1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
41 enum {NETDEV_STATS
, E1000_STATS
};
44 char stat_string
[ETH_GSTRING_LEN
];
50 #define E1000_STAT(str, m) { \
52 .type = E1000_STATS, \
53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
57 .type = NETDEV_STATS, \
58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
61 static const struct e1000_stats e1000_gstrings_stats
[] = {
62 E1000_STAT("rx_packets", stats
.gprc
),
63 E1000_STAT("tx_packets", stats
.gptc
),
64 E1000_STAT("rx_bytes", stats
.gorc
),
65 E1000_STAT("tx_bytes", stats
.gotc
),
66 E1000_STAT("rx_broadcast", stats
.bprc
),
67 E1000_STAT("tx_broadcast", stats
.bptc
),
68 E1000_STAT("rx_multicast", stats
.mprc
),
69 E1000_STAT("tx_multicast", stats
.mptc
),
70 E1000_NETDEV_STAT("rx_errors", rx_errors
),
71 E1000_NETDEV_STAT("tx_errors", tx_errors
),
72 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
73 E1000_STAT("multicast", stats
.mprc
),
74 E1000_STAT("collisions", stats
.colc
),
75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
77 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
79 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
80 E1000_STAT("rx_missed_errors", stats
.mpc
),
81 E1000_STAT("tx_aborted_errors", stats
.ecol
),
82 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
85 E1000_STAT("tx_window_errors", stats
.latecol
),
86 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
87 E1000_STAT("tx_deferred_ok", stats
.dc
),
88 E1000_STAT("tx_single_coll_ok", stats
.scc
),
89 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
90 E1000_STAT("tx_timeout_count", tx_timeout_count
),
91 E1000_STAT("tx_restart_queue", restart_queue
),
92 E1000_STAT("rx_long_length_errors", stats
.roc
),
93 E1000_STAT("rx_short_length_errors", stats
.ruc
),
94 E1000_STAT("rx_align_errors", stats
.algnerrc
),
95 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
96 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
97 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
98 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
99 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
100 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
101 E1000_STAT("rx_long_byte_count", stats
.gorc
),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
104 E1000_STAT("rx_header_split", rx_hdr_split
),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
106 E1000_STAT("tx_smbus", stats
.mgptc
),
107 E1000_STAT("rx_smbus", stats
.mgprc
),
108 E1000_STAT("dropped_smbus", stats
.mgpdc
),
109 E1000_STAT("rx_dma_failed", rx_dma_failed
),
110 E1000_STAT("tx_dma_failed", tx_dma_failed
),
113 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
116 "Register test (offline)", "Eeprom test (offline)",
117 "Interrupt test (offline)", "Loopback test (offline)",
118 "Link test (on/offline)"
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
122 static int e1000_get_settings(struct net_device
*netdev
,
123 struct ethtool_cmd
*ecmd
)
125 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
126 struct e1000_hw
*hw
= &adapter
->hw
;
129 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
131 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
132 SUPPORTED_10baseT_Full
|
133 SUPPORTED_100baseT_Half
|
134 SUPPORTED_100baseT_Full
|
135 SUPPORTED_1000baseT_Full
|
138 if (hw
->phy
.type
== e1000_phy_ife
)
139 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
140 ecmd
->advertising
= ADVERTISED_TP
;
142 if (hw
->mac
.autoneg
== 1) {
143 ecmd
->advertising
|= ADVERTISED_Autoneg
;
144 /* the e1000 autoneg seems to match ethtool nicely */
145 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
148 ecmd
->port
= PORT_TP
;
149 ecmd
->phy_address
= hw
->phy
.addr
;
150 ecmd
->transceiver
= XCVR_INTERNAL
;
153 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
157 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
161 ecmd
->port
= PORT_FIBRE
;
162 ecmd
->transceiver
= XCVR_EXTERNAL
;
168 if (netif_running(netdev
)) {
169 if (netif_carrier_ok(netdev
)) {
170 speed
= adapter
->link_speed
;
171 ecmd
->duplex
= adapter
->link_duplex
- 1;
174 u32 status
= er32(STATUS
);
175 if (status
& E1000_STATUS_LU
) {
176 if (status
& E1000_STATUS_SPEED_1000
)
178 else if (status
& E1000_STATUS_SPEED_100
)
183 if (status
& E1000_STATUS_FD
)
184 ecmd
->duplex
= DUPLEX_FULL
;
186 ecmd
->duplex
= DUPLEX_HALF
;
190 ethtool_cmd_speed_set(ecmd
, speed
);
191 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
192 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
194 /* MDI-X => 2; MDI =>1; Invalid =>0 */
195 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
196 netif_carrier_ok(netdev
))
197 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
200 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
205 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
207 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
211 /* Make sure dplx is at most 1 bit and lsb of speed is not set
212 * for the switch() below to work */
213 if ((spd
& 1) || (dplx
& ~1))
216 /* Fiber NICs only allow 1000 gbps Full duplex */
217 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
219 dplx
!= DUPLEX_FULL
) {
223 switch (spd
+ dplx
) {
224 case SPEED_10
+ DUPLEX_HALF
:
225 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
227 case SPEED_10
+ DUPLEX_FULL
:
228 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
230 case SPEED_100
+ DUPLEX_HALF
:
231 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
233 case SPEED_100
+ DUPLEX_FULL
:
234 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
236 case SPEED_1000
+ DUPLEX_FULL
:
238 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
240 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
247 e_err("Unsupported Speed/Duplex configuration\n");
251 static int e1000_set_settings(struct net_device
*netdev
,
252 struct ethtool_cmd
*ecmd
)
254 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
255 struct e1000_hw
*hw
= &adapter
->hw
;
258 * When SoL/IDER sessions are active, autoneg/speed/duplex
261 if (hw
->phy
.ops
.check_reset_block
&&
262 hw
->phy
.ops
.check_reset_block(hw
)) {
263 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
267 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
268 usleep_range(1000, 2000);
270 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
272 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
273 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
277 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
280 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
281 if (adapter
->fc_autoneg
)
282 hw
->fc
.requested_mode
= e1000_fc_default
;
284 u32 speed
= ethtool_cmd_speed(ecmd
);
285 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
286 clear_bit(__E1000_RESETTING
, &adapter
->state
);
293 if (netif_running(adapter
->netdev
)) {
294 e1000e_down(adapter
);
297 e1000e_reset(adapter
);
300 clear_bit(__E1000_RESETTING
, &adapter
->state
);
304 static void e1000_get_pauseparam(struct net_device
*netdev
,
305 struct ethtool_pauseparam
*pause
)
307 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
308 struct e1000_hw
*hw
= &adapter
->hw
;
311 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
313 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
315 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
317 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
323 static int e1000_set_pauseparam(struct net_device
*netdev
,
324 struct ethtool_pauseparam
*pause
)
326 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
327 struct e1000_hw
*hw
= &adapter
->hw
;
330 adapter
->fc_autoneg
= pause
->autoneg
;
332 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
333 usleep_range(1000, 2000);
335 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
336 hw
->fc
.requested_mode
= e1000_fc_default
;
337 if (netif_running(adapter
->netdev
)) {
338 e1000e_down(adapter
);
341 e1000e_reset(adapter
);
344 if (pause
->rx_pause
&& pause
->tx_pause
)
345 hw
->fc
.requested_mode
= e1000_fc_full
;
346 else if (pause
->rx_pause
&& !pause
->tx_pause
)
347 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
348 else if (!pause
->rx_pause
&& pause
->tx_pause
)
349 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
350 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
351 hw
->fc
.requested_mode
= e1000_fc_none
;
353 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
355 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
356 retval
= hw
->mac
.ops
.setup_link(hw
);
357 /* implicit goto out */
359 retval
= e1000e_force_mac_fc(hw
);
362 e1000e_set_fc_watermarks(hw
);
367 clear_bit(__E1000_RESETTING
, &adapter
->state
);
371 static u32
e1000_get_msglevel(struct net_device
*netdev
)
373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
374 return adapter
->msg_enable
;
377 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
379 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
380 adapter
->msg_enable
= data
;
383 static int e1000_get_regs_len(struct net_device
*netdev
)
385 #define E1000_REGS_LEN 32 /* overestimate */
386 return E1000_REGS_LEN
* sizeof(u32
);
389 static void e1000_get_regs(struct net_device
*netdev
,
390 struct ethtool_regs
*regs
, void *p
)
392 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
393 struct e1000_hw
*hw
= &adapter
->hw
;
397 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
399 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
400 adapter
->pdev
->device
;
402 regs_buff
[0] = er32(CTRL
);
403 regs_buff
[1] = er32(STATUS
);
405 regs_buff
[2] = er32(RCTL
);
406 regs_buff
[3] = er32(RDLEN(0));
407 regs_buff
[4] = er32(RDH(0));
408 regs_buff
[5] = er32(RDT(0));
409 regs_buff
[6] = er32(RDTR
);
411 regs_buff
[7] = er32(TCTL
);
412 regs_buff
[8] = er32(TDLEN(0));
413 regs_buff
[9] = er32(TDH(0));
414 regs_buff
[10] = er32(TDT(0));
415 regs_buff
[11] = er32(TIDV
);
417 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
419 /* ethtool doesn't use anything past this point, so all this
420 * code is likely legacy junk for apps that may or may not
422 if (hw
->phy
.type
== e1000_phy_m88
) {
423 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
424 regs_buff
[13] = (u32
)phy_data
; /* cable length */
425 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
426 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
429 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
430 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
431 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
432 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
433 /* phy receive errors */
434 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
435 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
437 regs_buff
[21] = 0; /* was idle_errors */
438 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
439 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
440 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
443 static int e1000_get_eeprom_len(struct net_device
*netdev
)
445 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
446 return adapter
->hw
.nvm
.word_size
* 2;
449 static int e1000_get_eeprom(struct net_device
*netdev
,
450 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
452 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
453 struct e1000_hw
*hw
= &adapter
->hw
;
460 if (eeprom
->len
== 0)
463 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
465 first_word
= eeprom
->offset
>> 1;
466 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
468 eeprom_buff
= kmalloc(sizeof(u16
) *
469 (last_word
- first_word
+ 1), GFP_KERNEL
);
473 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
474 ret_val
= e1000_read_nvm(hw
, first_word
,
475 last_word
- first_word
+ 1,
478 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
479 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
487 /* a read error occurred, throw away the result */
488 memset(eeprom_buff
, 0xff, sizeof(u16
) *
489 (last_word
- first_word
+ 1));
491 /* Device's eeprom is always little-endian, word addressable */
492 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
493 le16_to_cpus(&eeprom_buff
[i
]);
496 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
502 static int e1000_set_eeprom(struct net_device
*netdev
,
503 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
505 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
506 struct e1000_hw
*hw
= &adapter
->hw
;
515 if (eeprom
->len
== 0)
518 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
521 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
524 max_len
= hw
->nvm
.word_size
* 2;
526 first_word
= eeprom
->offset
>> 1;
527 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
528 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
532 ptr
= (void *)eeprom_buff
;
534 if (eeprom
->offset
& 1) {
535 /* need read/modify/write of first changed EEPROM word */
536 /* only the second byte of the word is being modified */
537 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
540 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (!ret_val
))
541 /* need read/modify/write of last changed EEPROM word */
542 /* only the first byte of the word is being modified */
543 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
544 &eeprom_buff
[last_word
- first_word
]);
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
551 le16_to_cpus(&eeprom_buff
[i
]);
553 memcpy(ptr
, bytes
, eeprom
->len
);
555 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
556 cpu_to_le16s(&eeprom_buff
[i
]);
558 ret_val
= e1000_write_nvm(hw
, first_word
,
559 last_word
- first_word
+ 1, eeprom_buff
);
565 * Update the checksum over the first part of the EEPROM if needed
566 * and flush shadow RAM for applicable controllers
568 if ((first_word
<= NVM_CHECKSUM_REG
) ||
569 (hw
->mac
.type
== e1000_82583
) ||
570 (hw
->mac
.type
== e1000_82574
) ||
571 (hw
->mac
.type
== e1000_82573
))
572 ret_val
= e1000e_update_nvm_checksum(hw
);
579 static void e1000_get_drvinfo(struct net_device
*netdev
,
580 struct ethtool_drvinfo
*drvinfo
)
582 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
584 strlcpy(drvinfo
->driver
, e1000e_driver_name
,
585 sizeof(drvinfo
->driver
));
586 strlcpy(drvinfo
->version
, e1000e_driver_version
,
587 sizeof(drvinfo
->version
));
590 * EEPROM image version # is reported as firmware version # for
593 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
595 (adapter
->eeprom_vers
& 0xF000) >> 12,
596 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
597 (adapter
->eeprom_vers
& 0x000F));
599 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
600 sizeof(drvinfo
->bus_info
));
601 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
602 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
605 static void e1000_get_ringparam(struct net_device
*netdev
,
606 struct ethtool_ringparam
*ring
)
608 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
610 ring
->rx_max_pending
= E1000_MAX_RXD
;
611 ring
->tx_max_pending
= E1000_MAX_TXD
;
612 ring
->rx_pending
= adapter
->rx_ring_count
;
613 ring
->tx_pending
= adapter
->tx_ring_count
;
616 static int e1000_set_ringparam(struct net_device
*netdev
,
617 struct ethtool_ringparam
*ring
)
619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
620 struct e1000_ring
*temp_tx
= NULL
, *temp_rx
= NULL
;
621 int err
= 0, size
= sizeof(struct e1000_ring
);
622 bool set_tx
= false, set_rx
= false;
623 u16 new_rx_count
, new_tx_count
;
625 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
628 new_rx_count
= clamp_t(u32
, ring
->rx_pending
, E1000_MIN_RXD
,
630 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
632 new_tx_count
= clamp_t(u32
, ring
->tx_pending
, E1000_MIN_TXD
,
634 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
636 if ((new_tx_count
== adapter
->tx_ring_count
) &&
637 (new_rx_count
== adapter
->rx_ring_count
))
641 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
642 usleep_range(1000, 2000);
644 if (!netif_running(adapter
->netdev
)) {
645 /* Set counts now and allocate resources during open() */
646 adapter
->tx_ring
->count
= new_tx_count
;
647 adapter
->rx_ring
->count
= new_rx_count
;
648 adapter
->tx_ring_count
= new_tx_count
;
649 adapter
->rx_ring_count
= new_rx_count
;
653 set_tx
= (new_tx_count
!= adapter
->tx_ring_count
);
654 set_rx
= (new_rx_count
!= adapter
->rx_ring_count
);
656 /* Allocate temporary storage for ring updates */
658 temp_tx
= vmalloc(size
);
665 temp_rx
= vmalloc(size
);
672 e1000e_down(adapter
);
675 * We can't just free everything and then setup again, because the
676 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677 * structs. First, attempt to allocate new resources...
680 memcpy(temp_tx
, adapter
->tx_ring
, size
);
681 temp_tx
->count
= new_tx_count
;
682 err
= e1000e_setup_tx_resources(temp_tx
);
687 memcpy(temp_rx
, adapter
->rx_ring
, size
);
688 temp_rx
->count
= new_rx_count
;
689 err
= e1000e_setup_rx_resources(temp_rx
);
694 /* ...then free the old resources and copy back any new ring data */
696 e1000e_free_tx_resources(adapter
->tx_ring
);
697 memcpy(adapter
->tx_ring
, temp_tx
, size
);
698 adapter
->tx_ring_count
= new_tx_count
;
701 e1000e_free_rx_resources(adapter
->rx_ring
);
702 memcpy(adapter
->rx_ring
, temp_rx
, size
);
703 adapter
->rx_ring_count
= new_rx_count
;
708 e1000e_free_tx_resources(temp_tx
);
715 clear_bit(__E1000_RESETTING
, &adapter
->state
);
719 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
720 int reg
, int offset
, u32 mask
, u32 write
)
723 static const u32 test
[] = {
724 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
726 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
727 (test
[pat
] & write
));
728 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
729 if (val
!= (test
[pat
] & write
& mask
)) {
730 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
731 reg
+ offset
, val
, (test
[pat
] & write
& mask
));
739 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
740 int reg
, u32 mask
, u32 write
)
743 __ew32(&adapter
->hw
, reg
, write
& mask
);
744 val
= __er32(&adapter
->hw
, reg
);
745 if ((write
& mask
) != (val
& mask
)) {
746 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
747 reg
, (val
& mask
), (write
& mask
));
753 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
755 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
758 #define REG_PATTERN_TEST(reg, mask, write) \
759 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
761 #define REG_SET_AND_CHECK(reg, mask, write) \
763 if (reg_set_and_check(adapter, data, reg, mask, write)) \
767 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
769 struct e1000_hw
*hw
= &adapter
->hw
;
770 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
780 * The status register is Read Only, so a write should fail.
781 * Some bits that get toggled are ignored.
784 /* there are several bits on newer hardware that are r/w */
787 case e1000_80003es2lan
:
795 before
= er32(STATUS
);
796 value
= (er32(STATUS
) & toggle
);
797 ew32(STATUS
, toggle
);
798 after
= er32(STATUS
) & toggle
;
799 if (value
!= after
) {
800 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
805 /* restore previous status */
806 ew32(STATUS
, before
);
808 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
809 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
818 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
821 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
823 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
826 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
828 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
829 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
830 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
832 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
834 if (!(adapter
->flags
& FLAG_IS_ICH
))
835 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
836 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
837 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
850 if (mac
->type
== e1000_pch_lpt
)
851 wlock_mac
= (er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
) >>
852 E1000_FWSM_WLOCK_MAC_SHIFT
;
854 for (i
= 0; i
< mac
->rar_entry_count
; i
++) {
855 /* Cannot test write-protected SHRAL[n] registers */
856 if ((wlock_mac
== 1) || (wlock_mac
&& (i
> wlock_mac
)))
859 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
863 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
864 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
871 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
878 /* Read and add up the contents of the EEPROM */
879 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
880 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
887 /* If Checksum is not Correct return error else test passed */
888 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
894 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
896 struct net_device
*netdev
= (struct net_device
*) data
;
897 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
898 struct e1000_hw
*hw
= &adapter
->hw
;
900 adapter
->test_icr
|= er32(ICR
);
905 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
907 struct net_device
*netdev
= adapter
->netdev
;
908 struct e1000_hw
*hw
= &adapter
->hw
;
911 u32 irq
= adapter
->pdev
->irq
;
914 int int_mode
= E1000E_INT_MODE_LEGACY
;
918 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
919 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
920 int_mode
= adapter
->int_mode
;
921 e1000e_reset_interrupt_capability(adapter
);
922 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
923 e1000e_set_interrupt_capability(adapter
);
925 /* Hook up test interrupt handler just for this test */
926 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
929 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
930 netdev
->name
, netdev
)) {
935 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
937 /* Disable all the interrupts */
938 ew32(IMC
, 0xFFFFFFFF);
940 usleep_range(10000, 20000);
942 /* Test each interrupt */
943 for (i
= 0; i
< 10; i
++) {
944 /* Interrupt to test */
947 if (adapter
->flags
& FLAG_IS_ICH
) {
949 case E1000_ICR_RXSEQ
:
952 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
953 adapter
->hw
.mac
.type
== e1000_ich9lan
)
963 * Disable the interrupt to be reported in
964 * the cause register and then force the same
965 * interrupt and see if one gets posted. If
966 * an interrupt was posted to the bus, the
969 adapter
->test_icr
= 0;
973 usleep_range(10000, 20000);
975 if (adapter
->test_icr
& mask
) {
982 * Enable the interrupt to be reported in
983 * the cause register and then force the same
984 * interrupt and see if one gets posted. If
985 * an interrupt was not posted to the bus, the
988 adapter
->test_icr
= 0;
992 usleep_range(10000, 20000);
994 if (!(adapter
->test_icr
& mask
)) {
1001 * Disable the other interrupts to be reported in
1002 * the cause register and then force the other
1003 * interrupts and see if any get posted. If
1004 * an interrupt was posted to the bus, the
1007 adapter
->test_icr
= 0;
1008 ew32(IMC
, ~mask
& 0x00007FFF);
1009 ew32(ICS
, ~mask
& 0x00007FFF);
1011 usleep_range(10000, 20000);
1013 if (adapter
->test_icr
) {
1020 /* Disable all the interrupts */
1021 ew32(IMC
, 0xFFFFFFFF);
1023 usleep_range(10000, 20000);
1025 /* Unhook test interrupt handler */
1026 free_irq(irq
, netdev
);
1029 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1030 e1000e_reset_interrupt_capability(adapter
);
1031 adapter
->int_mode
= int_mode
;
1032 e1000e_set_interrupt_capability(adapter
);
1038 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1040 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1041 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1042 struct pci_dev
*pdev
= adapter
->pdev
;
1045 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1046 for (i
= 0; i
< tx_ring
->count
; i
++) {
1047 if (tx_ring
->buffer_info
[i
].dma
)
1048 dma_unmap_single(&pdev
->dev
,
1049 tx_ring
->buffer_info
[i
].dma
,
1050 tx_ring
->buffer_info
[i
].length
,
1052 if (tx_ring
->buffer_info
[i
].skb
)
1053 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1057 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1058 for (i
= 0; i
< rx_ring
->count
; i
++) {
1059 if (rx_ring
->buffer_info
[i
].dma
)
1060 dma_unmap_single(&pdev
->dev
,
1061 rx_ring
->buffer_info
[i
].dma
,
1062 2048, DMA_FROM_DEVICE
);
1063 if (rx_ring
->buffer_info
[i
].skb
)
1064 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1068 if (tx_ring
->desc
) {
1069 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1071 tx_ring
->desc
= NULL
;
1073 if (rx_ring
->desc
) {
1074 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1076 rx_ring
->desc
= NULL
;
1079 kfree(tx_ring
->buffer_info
);
1080 tx_ring
->buffer_info
= NULL
;
1081 kfree(rx_ring
->buffer_info
);
1082 rx_ring
->buffer_info
= NULL
;
1085 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1087 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1088 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1089 struct pci_dev
*pdev
= adapter
->pdev
;
1090 struct e1000_hw
*hw
= &adapter
->hw
;
1095 /* Setup Tx descriptor ring and Tx buffers */
1097 if (!tx_ring
->count
)
1098 tx_ring
->count
= E1000_DEFAULT_TXD
;
1100 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1101 sizeof(struct e1000_buffer
),
1103 if (!tx_ring
->buffer_info
) {
1108 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1109 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1110 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1111 &tx_ring
->dma
, GFP_KERNEL
);
1112 if (!tx_ring
->desc
) {
1116 tx_ring
->next_to_use
= 0;
1117 tx_ring
->next_to_clean
= 0;
1119 ew32(TDBAL(0), ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1120 ew32(TDBAH(0), ((u64
) tx_ring
->dma
>> 32));
1121 ew32(TDLEN(0), tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1124 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1125 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1126 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1128 for (i
= 0; i
< tx_ring
->count
; i
++) {
1129 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1130 struct sk_buff
*skb
;
1131 unsigned int skb_size
= 1024;
1133 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1138 skb_put(skb
, skb_size
);
1139 tx_ring
->buffer_info
[i
].skb
= skb
;
1140 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1141 tx_ring
->buffer_info
[i
].dma
=
1142 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1144 if (dma_mapping_error(&pdev
->dev
,
1145 tx_ring
->buffer_info
[i
].dma
)) {
1149 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1150 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1151 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1152 E1000_TXD_CMD_IFCS
|
1154 tx_desc
->upper
.data
= 0;
1157 /* Setup Rx descriptor ring and Rx buffers */
1159 if (!rx_ring
->count
)
1160 rx_ring
->count
= E1000_DEFAULT_RXD
;
1162 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1163 sizeof(struct e1000_buffer
),
1165 if (!rx_ring
->buffer_info
) {
1170 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
1171 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1172 &rx_ring
->dma
, GFP_KERNEL
);
1173 if (!rx_ring
->desc
) {
1177 rx_ring
->next_to_use
= 0;
1178 rx_ring
->next_to_clean
= 0;
1181 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
1182 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1183 ew32(RDBAL(0), ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1184 ew32(RDBAH(0), ((u64
) rx_ring
->dma
>> 32));
1185 ew32(RDLEN(0), rx_ring
->size
);
1188 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1189 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1190 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1191 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1192 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1195 for (i
= 0; i
< rx_ring
->count
; i
++) {
1196 union e1000_rx_desc_extended
*rx_desc
;
1197 struct sk_buff
*skb
;
1199 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1204 skb_reserve(skb
, NET_IP_ALIGN
);
1205 rx_ring
->buffer_info
[i
].skb
= skb
;
1206 rx_ring
->buffer_info
[i
].dma
=
1207 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1209 if (dma_mapping_error(&pdev
->dev
,
1210 rx_ring
->buffer_info
[i
].dma
)) {
1214 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1215 rx_desc
->read
.buffer_addr
=
1216 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1217 memset(skb
->data
, 0x00, skb
->len
);
1223 e1000_free_desc_rings(adapter
);
1227 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1229 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1230 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1231 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1232 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1233 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1236 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1238 struct e1000_hw
*hw
= &adapter
->hw
;
1243 hw
->mac
.autoneg
= 0;
1245 if (hw
->phy
.type
== e1000_phy_ife
) {
1246 /* force 100, set loopback */
1247 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1249 /* Now set up the MAC to the same speed/duplex as the PHY. */
1250 ctrl_reg
= er32(CTRL
);
1251 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1252 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1253 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1254 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1255 E1000_CTRL_FD
); /* Force Duplex to FULL */
1257 ew32(CTRL
, ctrl_reg
);
1264 /* Specific PHY configuration for loopback */
1265 switch (hw
->phy
.type
) {
1267 /* Auto-MDI/MDIX Off */
1268 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1269 /* reset to update Auto-MDI/MDIX */
1270 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1272 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1274 case e1000_phy_gg82563
:
1275 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1278 /* Set Default MAC Interface speed to 1GB */
1279 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1282 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1283 /* Assert SW reset for above settings to take effect */
1284 e1000e_commit_phy(hw
);
1286 /* Force Full Duplex */
1287 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1288 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1289 /* Set Link Up (in force link) */
1290 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1291 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1293 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1294 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1295 /* Set Early Link Enable */
1296 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1297 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1299 case e1000_phy_82577
:
1300 case e1000_phy_82578
:
1301 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1302 ret_val
= hw
->phy
.ops
.acquire(hw
);
1304 e_err("Cannot setup 1Gbps loopback.\n");
1307 e1000_configure_k1_ich8lan(hw
, false);
1308 hw
->phy
.ops
.release(hw
);
1310 case e1000_phy_82579
:
1311 /* Disable PHY energy detect power down */
1312 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1313 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~(1 << 3));
1314 /* Disable full chip energy detect */
1315 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1316 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1317 /* Enable loopback on the PHY */
1318 #define I82577_PHY_LBK_CTRL 19
1319 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1325 /* force 1000, set loopback */
1326 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1329 /* Now set up the MAC to the same speed/duplex as the PHY. */
1330 ctrl_reg
= er32(CTRL
);
1331 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1332 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1333 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1334 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1335 E1000_CTRL_FD
); /* Force Duplex to FULL */
1337 if (adapter
->flags
& FLAG_IS_ICH
)
1338 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1340 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1341 hw
->phy
.type
== e1000_phy_m88
) {
1342 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1345 * Set the ILOS bit on the fiber Nic if half duplex link is
1348 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1349 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1352 ew32(CTRL
, ctrl_reg
);
1355 * Disable the receiver on the PHY so when a cable is plugged in, the
1356 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1358 if (hw
->phy
.type
== e1000_phy_m88
)
1359 e1000_phy_disable_receiver(adapter
);
1366 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1368 struct e1000_hw
*hw
= &adapter
->hw
;
1369 u32 ctrl
= er32(CTRL
);
1372 /* special requirements for 82571/82572 fiber adapters */
1375 * jump through hoops to make sure link is up because serdes
1376 * link is hardwired up
1378 ctrl
|= E1000_CTRL_SLU
;
1381 /* disable autoneg */
1386 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1389 /* set invert loss of signal */
1391 ctrl
|= E1000_CTRL_ILOS
;
1396 * special write to serdes control register to enable SerDes analog
1399 #define E1000_SERDES_LB_ON 0x410
1400 ew32(SCTL
, E1000_SERDES_LB_ON
);
1402 usleep_range(10000, 20000);
1407 /* only call this for fiber/serdes connections to es2lan */
1408 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1410 struct e1000_hw
*hw
= &adapter
->hw
;
1411 u32 ctrlext
= er32(CTRL_EXT
);
1412 u32 ctrl
= er32(CTRL
);
1415 * save CTRL_EXT to restore later, reuse an empty variable (unused
1416 * on mac_type 80003es2lan)
1418 adapter
->tx_fifo_head
= ctrlext
;
1420 /* clear the serdes mode bits, putting the device into mac loopback */
1421 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1422 ew32(CTRL_EXT
, ctrlext
);
1424 /* force speed to 1000/FD, link up */
1425 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1426 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1427 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1430 /* set mac loopback */
1432 ctrl
|= E1000_RCTL_LBM_MAC
;
1435 /* set testing mode parameters (no need to reset later) */
1436 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1437 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1439 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1444 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1446 struct e1000_hw
*hw
= &adapter
->hw
;
1449 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1450 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1451 switch (hw
->mac
.type
) {
1452 case e1000_80003es2lan
:
1453 return e1000_set_es2lan_mac_loopback(adapter
);
1457 return e1000_set_82571_fiber_loopback(adapter
);
1461 rctl
|= E1000_RCTL_LBM_TCVR
;
1465 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1466 return e1000_integrated_phy_loopback(adapter
);
1472 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1474 struct e1000_hw
*hw
= &adapter
->hw
;
1479 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1482 switch (hw
->mac
.type
) {
1483 case e1000_80003es2lan
:
1484 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1485 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1486 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1487 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1488 adapter
->tx_fifo_head
= 0;
1493 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1494 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1495 #define E1000_SERDES_LB_OFF 0x400
1496 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1498 usleep_range(10000, 20000);
1503 hw
->mac
.autoneg
= 1;
1504 if (hw
->phy
.type
== e1000_phy_gg82563
)
1505 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1506 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1507 if (phy_reg
& MII_CR_LOOPBACK
) {
1508 phy_reg
&= ~MII_CR_LOOPBACK
;
1509 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1510 e1000e_commit_phy(hw
);
1516 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1517 unsigned int frame_size
)
1519 memset(skb
->data
, 0xFF, frame_size
);
1521 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1522 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1523 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1526 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1527 unsigned int frame_size
)
1530 if (*(skb
->data
+ 3) == 0xFF)
1531 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1532 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1537 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1539 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1540 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1541 struct pci_dev
*pdev
= adapter
->pdev
;
1542 struct e1000_hw
*hw
= &adapter
->hw
;
1549 ew32(RDT(0), rx_ring
->count
- 1);
1552 * Calculate the loop count based on the largest descriptor ring
1553 * The idea is to wrap the largest ring a number of times using 64
1554 * send/receive pairs during each loop
1557 if (rx_ring
->count
<= tx_ring
->count
)
1558 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1560 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1564 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1565 for (i
= 0; i
< 64; i
++) { /* send the packets */
1566 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1568 dma_sync_single_for_device(&pdev
->dev
,
1569 tx_ring
->buffer_info
[k
].dma
,
1570 tx_ring
->buffer_info
[k
].length
,
1573 if (k
== tx_ring
->count
)
1579 time
= jiffies
; /* set the start time for the receive */
1581 do { /* receive the sent packets */
1582 dma_sync_single_for_cpu(&pdev
->dev
,
1583 rx_ring
->buffer_info
[l
].dma
, 2048,
1586 ret_val
= e1000_check_lbtest_frame(
1587 rx_ring
->buffer_info
[l
].skb
, 1024);
1591 if (l
== rx_ring
->count
)
1594 * time + 20 msecs (200 msecs on 2.4) is more than
1595 * enough time to complete the receives, if it's
1596 * exceeded, break and error off
1598 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1599 if (good_cnt
!= 64) {
1600 ret_val
= 13; /* ret_val is the same as mis-compare */
1603 if (jiffies
>= (time
+ 20)) {
1604 ret_val
= 14; /* error code for time out error */
1607 } /* end loop count loop */
1611 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1613 struct e1000_hw
*hw
= &adapter
->hw
;
1616 * PHY loopback cannot be performed if SoL/IDER
1617 * sessions are active
1619 if (hw
->phy
.ops
.check_reset_block
&&
1620 hw
->phy
.ops
.check_reset_block(hw
)) {
1621 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1626 *data
= e1000_setup_desc_rings(adapter
);
1630 *data
= e1000_setup_loopback_test(adapter
);
1634 *data
= e1000_run_loopback_test(adapter
);
1635 e1000_loopback_cleanup(adapter
);
1638 e1000_free_desc_rings(adapter
);
1643 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1645 struct e1000_hw
*hw
= &adapter
->hw
;
1648 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1650 hw
->mac
.serdes_has_link
= false;
1653 * On some blade server designs, link establishment
1654 * could take as long as 2-3 minutes
1657 hw
->mac
.ops
.check_for_link(hw
);
1658 if (hw
->mac
.serdes_has_link
)
1661 } while (i
++ < 3750);
1665 hw
->mac
.ops
.check_for_link(hw
);
1666 if (hw
->mac
.autoneg
)
1668 * On some Phy/switch combinations, link establishment
1669 * can take a few seconds more than expected.
1673 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1679 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1683 return E1000_TEST_LEN
;
1685 return E1000_STATS_LEN
;
1691 static void e1000_diag_test(struct net_device
*netdev
,
1692 struct ethtool_test
*eth_test
, u64
*data
)
1694 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1695 u16 autoneg_advertised
;
1696 u8 forced_speed_duplex
;
1698 bool if_running
= netif_running(netdev
);
1700 set_bit(__E1000_TESTING
, &adapter
->state
);
1703 /* Get control of and reset hardware */
1704 if (adapter
->flags
& FLAG_HAS_AMT
)
1705 e1000e_get_hw_control(adapter
);
1707 e1000e_power_up_phy(adapter
);
1709 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1710 e1000e_reset(adapter
);
1711 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1714 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1717 /* save speed, duplex, autoneg settings */
1718 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1719 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1720 autoneg
= adapter
->hw
.mac
.autoneg
;
1722 e_info("offline testing starting\n");
1725 /* indicate we're in test mode */
1728 if (e1000_reg_test(adapter
, &data
[0]))
1729 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1731 e1000e_reset(adapter
);
1732 if (e1000_eeprom_test(adapter
, &data
[1]))
1733 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1735 e1000e_reset(adapter
);
1736 if (e1000_intr_test(adapter
, &data
[2]))
1737 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1739 e1000e_reset(adapter
);
1740 if (e1000_loopback_test(adapter
, &data
[3]))
1741 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1743 /* force this routine to wait until autoneg complete/timeout */
1744 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1745 e1000e_reset(adapter
);
1746 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1748 if (e1000_link_test(adapter
, &data
[4]))
1749 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1751 /* restore speed, duplex, autoneg settings */
1752 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1753 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1754 adapter
->hw
.mac
.autoneg
= autoneg
;
1755 e1000e_reset(adapter
);
1757 clear_bit(__E1000_TESTING
, &adapter
->state
);
1763 e_info("online testing starting\n");
1765 /* register, eeprom, intr and loopback tests not run online */
1771 if (e1000_link_test(adapter
, &data
[4]))
1772 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1774 clear_bit(__E1000_TESTING
, &adapter
->state
);
1778 e1000e_reset(adapter
);
1780 if (adapter
->flags
& FLAG_HAS_AMT
)
1781 e1000e_release_hw_control(adapter
);
1784 msleep_interruptible(4 * 1000);
1787 static void e1000_get_wol(struct net_device
*netdev
,
1788 struct ethtool_wolinfo
*wol
)
1790 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1795 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1796 !device_can_wakeup(&adapter
->pdev
->dev
))
1799 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1800 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1802 /* apply any specific unsupported masks here */
1803 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1804 wol
->supported
&= ~WAKE_UCAST
;
1806 if (adapter
->wol
& E1000_WUFC_EX
)
1807 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1810 if (adapter
->wol
& E1000_WUFC_EX
)
1811 wol
->wolopts
|= WAKE_UCAST
;
1812 if (adapter
->wol
& E1000_WUFC_MC
)
1813 wol
->wolopts
|= WAKE_MCAST
;
1814 if (adapter
->wol
& E1000_WUFC_BC
)
1815 wol
->wolopts
|= WAKE_BCAST
;
1816 if (adapter
->wol
& E1000_WUFC_MAG
)
1817 wol
->wolopts
|= WAKE_MAGIC
;
1818 if (adapter
->wol
& E1000_WUFC_LNKC
)
1819 wol
->wolopts
|= WAKE_PHY
;
1822 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1824 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1826 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1827 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1828 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1829 WAKE_MAGIC
| WAKE_PHY
)))
1832 /* these settings will always override what we currently have */
1835 if (wol
->wolopts
& WAKE_UCAST
)
1836 adapter
->wol
|= E1000_WUFC_EX
;
1837 if (wol
->wolopts
& WAKE_MCAST
)
1838 adapter
->wol
|= E1000_WUFC_MC
;
1839 if (wol
->wolopts
& WAKE_BCAST
)
1840 adapter
->wol
|= E1000_WUFC_BC
;
1841 if (wol
->wolopts
& WAKE_MAGIC
)
1842 adapter
->wol
|= E1000_WUFC_MAG
;
1843 if (wol
->wolopts
& WAKE_PHY
)
1844 adapter
->wol
|= E1000_WUFC_LNKC
;
1846 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1851 static int e1000_set_phys_id(struct net_device
*netdev
,
1852 enum ethtool_phys_id_state state
)
1854 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1855 struct e1000_hw
*hw
= &adapter
->hw
;
1858 case ETHTOOL_ID_ACTIVE
:
1859 if (!hw
->mac
.ops
.blink_led
)
1860 return 2; /* cycle on/off twice per second */
1862 hw
->mac
.ops
.blink_led(hw
);
1865 case ETHTOOL_ID_INACTIVE
:
1866 if (hw
->phy
.type
== e1000_phy_ife
)
1867 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1868 hw
->mac
.ops
.led_off(hw
);
1869 hw
->mac
.ops
.cleanup_led(hw
);
1873 hw
->mac
.ops
.led_on(hw
);
1876 case ETHTOOL_ID_OFF
:
1877 hw
->mac
.ops
.led_off(hw
);
1883 static int e1000_get_coalesce(struct net_device
*netdev
,
1884 struct ethtool_coalesce
*ec
)
1886 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1888 if (adapter
->itr_setting
<= 4)
1889 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1891 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1896 static int e1000_set_coalesce(struct net_device
*netdev
,
1897 struct ethtool_coalesce
*ec
)
1899 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1901 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1902 ((ec
->rx_coalesce_usecs
> 4) &&
1903 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1904 (ec
->rx_coalesce_usecs
== 2))
1907 if (ec
->rx_coalesce_usecs
== 4) {
1908 adapter
->itr
= adapter
->itr_setting
= 4;
1909 } else if (ec
->rx_coalesce_usecs
<= 3) {
1910 adapter
->itr
= 20000;
1911 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1913 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1914 adapter
->itr_setting
= adapter
->itr
& ~3;
1917 if (adapter
->itr_setting
!= 0)
1918 e1000e_write_itr(adapter
, adapter
->itr
);
1920 e1000e_write_itr(adapter
, 0);
1925 static int e1000_nway_reset(struct net_device
*netdev
)
1927 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1929 if (!netif_running(netdev
))
1932 if (!adapter
->hw
.mac
.autoneg
)
1935 e1000e_reinit_locked(adapter
);
1940 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1941 struct ethtool_stats
*stats
,
1944 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1945 struct rtnl_link_stats64 net_stats
;
1949 e1000e_get_stats64(netdev
, &net_stats
);
1950 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1951 switch (e1000_gstrings_stats
[i
].type
) {
1953 p
= (char *) &net_stats
+
1954 e1000_gstrings_stats
[i
].stat_offset
;
1957 p
= (char *) adapter
+
1958 e1000_gstrings_stats
[i
].stat_offset
;
1965 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1966 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1970 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1976 switch (stringset
) {
1978 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1981 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1982 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1984 p
+= ETH_GSTRING_LEN
;
1990 static int e1000_get_rxnfc(struct net_device
*netdev
,
1991 struct ethtool_rxnfc
*info
, u32
*rule_locs
)
1995 switch (info
->cmd
) {
1996 case ETHTOOL_GRXFH
: {
1997 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1998 struct e1000_hw
*hw
= &adapter
->hw
;
1999 u32 mrqc
= er32(MRQC
);
2001 if (!(mrqc
& E1000_MRQC_RSS_FIELD_MASK
))
2004 switch (info
->flow_type
) {
2006 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4_TCP
)
2007 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2011 case AH_ESP_V4_FLOW
:
2013 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4
)
2014 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2017 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6_TCP
)
2018 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2022 case AH_ESP_V6_FLOW
:
2024 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6
)
2025 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2037 static const struct ethtool_ops e1000_ethtool_ops
= {
2038 .get_settings
= e1000_get_settings
,
2039 .set_settings
= e1000_set_settings
,
2040 .get_drvinfo
= e1000_get_drvinfo
,
2041 .get_regs_len
= e1000_get_regs_len
,
2042 .get_regs
= e1000_get_regs
,
2043 .get_wol
= e1000_get_wol
,
2044 .set_wol
= e1000_set_wol
,
2045 .get_msglevel
= e1000_get_msglevel
,
2046 .set_msglevel
= e1000_set_msglevel
,
2047 .nway_reset
= e1000_nway_reset
,
2048 .get_link
= ethtool_op_get_link
,
2049 .get_eeprom_len
= e1000_get_eeprom_len
,
2050 .get_eeprom
= e1000_get_eeprom
,
2051 .set_eeprom
= e1000_set_eeprom
,
2052 .get_ringparam
= e1000_get_ringparam
,
2053 .set_ringparam
= e1000_set_ringparam
,
2054 .get_pauseparam
= e1000_get_pauseparam
,
2055 .set_pauseparam
= e1000_set_pauseparam
,
2056 .self_test
= e1000_diag_test
,
2057 .get_strings
= e1000_get_strings
,
2058 .set_phys_id
= e1000_set_phys_id
,
2059 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2060 .get_sset_count
= e1000e_get_sset_count
,
2061 .get_coalesce
= e1000_get_coalesce
,
2062 .set_coalesce
= e1000_set_coalesce
,
2063 .get_rxnfc
= e1000_get_rxnfc
,
2064 .get_ts_info
= ethtool_op_get_ts_info
,
2067 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2069 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);