->mac
.type
) {
1740 if (*data
== ID_LED_RESERVED_F746
)
1741 *data
= ID_LED_DEFAULT_82573
;
1744 if (*data
== ID_LED_RESERVED_0000
||
1745 *data
== ID_LED_RESERVED_FFFF
)
1746 *data
= ID_LED_DEFAULT
;
1754 * e1000e_get_laa_state_82571 - Get locally administered address state
1755 * @hw: pointer to the HW structure
1757 * Retrieve and return the current locally administered address state.
1759 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1761 if (hw
->mac
.type
!= e1000_82571
)
1764 return hw
->dev_spec
.e82571
.laa_is_present
;
1768 * e1000e_set_laa_state_82571 - Set locally administered address state
1769 * @hw: pointer to the HW structure
1770 * @state: enable/disable locally administered address
1772 * Enable/Disable the current locally administered address state.
1774 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1776 if (hw
->mac
.type
!= e1000_82571
)
1779 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1781 /* If workaround is activated... */
1784 * Hold a copy of the LAA in RAR[14] This is done so that
1785 * between the time RAR[0] gets clobbered and the time it
1786 * gets fixed, the actual LAA is in one of the RARs and no
1787 * incoming packets directed to this port are dropped.
1788 * Eventually the LAA will be in RAR[0] and RAR[14].
1790 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
,
1791 hw
->mac
.rar_entry_count
- 1);
1795 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1796 * @hw: pointer to the HW structure
1798 * Verifies that the EEPROM has completed the update. After updating the
1799 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1800 * the checksum fix is not implemented, we need to set the bit and update
1801 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1802 * we need to return bad checksum.
1804 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1806 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1810 if (nvm
->type
!= e1000_nvm_flash_hw
)
1814 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1815 * 10h-12h. Checksum may need to be fixed.
1817 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1821 if (!(data
& 0x10)) {
1823 * Read 0x23 and check bit 15. This bit is a 1
1824 * when the checksum has already been fixed. If
1825 * the checksum is still wrong and this bit is a
1826 * 1, we need to return bad checksum. Otherwise,
1827 * we need to set this bit to a 1 and update the
1830 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1834 if (!(data
& 0x8000)) {
1836 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1839 ret_val
= e1000e_update_nvm_checksum(hw
);
1847 * e1000_read_mac_addr_82571 - Read device MAC address
1848 * @hw: pointer to the HW structure
1850 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1852 if (hw
->mac
.type
== e1000_82571
) {
1856 * If there's an alternate MAC address place it in RAR0
1857 * so that it will override the Si installed default perm
1860 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1865 return e1000_read_mac_addr_generic(hw
);
1869 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1870 * @hw: pointer to the HW structure
1872 * In the case of a PHY power down to save power, or to turn off link during a
1873 * driver unload, or wake on lan is not enabled, remove the link.
1875 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1877 struct e1000_phy_info
*phy
= &hw
->phy
;
1878 struct e1000_mac_info
*mac
= &hw
->mac
;
1880 if (!phy
->ops
.check_reset_block
)
1883 /* If the management interface is not enabled, then power down */
1884 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1885 e1000_power_down_phy_copper(hw
);
1889 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1890 * @hw: pointer to the HW structure
1892 * Clears the hardware counters by reading the counter registers.
1894 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1896 e1000e_clear_hw_cntrs_base(hw
);
1934 static const struct e1000_mac_operations e82571_mac_ops
= {
1935 /* .check_mng_mode: mac type dependent */
1936 /* .check_for_link: media type dependent */
1937 .id_led_init
= e1000e_id_led_init_generic
,
1938 .cleanup_led
= e1000e_cleanup_led_generic
,
1939 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1940 .get_bus_info
= e1000e_get_bus_info_pcie
,
1941 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1942 /* .get_link_up_info: media type dependent */
1943 /* .led_on: mac type dependent */
1944 .led_off
= e1000e_led_off_generic
,
1945 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1946 .write_vfta
= e1000_write_vfta_generic
,
1947 .clear_vfta
= e1000_clear_vfta_82571
,
1948 .reset_hw
= e1000_reset_hw_82571
,
1949 .init_hw
= e1000_init_hw_82571
,
1950 .setup_link
= e1000_setup_link_82571
,
1951 /* .setup_physical_interface: media type dependent */
1952 .setup_led
= e1000e_setup_led_generic
,
1953 .config_collision_dist
= e1000e_config_collision_dist_generic
,
1954 .read_mac_addr
= e1000_read_mac_addr_82571
,
1955 .rar_set
= e1000e_rar_set_generic
,
1958 static const struct e1000_phy_operations e82_phy_ops_igp
= {
1959 .acquire
= e1000_get_hw_semaphore_82571
,
1960 .check_polarity
= e1000_check_polarity_igp
,
1961 .check_reset_block
= e1000e_check_reset_block_generic
,
1963 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1964 .get_cfg_done
= e1000_get_cfg_done_82571
,
1965 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1966 .get_info
= e1000e_get_phy_info_igp
,
1967 .read_reg
= e1000e_read_phy_reg_igp
,
1968 .release
= e1000_put_hw_semaphore_82571
,
1969 .reset
= e1000e_phy_hw_reset_generic
,
1970 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1971 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1972 .write_reg
= e1000e_write_phy_reg_igp
,
1973 .cfg_on_link_up
= NULL
,
1976 static const struct e1000_phy_operations e82_phy_ops_m88
= {
1977 .acquire
= e1000_get_hw_semaphore_82571
,
1978 .check_polarity
= e1000_check_polarity_m88
,
1979 .check_reset_block
= e1000e_check_reset_block_generic
,
1980 .commit
= e1000e_phy_sw_reset
,
1981 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1982 .get_cfg_done
= e1000e_get_cfg_done
,
1983 .get_cable_length
= e1000e_get_cable_length_m88
,
1984 .get_info
= e1000e_get_phy_info_m88
,
1985 .read_reg
= e1000e_read_phy_reg_m88
,
1986 .release
= e1000_put_hw_semaphore_82571
,
1987 .reset
= e1000e_phy_hw_reset_generic
,
1988 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1989 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1990 .write_reg
= e1000e_write_phy_reg_m88
,
1991 .cfg_on_link_up
= NULL
,
1994 static const struct e1000_phy_operations e82_phy_ops_bm
= {
1995 .acquire
= e1000_get_hw_semaphore_82571
,
1996 .check_polarity
= e1000_check_polarity_m88
,
1997 .check_reset_block
= e1000e_check_reset_block_generic
,
1998 .commit
= e1000e_phy_sw_reset
,
1999 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
2000 .get_cfg_done
= e1000e_get_cfg_done
,
2001 .get_cable_length
= e1000e_get_cable_length_m88
,
2002 .get_info
= e1000e_get_phy_info_m88
,
2003 .read_reg
= e1000e_read_phy_reg_bm2
,
2004 .release
= e1000_put_hw_semaphore_82571
,
2005 .reset
= e1000e_phy_hw_reset_generic
,
2006 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
2007 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
2008 .write_reg
= e1000e_write_phy_reg_bm2
,
2009 .cfg_on_link_up
= NULL
,
2012 static const struct e1000_nvm_operations e82571_nvm_ops
= {
2013 .acquire
= e1000_acquire_nvm_82571
,
2014 .read
= e1000e_read_nvm_eerd
,
2015 .release
= e1000_release_nvm_82571
,
2016 .reload
= e1000e_reload_nvm_generic
,
2017 .update
= e1000_update_nvm_checksum_82571
,
2018 .valid_led_default
= e1000_valid_led_default_82571
,
2019 .validate
= e1000_validate_nvm_checksum_82571
,
2020 .write
= e1000_write_nvm_82571
,
2023 const struct e1000_info e1000_82571_info
= {
2025 .flags
= FLAG_HAS_HW_VLAN_FILTER
2026 | FLAG_HAS_JUMBO_FRAMES
2028 | FLAG_APME_IN_CTRL3
2029 | FLAG_HAS_CTRLEXT_ON_LOAD
2030 | FLAG_HAS_SMART_POWER_DOWN
2031 | FLAG_RESET_OVERWRITES_LAA
/* errata */
2032 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
2033 | FLAG_APME_CHECK_PORT_B
,
2034 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2037 .max_hw_frame_size
= DEFAULT_JUMBO
,
2038 .get_variants
= e1000_get_variants_82571
,
2039 .mac_ops
= &e82571_mac_ops
,
2040 .phy_ops
= &e82_phy_ops_igp
,
2041 .nvm_ops
= &e82571_nvm_ops
,
2044 const struct e1000_info e1000_82572_info
= {
2046 .flags
= FLAG_HAS_HW_VLAN_FILTER
2047 | FLAG_HAS_JUMBO_FRAMES
2049 | FLAG_APME_IN_CTRL3
2050 | FLAG_HAS_CTRLEXT_ON_LOAD
2051 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
2052 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2055 .max_hw_frame_size
= DEFAULT_JUMBO
,
2056 .get_variants
= e1000_get_variants_82571
,
2057 .mac_ops
= &e82571_mac_ops
,
2058 .phy_ops
= &e82_phy_ops_igp
,
2059 .nvm_ops
= &e82571_nvm_ops
,
2062 const struct e1000_info e1000_82573_info
= {
2064 .flags
= FLAG_HAS_HW_VLAN_FILTER
2066 | FLAG_APME_IN_CTRL3
2067 | FLAG_HAS_SMART_POWER_DOWN
2069 | FLAG_HAS_SWSM_ON_LOAD
,
2070 .flags2
= FLAG2_DISABLE_ASPM_L1
2071 | FLAG2_DISABLE_ASPM_L0S
,
2073 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2074 .get_variants
= e1000_get_variants_82571
,
2075 .mac_ops
= &e82571_mac_ops
,
2076 .phy_ops
= &e82_phy_ops_m88
,
2077 .nvm_ops
= &e82571_nvm_ops
,
2080 const struct e1000_info e1000_82574_info
= {
2082 .flags
= FLAG_HAS_HW_VLAN_FILTER
2084 | FLAG_HAS_JUMBO_FRAMES
2086 | FLAG_APME_IN_CTRL3
2087 | FLAG_HAS_SMART_POWER_DOWN
2089 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2090 .flags2
= FLAG2_CHECK_PHY_HANG
2091 | FLAG2_DISABLE_ASPM_L0S
2092 | FLAG2_DISABLE_ASPM_L1
2093 | FLAG2_NO_DISABLE_RX
2096 .max_hw_frame_size
= DEFAULT_JUMBO
,
2097 .get_variants
= e1000_get_variants_82571
,
2098 .mac_ops
= &e82571_mac_ops
,
2099 .phy_ops
= &e82_phy_ops_bm
,
2100 .nvm_ops
= &e82571_nvm_ops
,
2103 const struct e1000_info e1000_82583_info
= {
2105 .flags
= FLAG_HAS_HW_VLAN_FILTER
2107 | FLAG_APME_IN_CTRL3
2108 | FLAG_HAS_SMART_POWER_DOWN
2110 | FLAG_HAS_JUMBO_FRAMES
2111 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2112 .flags2
= FLAG2_DISABLE_ASPM_L0S
2113 | FLAG2_NO_DISABLE_RX
,
2115 .max_hw_frame_size
= DEFAULT_JUMBO
,
2116 .get_variants
= e1000_get_variants_82571
,
2117 .mac_ops
= &e82571_mac_ops
,
2118 .phy_ops
= &e82_phy_ops_bm
,
2119 .nvm_ops
= &e82571_nvm_ops
,