1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
41 static s32
igb_get_invariants_82575(struct e1000_hw
*);
42 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
43 static void igb_release_phy_82575(struct e1000_hw
*);
44 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
45 static void igb_release_nvm_82575(struct e1000_hw
*);
46 static s32
igb_check_for_link_82575(struct e1000_hw
*);
47 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
48 static s32
igb_init_hw_82575(struct e1000_hw
*);
49 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
50 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
51 static s32
igb_read_phy_reg_82580(struct e1000_hw
*, u32
, u16
*);
52 static s32
igb_write_phy_reg_82580(struct e1000_hw
*, u32
, u16
);
53 static s32
igb_reset_hw_82575(struct e1000_hw
*);
54 static s32
igb_reset_hw_82580(struct e1000_hw
*);
55 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
56 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*, bool);
57 static s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*, bool);
58 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
59 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
60 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
62 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
63 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
65 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
66 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
67 static bool igb_sgmii_active_82575(struct e1000_hw
*);
68 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
69 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
70 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
71 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
72 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
73 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
74 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
75 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
76 static const u16 e1000_82580_rxpbs_table
[] =
77 { 36, 72, 144, 1, 2, 4, 8, 16,
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
83 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84 * @hw: pointer to the HW structure
86 * Called to determine if the I2C pins are being used for I2C or as an
87 * external MDIO interface since the two options are mutually exclusive.
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
92 bool ext_mdio
= false;
94 switch (hw
->mac
.type
) {
97 reg
= rd32(E1000_MDIC
);
98 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
104 reg
= rd32(E1000_MDICNFG
);
105 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
113 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
115 struct e1000_phy_info
*phy
= &hw
->phy
;
116 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
117 struct e1000_mac_info
*mac
= &hw
->mac
;
118 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
124 switch (hw
->device_id
) {
125 case E1000_DEV_ID_82575EB_COPPER
:
126 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
127 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
128 mac
->type
= e1000_82575
;
130 case E1000_DEV_ID_82576
:
131 case E1000_DEV_ID_82576_NS
:
132 case E1000_DEV_ID_82576_NS_SERDES
:
133 case E1000_DEV_ID_82576_FIBER
:
134 case E1000_DEV_ID_82576_SERDES
:
135 case E1000_DEV_ID_82576_QUAD_COPPER
:
136 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
137 case E1000_DEV_ID_82576_SERDES_QUAD
:
138 mac
->type
= e1000_82576
;
140 case E1000_DEV_ID_82580_COPPER
:
141 case E1000_DEV_ID_82580_FIBER
:
142 case E1000_DEV_ID_82580_QUAD_FIBER
:
143 case E1000_DEV_ID_82580_SERDES
:
144 case E1000_DEV_ID_82580_SGMII
:
145 case E1000_DEV_ID_82580_COPPER_DUAL
:
146 case E1000_DEV_ID_DH89XXCC_SGMII
:
147 case E1000_DEV_ID_DH89XXCC_SERDES
:
148 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
149 case E1000_DEV_ID_DH89XXCC_SFP
:
150 mac
->type
= e1000_82580
;
152 case E1000_DEV_ID_I350_COPPER
:
153 case E1000_DEV_ID_I350_FIBER
:
154 case E1000_DEV_ID_I350_SERDES
:
155 case E1000_DEV_ID_I350_SGMII
:
156 mac
->type
= e1000_i350
;
158 case E1000_DEV_ID_I210_COPPER
:
159 case E1000_DEV_ID_I210_COPPER_OEM1
:
160 case E1000_DEV_ID_I210_COPPER_IT
:
161 case E1000_DEV_ID_I210_FIBER
:
162 case E1000_DEV_ID_I210_SERDES
:
163 case E1000_DEV_ID_I210_SGMII
:
164 mac
->type
= e1000_i210
;
166 case E1000_DEV_ID_I211_COPPER
:
167 mac
->type
= e1000_i211
;
170 return -E1000_ERR_MAC_INIT
;
176 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177 * based on the EEPROM. We cannot rely upon device ID. There
178 * is no distinguishable difference between fiber and internal
179 * SerDes mode on the 82575. There can be an external PHY attached
180 * on the SGMII interface. For this, we'll set sgmii_active to true.
182 phy
->media_type
= e1000_media_type_copper
;
183 dev_spec
->sgmii_active
= false;
185 ctrl_ext
= rd32(E1000_CTRL_EXT
);
186 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
187 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
188 dev_spec
->sgmii_active
= true;
190 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
191 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
192 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
198 /* Set mta register count */
199 mac
->mta_reg_count
= 128;
200 /* Set rar entry count */
203 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
206 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
209 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
212 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
216 if (mac
->type
>= e1000_82580
)
217 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
219 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
221 if (mac
->type
>= e1000_i210
) {
222 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_i210
;
223 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_i210
;
225 mac
->ops
.acquire_swfw_sync
= igb_acquire_swfw_sync_82575
;
226 mac
->ops
.release_swfw_sync
= igb_release_swfw_sync_82575
;
229 /* Set if part includes ASF firmware */
230 mac
->asf_firmware_present
= true;
231 /* Set if manageability features are enabled. */
232 mac
->arc_subsystem_valid
=
233 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
235 /* enable EEE on i350 parts and later parts */
236 if (mac
->type
>= e1000_i350
)
237 dev_spec
->eee_disable
= false;
239 dev_spec
->eee_disable
= true;
240 /* physical interface link setup */
241 mac
->ops
.setup_physical_interface
=
242 (hw
->phy
.media_type
== e1000_media_type_copper
)
243 ? igb_setup_copper_link_82575
244 : igb_setup_serdes_link_82575
;
246 /* NVM initialization */
247 eecd
= rd32(E1000_EECD
);
248 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
249 E1000_EECD_SIZE_EX_SHIFT
);
252 * Added to a constant, "size" becomes the left-shift value
253 * for setting word_size.
255 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
258 * Check for invalid size
260 if ((hw
->mac
.type
== e1000_82576
) && (size
> 15)) {
261 pr_notice("The NVM size is not valid, defaulting to 32K\n");
265 nvm
->word_size
= 1 << size
;
266 if (hw
->mac
.type
< e1000_i210
) {
267 nvm
->opcode_bits
= 8;
269 switch (nvm
->override
) {
270 case e1000_nvm_override_spi_large
:
272 nvm
->address_bits
= 16;
274 case e1000_nvm_override_spi_small
:
276 nvm
->address_bits
= 8;
279 nvm
->page_size
= eecd
280 & E1000_EECD_ADDR_BITS
? 32 : 8;
281 nvm
->address_bits
= eecd
282 & E1000_EECD_ADDR_BITS
? 16 : 8;
285 if (nvm
->word_size
== (1 << 15))
286 nvm
->page_size
= 128;
288 nvm
->type
= e1000_nvm_eeprom_spi
;
290 nvm
->type
= e1000_nvm_flash_hw
;
292 /* NVM Function Pointers */
293 switch (hw
->mac
.type
) {
295 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
296 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
297 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
298 nvm
->ops
.release
= igb_release_nvm_82575
;
299 if (nvm
->word_size
< (1 << 15))
300 nvm
->ops
.read
= igb_read_nvm_eerd
;
302 nvm
->ops
.read
= igb_read_nvm_spi
;
303 nvm
->ops
.write
= igb_write_nvm_spi
;
306 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
307 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
308 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
309 nvm
->ops
.release
= igb_release_nvm_82575
;
310 if (nvm
->word_size
< (1 << 15))
311 nvm
->ops
.read
= igb_read_nvm_eerd
;
313 nvm
->ops
.read
= igb_read_nvm_spi
;
314 nvm
->ops
.write
= igb_write_nvm_spi
;
317 nvm
->ops
.validate
= igb_validate_nvm_checksum_i210
;
318 nvm
->ops
.update
= igb_update_nvm_checksum_i210
;
319 nvm
->ops
.acquire
= igb_acquire_nvm_i210
;
320 nvm
->ops
.release
= igb_release_nvm_i210
;
321 nvm
->ops
.read
= igb_read_nvm_srrd_i210
;
322 nvm
->ops
.valid_led_default
= igb_valid_led_default_i210
;
325 nvm
->ops
.acquire
= igb_acquire_nvm_i210
;
326 nvm
->ops
.release
= igb_release_nvm_i210
;
327 nvm
->ops
.read
= igb_read_nvm_i211
;
328 nvm
->ops
.valid_led_default
= igb_valid_led_default_i210
;
329 nvm
->ops
.validate
= NULL
;
330 nvm
->ops
.update
= NULL
;
331 nvm
->ops
.write
= NULL
;
334 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
335 nvm
->ops
.update
= igb_update_nvm_checksum
;
336 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
337 nvm
->ops
.release
= igb_release_nvm_82575
;
338 if (nvm
->word_size
< (1 << 15))
339 nvm
->ops
.read
= igb_read_nvm_eerd
;
341 nvm
->ops
.read
= igb_read_nvm_spi
;
342 nvm
->ops
.write
= igb_write_nvm_spi
;
346 /* if part supports SR-IOV then initialize mailbox parameters */
350 igb_init_mbx_params_pf(hw
);
356 /* setup PHY parameters */
357 if (phy
->media_type
!= e1000_media_type_copper
) {
358 phy
->type
= e1000_phy_none
;
362 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
363 phy
->reset_delay_us
= 100;
365 ctrl_ext
= rd32(E1000_CTRL_EXT
);
367 /* PHY function pointers */
368 if (igb_sgmii_active_82575(hw
)) {
369 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
370 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
372 phy
->ops
.reset
= igb_phy_hw_reset
;
373 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
376 wr32(E1000_CTRL_EXT
, ctrl_ext
);
377 igb_reset_mdicnfg_82580(hw
);
379 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
380 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
381 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
382 } else if ((hw
->mac
.type
== e1000_82580
)
383 || (hw
->mac
.type
== e1000_i350
)) {
384 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
385 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
386 } else if (hw
->phy
.type
>= e1000_phy_i210
) {
387 phy
->ops
.read_reg
= igb_read_phy_reg_gs40g
;
388 phy
->ops
.write_reg
= igb_write_phy_reg_gs40g
;
390 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
391 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
395 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
396 E1000_STATUS_FUNC_SHIFT
;
398 /* Set phy->phy_addr and phy->id. */
399 ret_val
= igb_get_phy_id_82575(hw
);
403 /* Verify phy id and set remaining function pointers */
405 case I347AT4_E_PHY_ID
:
406 case M88E1112_E_PHY_ID
:
407 case M88E1111_I_PHY_ID
:
408 phy
->type
= e1000_phy_m88
;
409 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
411 if (phy
->id
== I347AT4_E_PHY_ID
||
412 phy
->id
== M88E1112_E_PHY_ID
)
413 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
415 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
417 if (phy
->id
== I210_I_PHY_ID
) {
418 phy
->ops
.get_cable_length
=
419 igb_get_cable_length_m88_gen2
;
420 phy
->ops
.set_d0_lplu_state
=
421 igb_set_d0_lplu_state_82580
;
422 phy
->ops
.set_d3_lplu_state
=
423 igb_set_d3_lplu_state_82580
;
425 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
427 case IGP03E1000_E_PHY_ID
:
428 phy
->type
= e1000_phy_igp_3
;
429 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
430 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
431 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
432 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
433 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
435 case I82580_I_PHY_ID
:
437 phy
->type
= e1000_phy_82580
;
438 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_82580
;
439 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
440 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
441 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
442 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
445 phy
->type
= e1000_phy_i210
;
446 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
447 phy
->ops
.check_polarity
= igb_check_polarity_m88
;
448 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
449 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82580
;
450 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state_82580
;
451 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
454 return -E1000_ERR_PHY
;
461 * igb_acquire_phy_82575 - Acquire rights to access PHY
462 * @hw: pointer to the HW structure
464 * Acquire access rights to the correct PHY. This is a
465 * function pointer entry point called by the api module.
467 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
469 u16 mask
= E1000_SWFW_PHY0_SM
;
471 if (hw
->bus
.func
== E1000_FUNC_1
)
472 mask
= E1000_SWFW_PHY1_SM
;
473 else if (hw
->bus
.func
== E1000_FUNC_2
)
474 mask
= E1000_SWFW_PHY2_SM
;
475 else if (hw
->bus
.func
== E1000_FUNC_3
)
476 mask
= E1000_SWFW_PHY3_SM
;
478 return hw
->mac
.ops
.acquire_swfw_sync(hw
, mask
);
482 * igb_release_phy_82575 - Release rights to access PHY
483 * @hw: pointer to the HW structure
485 * A wrapper to release access rights to the correct PHY. This is a
486 * function pointer entry point called by the api module.
488 static void igb_release_phy_82575(struct e1000_hw
*hw
)
490 u16 mask
= E1000_SWFW_PHY0_SM
;
492 if (hw
->bus
.func
== E1000_FUNC_1
)
493 mask
= E1000_SWFW_PHY1_SM
;
494 else if (hw
->bus
.func
== E1000_FUNC_2
)
495 mask
= E1000_SWFW_PHY2_SM
;
496 else if (hw
->bus
.func
== E1000_FUNC_3
)
497 mask
= E1000_SWFW_PHY3_SM
;
499 hw
->mac
.ops
.release_swfw_sync(hw
, mask
);
503 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504 * @hw: pointer to the HW structure
505 * @offset: register offset to be read
506 * @data: pointer to the read data
508 * Reads the PHY register at offset using the serial gigabit media independent
509 * interface and stores the retrieved information in data.
511 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
514 s32 ret_val
= -E1000_ERR_PARAM
;
516 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
517 hw_dbg("PHY Address %u is out of range\n", offset
);
521 ret_val
= hw
->phy
.ops
.acquire(hw
);
525 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
527 hw
->phy
.ops
.release(hw
);
534 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535 * @hw: pointer to the HW structure
536 * @offset: register offset to write to
537 * @data: data to write at register offset
539 * Writes the data to PHY register at the offset using the serial gigabit
540 * media independent interface.
542 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
545 s32 ret_val
= -E1000_ERR_PARAM
;
548 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
549 hw_dbg("PHY Address %d is out of range\n", offset
);
553 ret_val
= hw
->phy
.ops
.acquire(hw
);
557 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
559 hw
->phy
.ops
.release(hw
);
566 * igb_get_phy_id_82575 - Retrieve PHY addr and id
567 * @hw: pointer to the HW structure
569 * Retrieves the PHY address and ID for both PHY's which do and do not use
572 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
574 struct e1000_phy_info
*phy
= &hw
->phy
;
581 * For SGMII PHYs, we try the list of possible addresses until
582 * we find one that works. For non-SGMII PHYs
583 * (e.g. integrated copper PHYs), an address of 1 should
584 * work. The result of this function should mean phy->phy_addr
585 * and phy->id are set correctly.
587 if (!(igb_sgmii_active_82575(hw
))) {
589 ret_val
= igb_get_phy_id(hw
);
593 if (igb_sgmii_uses_mdio_82575(hw
)) {
594 switch (hw
->mac
.type
) {
597 mdic
= rd32(E1000_MDIC
);
598 mdic
&= E1000_MDIC_PHY_MASK
;
599 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
605 mdic
= rd32(E1000_MDICNFG
);
606 mdic
&= E1000_MDICNFG_PHY_MASK
;
607 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
610 ret_val
= -E1000_ERR_PHY
;
614 ret_val
= igb_get_phy_id(hw
);
618 /* Power on sgmii phy if it is disabled */
619 ctrl_ext
= rd32(E1000_CTRL_EXT
);
620 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
625 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
626 * Therefore, we need to test 1-7
628 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
629 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
631 hw_dbg("Vendor ID 0x%08X read at address %u\n",
634 * At the time of this writing, The M88 part is
635 * the only supported SGMII PHY product.
637 if (phy_id
== M88_VENDOR
)
640 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
644 /* A valid PHY type couldn't be found. */
645 if (phy
->addr
== 8) {
647 ret_val
= -E1000_ERR_PHY
;
650 ret_val
= igb_get_phy_id(hw
);
653 /* restore previous sfp cage power state */
654 wr32(E1000_CTRL_EXT
, ctrl_ext
);
661 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662 * @hw: pointer to the HW structure
664 * Resets the PHY using the serial gigabit media independent interface.
666 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
671 * This isn't a true "hard" reset, but is the only reset
672 * available to us at this time.
675 hw_dbg("Soft resetting SGMII attached PHY...\n");
678 * SFP documentation requires the following to configure the SPF module
679 * to work on SGMII. No further documentation is given.
681 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
685 ret_val
= igb_phy_sw_reset(hw
);
692 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693 * @hw: pointer to the HW structure
694 * @active: true to enable LPLU, false to disable
696 * Sets the LPLU D0 state according to the active flag. When
697 * activating LPLU this function also disables smart speed
698 * and vice versa. LPLU will not be activated unless the
699 * device autonegotiation advertisement meets standards of
700 * either 10 or 10/100 or 10/100/1000 at all duplexes.
701 * This is a function pointer entry point only called by
702 * PHY setup routines.
704 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
706 struct e1000_phy_info
*phy
= &hw
->phy
;
710 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
715 data
|= IGP02E1000_PM_D0_LPLU
;
716 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
721 /* When LPLU is enabled, we should disable SmartSpeed */
722 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
724 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
725 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
730 data
&= ~IGP02E1000_PM_D0_LPLU
;
731 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
734 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
735 * during Dx states where the power conservation is most
736 * important. During driver activity we should enable
737 * SmartSpeed, so performance is maintained.
739 if (phy
->smart_speed
== e1000_smart_speed_on
) {
740 ret_val
= phy
->ops
.read_reg(hw
,
741 IGP01E1000_PHY_PORT_CONFIG
, &data
);
745 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
746 ret_val
= phy
->ops
.write_reg(hw
,
747 IGP01E1000_PHY_PORT_CONFIG
, data
);
750 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
751 ret_val
= phy
->ops
.read_reg(hw
,
752 IGP01E1000_PHY_PORT_CONFIG
, &data
);
756 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
757 ret_val
= phy
->ops
.write_reg(hw
,
758 IGP01E1000_PHY_PORT_CONFIG
, data
);
769 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
770 * @hw: pointer to the HW structure
771 * @active: true to enable LPLU, false to disable
773 * Sets the LPLU D0 state according to the active flag. When
774 * activating LPLU this function also disables smart speed
775 * and vice versa. LPLU will not be activated unless the
776 * device autonegotiation advertisement meets standards of
777 * either 10 or 10/100 or 10/100/1000 at all duplexes.
778 * This is a function pointer entry point only called by
779 * PHY setup routines.
781 static s32
igb_set_d0_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
783 struct e1000_phy_info
*phy
= &hw
->phy
;
787 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
790 data
|= E1000_82580_PM_D0_LPLU
;
792 /* When LPLU is enabled, we should disable SmartSpeed */
793 data
&= ~E1000_82580_PM_SPD
;
795 data
&= ~E1000_82580_PM_D0_LPLU
;
798 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
799 * during Dx states where the power conservation is most
800 * important. During driver activity we should enable
801 * SmartSpeed, so performance is maintained.
803 if (phy
->smart_speed
== e1000_smart_speed_on
)
804 data
|= E1000_82580_PM_SPD
;
805 else if (phy
->smart_speed
== e1000_smart_speed_off
)
806 data
&= ~E1000_82580_PM_SPD
; }
808 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
813 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
814 * @hw: pointer to the HW structure
815 * @active: boolean used to enable/disable lplu
817 * Success returns 0, Failure returns 1
819 * The low power link up (lplu) state is set to the power management level D3
820 * and SmartSpeed is disabled when active is true, else clear lplu for D3
821 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
822 * is used during Dx states where the power conservation is most important.
823 * During driver activity, SmartSpeed should be enabled so performance is
826 s32
igb_set_d3_lplu_state_82580(struct e1000_hw
*hw
, bool active
)
828 struct e1000_phy_info
*phy
= &hw
->phy
;
832 data
= rd32(E1000_82580_PHY_POWER_MGMT
);
835 data
&= ~E1000_82580_PM_D3_LPLU
;
837 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
838 * during Dx states where the power conservation is most
839 * important. During driver activity we should enable
840 * SmartSpeed, so performance is maintained.
842 if (phy
->smart_speed
== e1000_smart_speed_on
)
843 data
|= E1000_82580_PM_SPD
;
844 else if (phy
->smart_speed
== e1000_smart_speed_off
)
845 data
&= ~E1000_82580_PM_SPD
;
846 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
847 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
848 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
849 data
|= E1000_82580_PM_D3_LPLU
;
850 /* When LPLU is enabled, we should disable SmartSpeed */
851 data
&= ~E1000_82580_PM_SPD
;
854 wr32(E1000_82580_PHY_POWER_MGMT
, data
);
859 * igb_acquire_nvm_82575 - Request for access to EEPROM
860 * @hw: pointer to the HW structure
862 * Acquire the necessary semaphores for exclusive access to the EEPROM.
863 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
864 * Return successful if access grant bit set, else clear the request for
865 * EEPROM access and return -E1000_ERR_NVM (-1).
867 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
871 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
875 ret_val
= igb_acquire_nvm(hw
);
878 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
885 * igb_release_nvm_82575 - Release exclusive access to EEPROM
886 * @hw: pointer to the HW structure
888 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
889 * then release the semaphores acquired.
891 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
894 hw
->mac
.ops
.release_swfw_sync(hw
, E1000_SWFW_EEP_SM
);
898 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899 * @hw: pointer to the HW structure
900 * @mask: specifies which semaphore to acquire
902 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
903 * will also specify which port we're acquiring the lock for.
905 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
909 u32 fwmask
= mask
<< 16;
911 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
913 while (i
< timeout
) {
914 if (igb_get_hw_semaphore(hw
)) {
915 ret_val
= -E1000_ERR_SWFW_SYNC
;
919 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
920 if (!(swfw_sync
& (fwmask
| swmask
)))
924 * Firmware currently using resource (fwmask)
925 * or other software thread using resource (swmask)
927 igb_put_hw_semaphore(hw
);
933 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934 ret_val
= -E1000_ERR_SWFW_SYNC
;
939 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
941 igb_put_hw_semaphore(hw
);
948 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
949 * @hw: pointer to the HW structure
950 * @mask: specifies which semaphore to acquire
952 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
953 * will also specify which port we're releasing the lock for.
955 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
959 while (igb_get_hw_semaphore(hw
) != 0);
962 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
964 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
966 igb_put_hw_semaphore(hw
);
970 * igb_get_cfg_done_82575 - Read config done bit
971 * @hw: pointer to the HW structure
973 * Read the management control register for the config done bit for
974 * completion status. NOTE: silicon which is EEPROM-less will fail trying
975 * to read the config done bit, so an error is *ONLY* logged and returns
976 * 0. If we were to return with error, EEPROM-less silicon
977 * would not be able to be reset or change link.
979 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
981 s32 timeout
= PHY_CFG_TIMEOUT
;
983 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
985 if (hw
->bus
.func
== 1)
986 mask
= E1000_NVM_CFG_DONE_PORT_1
;
987 else if (hw
->bus
.func
== E1000_FUNC_2
)
988 mask
= E1000_NVM_CFG_DONE_PORT_2
;
989 else if (hw
->bus
.func
== E1000_FUNC_3
)
990 mask
= E1000_NVM_CFG_DONE_PORT_3
;
993 if (rd32(E1000_EEMNGCTL
) & mask
)
999 hw_dbg("MNG configuration cycle has not completed.\n");
1001 /* If EEPROM is not marked present, init the PHY manually */
1002 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
1003 (hw
->phy
.type
== e1000_phy_igp_3
))
1004 igb_phy_init_script_igp3(hw
);
1010 * igb_check_for_link_82575 - Check for link
1011 * @hw: pointer to the HW structure
1013 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1014 * use the generic interface for determining link.
1016 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
1021 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1022 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
1025 * Use this flag to determine if link needs to be checked or
1026 * not. If we have link clear the flag so that we do not
1027 * continue to check for link.
1029 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
1031 ret_val
= igb_check_for_copper_link(hw
);
1038 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039 * @hw: pointer to the HW structure
1041 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
1046 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1047 !igb_sgmii_active_82575(hw
))
1050 /* Enable PCS to turn on link */
1051 reg
= rd32(E1000_PCS_CFG0
);
1052 reg
|= E1000_PCS_CFG_PCS_EN
;
1053 wr32(E1000_PCS_CFG0
, reg
);
1055 /* Power up the laser */
1056 reg
= rd32(E1000_CTRL_EXT
);
1057 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1058 wr32(E1000_CTRL_EXT
, reg
);
1060 /* flush the write to verify completion */
1066 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 * @hw: pointer to the HW structure
1068 * @speed: stores the current speed
1069 * @duplex: stores the current duplex
1071 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 * duplex, then store the values in the pointers provided.
1074 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
1077 struct e1000_mac_info
*mac
= &hw
->mac
;
1080 /* Set up defaults for the return values of this function */
1081 mac
->serdes_has_link
= false;
1086 * Read the PCS Status register for link state. For non-copper mode,
1087 * the status register is not accurate. The PCS status register is
1090 pcs
= rd32(E1000_PCS_LSTAT
);
1093 * The link up bit determines when link is up on autoneg. The sync ok
1094 * gets set once both sides sync up and agree upon link. Stable link
1095 * can be determined by checking for both link up and link sync ok
1097 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
1098 mac
->serdes_has_link
= true;
1100 /* Detect and store PCS speed */
1101 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
1102 *speed
= SPEED_1000
;
1103 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
1109 /* Detect and store PCS duplex */
1110 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
1111 *duplex
= FULL_DUPLEX
;
1113 *duplex
= HALF_DUPLEX
;
1121 * igb_shutdown_serdes_link_82575 - Remove link during power down
1122 * @hw: pointer to the HW structure
1124 * In the case of fiber serdes, shut down optics and PCS on driver unload
1125 * when management pass thru is not enabled.
1127 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
1131 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
1132 igb_sgmii_active_82575(hw
))
1135 if (!igb_enable_mng_pass_thru(hw
)) {
1136 /* Disable PCS to turn off link */
1137 reg
= rd32(E1000_PCS_CFG0
);
1138 reg
&= ~E1000_PCS_CFG_PCS_EN
;
1139 wr32(E1000_PCS_CFG0
, reg
);
1141 /* shutdown the laser */
1142 reg
= rd32(E1000_CTRL_EXT
);
1143 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
1144 wr32(E1000_CTRL_EXT
, reg
);
1146 /* flush the write to verify completion */
1153 * igb_reset_hw_82575 - Reset hardware
1154 * @hw: pointer to the HW structure
1156 * This resets the hardware into a known state. This is a
1157 * function pointer entry point called by the api module.
1159 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
1165 * Prevent the PCI-E bus from sticking if there is no TLP connection
1166 * on the last TLP read/write transaction when MAC is reset.
1168 ret_val
= igb_disable_pcie_master(hw
);
1170 hw_dbg("PCI-E Master disable polling has failed.\n");
1172 /* set the completion timeout for interface */
1173 ret_val
= igb_set_pcie_completion_timeout(hw
);
1175 hw_dbg("PCI-E Set completion timeout has failed.\n");
1178 hw_dbg("Masking off all interrupts\n");
1179 wr32(E1000_IMC
, 0xffffffff);
1181 wr32(E1000_RCTL
, 0);
1182 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1187 ctrl
= rd32(E1000_CTRL
);
1189 hw_dbg("Issuing a global reset to MAC\n");
1190 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1192 ret_val
= igb_get_auto_rd_done(hw
);
1195 * When auto config read does not complete, do not
1196 * return with an error. This can happen in situations
1197 * where there is no eeprom and prevents getting link.
1199 hw_dbg("Auto Read Done did not complete\n");
1202 /* If EEPROM is not present, run manual init scripts */
1203 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1204 igb_reset_init_script_82575(hw
);
1206 /* Clear any pending interrupt events. */
1207 wr32(E1000_IMC
, 0xffffffff);
1208 icr
= rd32(E1000_ICR
);
1210 /* Install any alternate MAC address into RAR0 */
1211 ret_val
= igb_check_alt_mac_addr(hw
);
1217 * igb_init_hw_82575 - Initialize hardware
1218 * @hw: pointer to the HW structure
1220 * This inits the hardware readying it for operation.
1222 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1224 struct e1000_mac_info
*mac
= &hw
->mac
;
1226 u16 i
, rar_count
= mac
->rar_entry_count
;
1228 /* Initialize identification LED */
1229 ret_val
= igb_id_led_init(hw
);
1231 hw_dbg("Error initializing identification LED\n");
1232 /* This is not fatal and we should not stop init due to this */
1235 /* Disabling VLAN filtering */
1236 hw_dbg("Initializing the IEEE VLAN\n");
1237 if (hw
->mac
.type
== e1000_i350
)
1238 igb_clear_vfta_i350(hw
);
1242 /* Setup the receive address */
1243 igb_init_rx_addrs(hw
, rar_count
);
1245 /* Zero out the Multicast HASH table */
1246 hw_dbg("Zeroing the MTA\n");
1247 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1248 array_wr32(E1000_MTA
, i
, 0);
1250 /* Zero out the Unicast HASH table */
1251 hw_dbg("Zeroing the UTA\n");
1252 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1253 array_wr32(E1000_UTA
, i
, 0);
1255 /* Setup link and flow control */
1256 ret_val
= igb_setup_link(hw
);
1259 * Clear all of the statistics registers (clear on read). It is
1260 * important that we do this after we have tried to establish link
1261 * because the symbol error count will increment wildly if there
1264 igb_clear_hw_cntrs_82575(hw
);
1269 * igb_setup_copper_link_82575 - Configure copper link settings
1270 * @hw: pointer to the HW structure
1272 * Configures the link for auto-neg or forced speed and duplex. Then we check
1273 * for link, once link is established calls to configure collision distance
1274 * and flow control are called.
1276 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1281 ctrl
= rd32(E1000_CTRL
);
1282 ctrl
|= E1000_CTRL_SLU
;
1283 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1284 wr32(E1000_CTRL
, ctrl
);
1286 ret_val
= igb_setup_serdes_link_82575(hw
);
1290 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1291 /* allow time for SFP cage time to power up phy */
1294 ret_val
= hw
->phy
.ops
.reset(hw
);
1296 hw_dbg("Error resetting the PHY.\n");
1300 switch (hw
->phy
.type
) {
1301 case e1000_phy_i210
:
1303 if (hw
->phy
.id
== I347AT4_E_PHY_ID
||
1304 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1305 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1307 ret_val
= igb_copper_link_setup_m88(hw
);
1309 case e1000_phy_igp_3
:
1310 ret_val
= igb_copper_link_setup_igp(hw
);
1312 case e1000_phy_82580
:
1313 ret_val
= igb_copper_link_setup_82580(hw
);
1316 ret_val
= -E1000_ERR_PHY
;
1323 ret_val
= igb_setup_copper_link(hw
);
1329 * igb_setup_serdes_link_82575 - Setup link for serdes
1330 * @hw: pointer to the HW structure
1332 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1333 * used on copper connections where the serialized gigabit media independent
1334 * interface (sgmii), or serdes fiber is being used. Configures the link
1335 * for auto-negotiation or forces speed/duplex.
1337 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1339 u32 ctrl_ext
, ctrl_reg
, reg
;
1341 s32 ret_val
= E1000_SUCCESS
;
1344 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1345 !igb_sgmii_active_82575(hw
))
1350 * On the 82575, SerDes loopback mode persists until it is
1351 * explicitly turned off or a power cycle is performed. A read to
1352 * the register does not indicate its status. Therefore, we ensure
1353 * loopback mode is disabled during initialization.
1355 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1357 /* power on the sfp cage if present */
1358 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1359 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1360 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1362 ctrl_reg
= rd32(E1000_CTRL
);
1363 ctrl_reg
|= E1000_CTRL_SLU
;
1365 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1366 /* set both sw defined pins */
1367 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1369 /* Set switch control to serdes energy detect */
1370 reg
= rd32(E1000_CONNSW
);
1371 reg
|= E1000_CONNSW_ENRGSRC
;
1372 wr32(E1000_CONNSW
, reg
);
1375 reg
= rd32(E1000_PCS_LCTL
);
1377 /* default pcs_autoneg to the same setting as mac autoneg */
1378 pcs_autoneg
= hw
->mac
.autoneg
;
1380 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1381 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1382 /* sgmii mode lets the phy handle forcing speed/duplex */
1384 /* autoneg time out should be disabled for SGMII mode */
1385 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1387 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1388 /* disable PCS autoneg and support parallel detect only */
1389 pcs_autoneg
= false;
1391 if (hw
->mac
.type
== e1000_82575
||
1392 hw
->mac
.type
== e1000_82576
) {
1393 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &data
);
1395 printk(KERN_DEBUG
"NVM Read Error\n\n");
1399 if (data
& E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT
)
1400 pcs_autoneg
= false;
1404 * non-SGMII modes only supports a speed of 1000/Full for the
1405 * link so it is best to just force the MAC and let the pcs
1406 * link either autoneg or be forced to 1000/Full
1408 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1409 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1411 /* set speed of 1000/Full if speed/duplex is forced */
1412 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1416 wr32(E1000_CTRL
, ctrl_reg
);
1419 * New SerDes mode allows for forcing speed or autonegotiating speed
1420 * at 1gb. Autoneg should be default set by most drivers. This is the
1421 * mode that will be compatible with older link partners and switches.
1422 * However, both are supported by the hardware and some drivers/tools.
1424 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1425 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1428 * We force flow control to prevent the CTRL register values from being
1429 * overwritten by the autonegotiated flow control values
1431 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1434 /* Set PCS register for autoneg */
1435 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1436 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1437 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1439 /* Set PCS register for forced link */
1440 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1442 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1445 wr32(E1000_PCS_LCTL
, reg
);
1447 if (!igb_sgmii_active_82575(hw
))
1448 igb_force_mac_fc(hw
);
1454 * igb_sgmii_active_82575 - Return sgmii state
1455 * @hw: pointer to the HW structure
1457 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1458 * which can be enabled for use in the embedded applications. Simply
1459 * return the current state of the sgmii interface.
1461 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1463 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1464 return dev_spec
->sgmii_active
;
1468 * igb_reset_init_script_82575 - Inits HW defaults after reset
1469 * @hw: pointer to the HW structure
1471 * Inits recommended HW defaults after a reset when there is no EEPROM
1472 * detected. This is only for the 82575.
1474 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1476 if (hw
->mac
.type
== e1000_82575
) {
1477 hw_dbg("Running reset init script for 82575\n");
1478 /* SerDes configuration via SERDESCTRL */
1479 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1480 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1481 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1482 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1484 /* CCM configuration via CCMCTL register */
1485 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1486 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1488 /* PCIe lanes configuration */
1489 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1490 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1491 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1492 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1494 /* PCIe PLL Configuration */
1495 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1496 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1497 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1504 * igb_read_mac_addr_82575 - Read device MAC address
1505 * @hw: pointer to the HW structure
1507 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1512 * If there's an alternate MAC address place it in RAR0
1513 * so that it will override the Si installed default perm
1516 ret_val
= igb_check_alt_mac_addr(hw
);
1520 ret_val
= igb_read_mac_addr(hw
);
1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528 * @hw: pointer to the HW structure
1530 * In the case of a PHY power down to save power, or to turn off link during a
1531 * driver unload, or wake on lan is not enabled, remove the link.
1533 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1535 /* If the management interface is not enabled, then power down */
1536 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1537 igb_power_down_phy_copper(hw
);
1541 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 * @hw: pointer to the HW structure
1544 * Clears the hardware counters by reading the counter registers.
1546 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1548 igb_clear_hw_cntrs_base(hw
);
1554 rd32(E1000_PRC1023
);
1555 rd32(E1000_PRC1522
);
1560 rd32(E1000_PTC1023
);
1561 rd32(E1000_PTC1522
);
1563 rd32(E1000_ALGNERRC
);
1566 rd32(E1000_CEXTERR
);
1577 rd32(E1000_ICRXPTC
);
1578 rd32(E1000_ICRXATC
);
1579 rd32(E1000_ICTXPTC
);
1580 rd32(E1000_ICTXATC
);
1581 rd32(E1000_ICTXQEC
);
1582 rd32(E1000_ICTXQMTC
);
1583 rd32(E1000_ICRXDMTC
);
1590 rd32(E1000_HTCBDPC
);
1595 rd32(E1000_LENERRS
);
1597 /* This register should not be read in copper configurations */
1598 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1599 igb_sgmii_active_82575(hw
))
1604 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605 * @hw: pointer to the HW structure
1607 * After rx enable if managability is enabled then there is likely some
1608 * bad data at the start of the fifo and possibly in the DMA fifo. This
1609 * function clears the fifos and flushes any packets that came in as rx was
1612 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1614 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1617 if (hw
->mac
.type
!= e1000_82575
||
1618 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1621 /* Disable all RX queues */
1622 for (i
= 0; i
< 4; i
++) {
1623 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1624 wr32(E1000_RXDCTL(i
),
1625 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1627 /* Poll all queues to verify they have shut down */
1628 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1631 for (i
= 0; i
< 4; i
++)
1632 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1633 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1638 hw_dbg("Queue disable timed out after 10ms\n");
1640 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641 * incoming packets are rejected. Set enable and wait 2ms so that
1642 * any packet that was coming in as RCTL.EN was set is flushed
1644 rfctl
= rd32(E1000_RFCTL
);
1645 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1647 rlpml
= rd32(E1000_RLPML
);
1648 wr32(E1000_RLPML
, 0);
1650 rctl
= rd32(E1000_RCTL
);
1651 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1652 temp_rctl
|= E1000_RCTL_LPE
;
1654 wr32(E1000_RCTL
, temp_rctl
);
1655 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1659 /* Enable RX queues that were previously enabled and restore our
1662 for (i
= 0; i
< 4; i
++)
1663 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1664 wr32(E1000_RCTL
, rctl
);
1667 wr32(E1000_RLPML
, rlpml
);
1668 wr32(E1000_RFCTL
, rfctl
);
1670 /* Flush receive errors generated by workaround */
1677 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1678 * @hw: pointer to the HW structure
1680 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681 * however the hardware default for these parts is 500us to 1ms which is less
1682 * than the 10ms recommended by the pci-e spec. To address this we need to
1683 * increase the value to either 10ms to 200ms for capability version 1 config,
1684 * or 16ms to 55ms for version 2.
1686 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1688 u32 gcr
= rd32(E1000_GCR
);
1692 /* only take action if timeout value is defaulted to 0 */
1693 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1697 * if capababilities version is type 1 we can write the
1698 * timeout of 10ms to 200ms through the GCR register
1700 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1701 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1706 * for version 2 capabilities we need to write the config space
1707 * directly in order to set the completion timeout value for
1710 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1715 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1717 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1720 /* disable completion timeout resend */
1721 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1723 wr32(E1000_GCR
, gcr
);
1728 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729 * @hw: pointer to the hardware struct
1730 * @enable: state to enter, either enabled or disabled
1731 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1733 * enables/disables L2 switch anti-spoofing functionality.
1735 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
1739 switch (hw
->mac
.type
) {
1742 dtxswc
= rd32(E1000_DTXSWC
);
1744 dtxswc
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
1745 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1746 /* The PF can spoof - it has to in order to
1747 * support emulation mode NICs */
1748 dtxswc
^= (1 << pf
| 1 << (pf
+ MAX_NUM_VFS
));
1750 dtxswc
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
1751 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1753 wr32(E1000_DTXSWC
, dtxswc
);
1761 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762 * @hw: pointer to the hardware struct
1763 * @enable: state to enter, either enabled or disabled
1765 * enables/disables L2 switch loopback functionality.
1767 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1771 switch (hw
->mac
.type
) {
1773 dtxswc
= rd32(E1000_DTXSWC
);
1775 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1777 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1778 wr32(E1000_DTXSWC
, dtxswc
);
1781 dtxswc
= rd32(E1000_TXSWC
);
1783 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1785 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1786 wr32(E1000_TXSWC
, dtxswc
);
1789 /* Currently no other hardware supports loopback */
1797 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798 * @hw: pointer to the hardware struct
1799 * @enable: state to enter, either enabled or disabled
1801 * enables/disables replication of packets across multiple pools.
1803 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1805 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1808 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1810 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1812 wr32(E1000_VT_CTL
, vt_ctl
);
1816 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1817 * @hw: pointer to the HW structure
1818 * @offset: register offset to be read
1819 * @data: pointer to the read data
1821 * Reads the MDI control register in the PHY at offset and stores the
1822 * information read to data.
1824 static s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
1829 ret_val
= hw
->phy
.ops
.acquire(hw
);
1833 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
1835 hw
->phy
.ops
.release(hw
);
1842 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1843 * @hw: pointer to the HW structure
1844 * @offset: register offset to write to
1845 * @data: data to write to register at offset
1847 * Writes data to MDI control register in the PHY at offset.
1849 static s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
1854 ret_val
= hw
->phy
.ops
.acquire(hw
);
1858 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
1860 hw
->phy
.ops
.release(hw
);
1867 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868 * @hw: pointer to the HW structure
1870 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871 * the values found in the EEPROM. This addresses an issue in which these
1872 * bits are not restored from EEPROM after reset.
1874 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
1880 if (hw
->mac
.type
!= e1000_82580
)
1882 if (!igb_sgmii_active_82575(hw
))
1885 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1886 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1889 hw_dbg("NVM Read Error\n");
1893 mdicnfg
= rd32(E1000_MDICNFG
);
1894 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
1895 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
1896 if (nvm_data
& NVM_WORD24_COM_MDIO
)
1897 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
1898 wr32(E1000_MDICNFG
, mdicnfg
);
1904 * igb_reset_hw_82580 - Reset hardware
1905 * @hw: pointer to the HW structure
1907 * This resets function or entire device (all ports, etc.)
1910 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
1913 /* BH SW mailbox bit in SW_FW_SYNC */
1914 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
1916 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
1919 hw
->dev_spec
._82575
.global_device_reset
= false;
1921 /* Get current control state. */
1922 ctrl
= rd32(E1000_CTRL
);
1925 * Prevent the PCI-E bus from sticking if there is no TLP connection
1926 * on the last TLP read/write transaction when MAC is reset.
1928 ret_val
= igb_disable_pcie_master(hw
);
1930 hw_dbg("PCI-E Master disable polling has failed.\n");
1932 hw_dbg("Masking off all interrupts\n");
1933 wr32(E1000_IMC
, 0xffffffff);
1934 wr32(E1000_RCTL
, 0);
1935 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1940 /* Determine whether or not a global dev reset is requested */
1941 if (global_device_reset
&&
1942 hw
->mac
.ops
.acquire_swfw_sync(hw
, swmbsw_mask
))
1943 global_device_reset
= false;
1945 if (global_device_reset
&&
1946 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
1947 ctrl
|= E1000_CTRL_DEV_RST
;
1949 ctrl
|= E1000_CTRL_RST
;
1951 wr32(E1000_CTRL
, ctrl
);
1954 /* Add delay to insure DEV_RST has time to complete */
1955 if (global_device_reset
)
1958 ret_val
= igb_get_auto_rd_done(hw
);
1961 * When auto config read does not complete, do not
1962 * return with an error. This can happen in situations
1963 * where there is no eeprom and prevents getting link.
1965 hw_dbg("Auto Read Done did not complete\n");
1968 /* If EEPROM is not present, run manual init scripts */
1969 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1970 igb_reset_init_script_82575(hw
);
1972 /* clear global device reset status bit */
1973 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
1975 /* Clear any pending interrupt events. */
1976 wr32(E1000_IMC
, 0xffffffff);
1977 icr
= rd32(E1000_ICR
);
1979 ret_val
= igb_reset_mdicnfg_82580(hw
);
1981 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1983 /* Install any alternate MAC address into RAR0 */
1984 ret_val
= igb_check_alt_mac_addr(hw
);
1986 /* Release semaphore */
1987 if (global_device_reset
)
1988 hw
->mac
.ops
.release_swfw_sync(hw
, swmbsw_mask
);
1994 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995 * @data: data received by reading RXPBS register
1997 * The 82580 uses a table based approach for packet buffer allocation sizes.
1998 * This function converts the retrieved value into the correct table value
1999 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000 * 0x0 36 72 144 1 2 4 8 16
2001 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2003 u16
igb_rxpbs_adjust_82580(u32 data
)
2007 if (data
< E1000_82580_RXPBS_TABLE_SIZE
)
2008 ret_val
= e1000_82580_rxpbs_table
[data
];
2014 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2016 * @hw: pointer to the HW structure
2017 * @offset: offset in words of the checksum protected region
2019 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2022 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
2029 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
2030 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2032 hw_dbg("NVM Read Error\n");
2035 checksum
+= nvm_data
;
2038 if (checksum
!= (u16
) NVM_SUM
) {
2039 hw_dbg("NVM Checksum Invalid\n");
2040 ret_val
= -E1000_ERR_NVM
;
2049 * igb_update_nvm_checksum_with_offset - Update EEPROM
2051 * @hw: pointer to the HW structure
2052 * @offset: offset in words of the checksum protected region
2054 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055 * up to the checksum. Then calculates the EEPROM checksum and writes the
2056 * value to the EEPROM.
2058 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
2064 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
2065 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
2067 hw_dbg("NVM Read Error while updating checksum.\n");
2070 checksum
+= nvm_data
;
2072 checksum
= (u16
) NVM_SUM
- checksum
;
2073 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
2076 hw_dbg("NVM Write Error while updating checksum.\n");
2083 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084 * @hw: pointer to the HW structure
2086 * Calculates the EEPROM section checksum by reading/adding each word of
2087 * the EEPROM and then verifies that the sum of the EEPROM is
2090 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
2093 u16 eeprom_regions_count
= 1;
2097 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2099 hw_dbg("NVM Read Error\n");
2103 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
2104 /* if checksums compatibility bit is set validate checksums
2105 * for all 4 ports. */
2106 eeprom_regions_count
= 4;
2109 for (j
= 0; j
< eeprom_regions_count
; j
++) {
2110 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2111 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2122 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123 * @hw: pointer to the HW structure
2125 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2126 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2127 * checksum and writes the value to the EEPROM.
2129 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
2135 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
2137 hw_dbg("NVM Read Error while updating checksum"
2138 " compatibility bit.\n");
2142 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
2143 /* set compatibility bit to validate checksums appropriately */
2144 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
2145 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
2148 hw_dbg("NVM Write Error while updating checksum"
2149 " compatibility bit.\n");
2154 for (j
= 0; j
< 4; j
++) {
2155 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2156 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2166 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167 * @hw: pointer to the HW structure
2169 * Calculates the EEPROM section checksum by reading/adding each word of
2170 * the EEPROM and then verifies that the sum of the EEPROM is
2173 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
2179 for (j
= 0; j
< 4; j
++) {
2180 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2181 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2192 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193 * @hw: pointer to the HW structure
2195 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2196 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2197 * checksum and writes the value to the EEPROM.
2199 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
2205 for (j
= 0; j
< 4; j
++) {
2206 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2207 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2217 * igb_set_eee_i350 - Enable/disable EEE support
2218 * @hw: pointer to the HW structure
2220 * Enable/disable EEE based on setting in dev_spec structure.
2223 s32
igb_set_eee_i350(struct e1000_hw
*hw
)
2226 u32 ipcnfg
, eeer
, ctrl_ext
;
2228 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2229 if ((hw
->mac
.type
!= e1000_i350
) ||
2230 (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
))
2232 ipcnfg
= rd32(E1000_IPCNFG
);
2233 eeer
= rd32(E1000_EEER
);
2235 /* enable or disable per user setting */
2236 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2237 ipcnfg
|= (E1000_IPCNFG_EEE_1G_AN
|
2238 E1000_IPCNFG_EEE_100M_AN
);
2239 eeer
|= (E1000_EEER_TX_LPI_EN
|
2240 E1000_EEER_RX_LPI_EN
|
2244 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2245 E1000_IPCNFG_EEE_100M_AN
);
2246 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2247 E1000_EEER_RX_LPI_EN
|
2250 wr32(E1000_IPCNFG
, ipcnfg
);
2251 wr32(E1000_EEER
, eeer
);
2257 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2258 .init_hw
= igb_init_hw_82575
,
2259 .check_for_link
= igb_check_for_link_82575
,
2260 .rar_set
= igb_rar_set
,
2261 .read_mac_addr
= igb_read_mac_addr_82575
,
2262 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
2265 static struct e1000_phy_operations e1000_phy_ops_82575
= {
2266 .acquire
= igb_acquire_phy_82575
,
2267 .get_cfg_done
= igb_get_cfg_done_82575
,
2268 .release
= igb_release_phy_82575
,
2271 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2272 .acquire
= igb_acquire_nvm_82575
,
2273 .read
= igb_read_nvm_eerd
,
2274 .release
= igb_release_nvm_82575
,
2275 .write
= igb_write_nvm_spi
,
2278 const struct e1000_info e1000_82575_info
= {
2279 .get_invariants
= igb_get_invariants_82575
,
2280 .mac_ops
= &e1000_mac_ops_82575
,
2281 .phy_ops
= &e1000_phy_ops_82575
,
2282 .nvm_ops
= &e1000_nvm_ops_82575
,