1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name
[] = "igbvf";
52 const char igbvf_driver_version
[] = DRV_VERSION
;
53 static const char igbvf_driver_string
[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright
[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug
= -1;
60 module_param(debug
, int, 0);
61 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
63 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
64 static void igbvf_reset(struct igbvf_adapter
*);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
68 static struct igbvf_info igbvf_vf_info
= {
72 .init_ops
= e1000_init_function_pointers_vf
,
75 static struct igbvf_info igbvf_i350_vf_info
= {
76 .mac
= e1000_vfadapt_i350
,
79 .init_ops
= e1000_init_function_pointers_vf
,
82 static const struct igbvf_info
*igbvf_info_tbl
[] = {
83 [board_vf
] = &igbvf_vf_info
,
84 [board_i350_vf
] = &igbvf_i350_vf_info
,
88 * igbvf_desc_unused - calculate if we have unused descriptors
90 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
92 if (ring
->next_to_clean
> ring
->next_to_use
)
93 return ring
->next_to_clean
- ring
->next_to_use
- 1;
95 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
105 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
106 struct net_device
*netdev
,
108 u32 status
, u16 vlan
)
110 if (status
& E1000_RXD_STAT_VP
) {
111 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
112 if (test_bit(vid
, adapter
->active_vlans
))
113 __vlan_hwaccel_put_tag(skb
, vid
);
115 netif_receive_skb(skb
);
118 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
119 u32 status_err
, struct sk_buff
*skb
)
121 skb_checksum_none_assert(skb
);
123 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
124 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
125 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
128 /* TCP/UDP checksum error bit is set */
130 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
131 /* let the stack verify checksum errors */
132 adapter
->hw_csum_err
++;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
138 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
140 adapter
->hw_csum_good
++;
144 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
145 * @rx_ring: address of ring structure to repopulate
146 * @cleaned_count: number of buffers to repopulate
148 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
151 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
152 struct net_device
*netdev
= adapter
->netdev
;
153 struct pci_dev
*pdev
= adapter
->pdev
;
154 union e1000_adv_rx_desc
*rx_desc
;
155 struct igbvf_buffer
*buffer_info
;
160 i
= rx_ring
->next_to_use
;
161 buffer_info
= &rx_ring
->buffer_info
[i
];
163 if (adapter
->rx_ps_hdr_size
)
164 bufsz
= adapter
->rx_ps_hdr_size
;
166 bufsz
= adapter
->rx_buffer_len
;
168 while (cleaned_count
--) {
169 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
171 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
172 if (!buffer_info
->page
) {
173 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
174 if (!buffer_info
->page
) {
175 adapter
->alloc_rx_buff_failed
++;
178 buffer_info
->page_offset
= 0;
180 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
182 buffer_info
->page_dma
=
183 dma_map_page(&pdev
->dev
, buffer_info
->page
,
184 buffer_info
->page_offset
,
189 if (!buffer_info
->skb
) {
190 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
192 adapter
->alloc_rx_buff_failed
++;
196 buffer_info
->skb
= skb
;
197 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
201 /* Refresh the desc even if buffer_addrs didn't change because
202 * each write-back erases this info. */
203 if (adapter
->rx_ps_hdr_size
) {
204 rx_desc
->read
.pkt_addr
=
205 cpu_to_le64(buffer_info
->page_dma
);
206 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
208 rx_desc
->read
.pkt_addr
=
209 cpu_to_le64(buffer_info
->dma
);
210 rx_desc
->read
.hdr_addr
= 0;
214 if (i
== rx_ring
->count
)
216 buffer_info
= &rx_ring
->buffer_info
[i
];
220 if (rx_ring
->next_to_use
!= i
) {
221 rx_ring
->next_to_use
= i
;
223 i
= (rx_ring
->count
- 1);
227 /* Force memory writes to complete before letting h/w
228 * know there are new descriptors to fetch. (Only
229 * applicable for weak-ordered memory model archs,
232 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
237 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
238 * @adapter: board private structure
240 * the return value indicates whether actual cleaning was done, there
241 * is no guarantee that everything was cleaned
243 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
244 int *work_done
, int work_to_do
)
246 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
247 struct net_device
*netdev
= adapter
->netdev
;
248 struct pci_dev
*pdev
= adapter
->pdev
;
249 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
250 struct igbvf_buffer
*buffer_info
, *next_buffer
;
252 bool cleaned
= false;
253 int cleaned_count
= 0;
254 unsigned int total_bytes
= 0, total_packets
= 0;
256 u32 length
, hlen
, staterr
;
258 i
= rx_ring
->next_to_clean
;
259 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
260 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
262 while (staterr
& E1000_RXD_STAT_DD
) {
263 if (*work_done
>= work_to_do
)
266 rmb(); /* read descriptor and rx_buffer_info after status DD */
268 buffer_info
= &rx_ring
->buffer_info
[i
];
270 /* HW will not DMA in data larger than the given buffer, even
271 * if it parses the (NFS, of course) header to be larger. In
272 * that case, it fills the header buffer and spills the rest
275 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
276 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
277 if (hlen
> adapter
->rx_ps_hdr_size
)
278 hlen
= adapter
->rx_ps_hdr_size
;
280 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
284 skb
= buffer_info
->skb
;
285 prefetch(skb
->data
- NET_IP_ALIGN
);
286 buffer_info
->skb
= NULL
;
287 if (!adapter
->rx_ps_hdr_size
) {
288 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
289 adapter
->rx_buffer_len
,
291 buffer_info
->dma
= 0;
292 skb_put(skb
, length
);
296 if (!skb_shinfo(skb
)->nr_frags
) {
297 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
298 adapter
->rx_ps_hdr_size
,
304 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
307 buffer_info
->page_dma
= 0;
309 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
311 buffer_info
->page_offset
,
314 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
315 (page_count(buffer_info
->page
) != 1))
316 buffer_info
->page
= NULL
;
318 get_page(buffer_info
->page
);
321 skb
->data_len
+= length
;
322 skb
->truesize
+= PAGE_SIZE
/ 2;
326 if (i
== rx_ring
->count
)
328 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
330 next_buffer
= &rx_ring
->buffer_info
[i
];
332 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
333 buffer_info
->skb
= next_buffer
->skb
;
334 buffer_info
->dma
= next_buffer
->dma
;
335 next_buffer
->skb
= skb
;
336 next_buffer
->dma
= 0;
340 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
341 dev_kfree_skb_irq(skb
);
345 total_bytes
+= skb
->len
;
348 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
350 skb
->protocol
= eth_type_trans(skb
, netdev
);
352 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
353 rx_desc
->wb
.upper
.vlan
);
356 rx_desc
->wb
.upper
.status_error
= 0;
358 /* return some buffers to hardware, one at a time is too slow */
359 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
360 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
364 /* use prefetched values */
366 buffer_info
= next_buffer
;
368 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
371 rx_ring
->next_to_clean
= i
;
372 cleaned_count
= igbvf_desc_unused(rx_ring
);
375 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
377 adapter
->total_rx_packets
+= total_packets
;
378 adapter
->total_rx_bytes
+= total_bytes
;
379 adapter
->net_stats
.rx_bytes
+= total_bytes
;
380 adapter
->net_stats
.rx_packets
+= total_packets
;
384 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
385 struct igbvf_buffer
*buffer_info
)
387 if (buffer_info
->dma
) {
388 if (buffer_info
->mapped_as_page
)
389 dma_unmap_page(&adapter
->pdev
->dev
,
394 dma_unmap_single(&adapter
->pdev
->dev
,
398 buffer_info
->dma
= 0;
400 if (buffer_info
->skb
) {
401 dev_kfree_skb_any(buffer_info
->skb
);
402 buffer_info
->skb
= NULL
;
404 buffer_info
->time_stamp
= 0;
408 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
409 * @adapter: board private structure
411 * Return 0 on success, negative on failure
413 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
414 struct igbvf_ring
*tx_ring
)
416 struct pci_dev
*pdev
= adapter
->pdev
;
419 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
420 tx_ring
->buffer_info
= vzalloc(size
);
421 if (!tx_ring
->buffer_info
)
424 /* round up to nearest 4K */
425 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
426 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
428 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
429 &tx_ring
->dma
, GFP_KERNEL
);
434 tx_ring
->adapter
= adapter
;
435 tx_ring
->next_to_use
= 0;
436 tx_ring
->next_to_clean
= 0;
440 vfree(tx_ring
->buffer_info
);
441 dev_err(&adapter
->pdev
->dev
,
442 "Unable to allocate memory for the transmit descriptor ring\n");
447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448 * @adapter: board private structure
450 * Returns 0 on success, negative on failure
452 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
453 struct igbvf_ring
*rx_ring
)
455 struct pci_dev
*pdev
= adapter
->pdev
;
458 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
459 rx_ring
->buffer_info
= vzalloc(size
);
460 if (!rx_ring
->buffer_info
)
463 desc_len
= sizeof(union e1000_adv_rx_desc
);
465 /* Round up to nearest 4K */
466 rx_ring
->size
= rx_ring
->count
* desc_len
;
467 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
469 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
470 &rx_ring
->dma
, GFP_KERNEL
);
475 rx_ring
->next_to_clean
= 0;
476 rx_ring
->next_to_use
= 0;
478 rx_ring
->adapter
= adapter
;
483 vfree(rx_ring
->buffer_info
);
484 rx_ring
->buffer_info
= NULL
;
485 dev_err(&adapter
->pdev
->dev
,
486 "Unable to allocate memory for the receive descriptor ring\n");
491 * igbvf_clean_tx_ring - Free Tx Buffers
492 * @tx_ring: ring to be cleaned
494 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
496 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
497 struct igbvf_buffer
*buffer_info
;
501 if (!tx_ring
->buffer_info
)
504 /* Free all the Tx ring sk_buffs */
505 for (i
= 0; i
< tx_ring
->count
; i
++) {
506 buffer_info
= &tx_ring
->buffer_info
[i
];
507 igbvf_put_txbuf(adapter
, buffer_info
);
510 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
511 memset(tx_ring
->buffer_info
, 0, size
);
513 /* Zero out the descriptor ring */
514 memset(tx_ring
->desc
, 0, tx_ring
->size
);
516 tx_ring
->next_to_use
= 0;
517 tx_ring
->next_to_clean
= 0;
519 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
520 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
524 * igbvf_free_tx_resources - Free Tx Resources per Queue
525 * @tx_ring: ring to free resources from
527 * Free all transmit software resources
529 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
531 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
533 igbvf_clean_tx_ring(tx_ring
);
535 vfree(tx_ring
->buffer_info
);
536 tx_ring
->buffer_info
= NULL
;
538 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
541 tx_ring
->desc
= NULL
;
545 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
546 * @adapter: board private structure
548 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
550 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
551 struct igbvf_buffer
*buffer_info
;
552 struct pci_dev
*pdev
= adapter
->pdev
;
556 if (!rx_ring
->buffer_info
)
559 /* Free all the Rx ring sk_buffs */
560 for (i
= 0; i
< rx_ring
->count
; i
++) {
561 buffer_info
= &rx_ring
->buffer_info
[i
];
562 if (buffer_info
->dma
) {
563 if (adapter
->rx_ps_hdr_size
){
564 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
565 adapter
->rx_ps_hdr_size
,
568 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
569 adapter
->rx_buffer_len
,
572 buffer_info
->dma
= 0;
575 if (buffer_info
->skb
) {
576 dev_kfree_skb(buffer_info
->skb
);
577 buffer_info
->skb
= NULL
;
580 if (buffer_info
->page
) {
581 if (buffer_info
->page_dma
)
582 dma_unmap_page(&pdev
->dev
,
583 buffer_info
->page_dma
,
586 put_page(buffer_info
->page
);
587 buffer_info
->page
= NULL
;
588 buffer_info
->page_dma
= 0;
589 buffer_info
->page_offset
= 0;
593 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
594 memset(rx_ring
->buffer_info
, 0, size
);
596 /* Zero out the descriptor ring */
597 memset(rx_ring
->desc
, 0, rx_ring
->size
);
599 rx_ring
->next_to_clean
= 0;
600 rx_ring
->next_to_use
= 0;
602 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
603 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
607 * igbvf_free_rx_resources - Free Rx Resources
608 * @rx_ring: ring to clean the resources from
610 * Free all receive software resources
613 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
615 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
617 igbvf_clean_rx_ring(rx_ring
);
619 vfree(rx_ring
->buffer_info
);
620 rx_ring
->buffer_info
= NULL
;
622 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
624 rx_ring
->desc
= NULL
;
628 * igbvf_update_itr - update the dynamic ITR value based on statistics
629 * @adapter: pointer to adapter
630 * @itr_setting: current adapter->itr
631 * @packets: the number of packets during this measurement interval
632 * @bytes: the number of bytes during this measurement interval
634 * Stores a new ITR value based on packets and byte
635 * counts during the last interrupt. The advantage of per interrupt
636 * computation is faster updates and more accurate ITR for the current
637 * traffic pattern. Constants in this function were computed
638 * based on theoretical maximum wire speed and thresholds were set based
639 * on testing data as well as attempting to minimize response time
640 * while increasing bulk throughput.
642 static enum latency_range
igbvf_update_itr(struct igbvf_adapter
*adapter
,
643 enum latency_range itr_setting
,
644 int packets
, int bytes
)
646 enum latency_range retval
= itr_setting
;
649 goto update_itr_done
;
651 switch (itr_setting
) {
653 /* handle TSO and jumbo frames */
654 if (bytes
/packets
> 8000)
655 retval
= bulk_latency
;
656 else if ((packets
< 5) && (bytes
> 512))
657 retval
= low_latency
;
659 case low_latency
: /* 50 usec aka 20000 ints/s */
661 /* this if handles the TSO accounting */
662 if (bytes
/packets
> 8000)
663 retval
= bulk_latency
;
664 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
665 retval
= bulk_latency
;
666 else if ((packets
> 35))
667 retval
= lowest_latency
;
668 } else if (bytes
/packets
> 2000) {
669 retval
= bulk_latency
;
670 } else if (packets
<= 2 && bytes
< 512) {
671 retval
= lowest_latency
;
674 case bulk_latency
: /* 250 usec aka 4000 ints/s */
677 retval
= low_latency
;
678 } else if (bytes
< 6000) {
679 retval
= low_latency
;
690 static int igbvf_range_to_itr(enum latency_range current_range
)
694 switch (current_range
) {
695 /* counts and packets in update_itr are dependent on these numbers */
697 new_itr
= IGBVF_70K_ITR
;
700 new_itr
= IGBVF_20K_ITR
;
703 new_itr
= IGBVF_4K_ITR
;
706 new_itr
= IGBVF_START_ITR
;
712 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
716 adapter
->tx_ring
->itr_range
=
717 igbvf_update_itr(adapter
,
718 adapter
->tx_ring
->itr_val
,
719 adapter
->total_tx_packets
,
720 adapter
->total_tx_bytes
);
722 /* conservative mode (itr 3) eliminates the lowest_latency setting */
723 if (adapter
->requested_itr
== 3 &&
724 adapter
->tx_ring
->itr_range
== lowest_latency
)
725 adapter
->tx_ring
->itr_range
= low_latency
;
727 new_itr
= igbvf_range_to_itr(adapter
->tx_ring
->itr_range
);
730 if (new_itr
!= adapter
->tx_ring
->itr_val
) {
731 u32 current_itr
= adapter
->tx_ring
->itr_val
;
733 * this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
737 new_itr
= new_itr
> current_itr
?
738 min(current_itr
+ (new_itr
>> 2), new_itr
) :
740 adapter
->tx_ring
->itr_val
= new_itr
;
742 adapter
->tx_ring
->set_itr
= 1;
745 adapter
->rx_ring
->itr_range
=
746 igbvf_update_itr(adapter
, adapter
->rx_ring
->itr_val
,
747 adapter
->total_rx_packets
,
748 adapter
->total_rx_bytes
);
749 if (adapter
->requested_itr
== 3 &&
750 adapter
->rx_ring
->itr_range
== lowest_latency
)
751 adapter
->rx_ring
->itr_range
= low_latency
;
753 new_itr
= igbvf_range_to_itr(adapter
->rx_ring
->itr_range
);
755 if (new_itr
!= adapter
->rx_ring
->itr_val
) {
756 u32 current_itr
= adapter
->rx_ring
->itr_val
;
757 new_itr
= new_itr
> current_itr
?
758 min(current_itr
+ (new_itr
>> 2), new_itr
) :
760 adapter
->rx_ring
->itr_val
= new_itr
;
762 adapter
->rx_ring
->set_itr
= 1;
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @adapter: board private structure
770 * returns true if ring is completely cleaned
772 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
774 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
775 struct net_device
*netdev
= adapter
->netdev
;
776 struct igbvf_buffer
*buffer_info
;
778 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
779 unsigned int total_bytes
= 0, total_packets
= 0;
780 unsigned int i
, eop
, count
= 0;
781 bool cleaned
= false;
783 i
= tx_ring
->next_to_clean
;
784 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
785 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
787 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
788 (count
< tx_ring
->count
)) {
789 rmb(); /* read buffer_info after eop_desc status */
790 for (cleaned
= false; !cleaned
; count
++) {
791 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
792 buffer_info
= &tx_ring
->buffer_info
[i
];
793 cleaned
= (i
== eop
);
794 skb
= buffer_info
->skb
;
797 unsigned int segs
, bytecount
;
799 /* gso_segs is currently only valid for tcp */
800 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
801 /* multiply data chunks by size of headers */
802 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
804 total_packets
+= segs
;
805 total_bytes
+= bytecount
;
808 igbvf_put_txbuf(adapter
, buffer_info
);
809 tx_desc
->wb
.status
= 0;
812 if (i
== tx_ring
->count
)
815 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
816 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
819 tx_ring
->next_to_clean
= i
;
821 if (unlikely(count
&&
822 netif_carrier_ok(netdev
) &&
823 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
824 /* Make sure that anybody stopping the queue after this
825 * sees the new next_to_clean.
828 if (netif_queue_stopped(netdev
) &&
829 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
830 netif_wake_queue(netdev
);
831 ++adapter
->restart_queue
;
835 adapter
->net_stats
.tx_bytes
+= total_bytes
;
836 adapter
->net_stats
.tx_packets
+= total_packets
;
837 return count
< tx_ring
->count
;
840 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
842 struct net_device
*netdev
= data
;
843 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
844 struct e1000_hw
*hw
= &adapter
->hw
;
846 adapter
->int_counter1
++;
848 netif_carrier_off(netdev
);
849 hw
->mac
.get_link_status
= 1;
850 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
851 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
853 ew32(EIMS
, adapter
->eims_other
);
858 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
860 struct net_device
*netdev
= data
;
861 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
862 struct e1000_hw
*hw
= &adapter
->hw
;
863 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
865 if (tx_ring
->set_itr
) {
866 writel(tx_ring
->itr_val
,
867 adapter
->hw
.hw_addr
+ tx_ring
->itr_register
);
868 adapter
->tx_ring
->set_itr
= 0;
871 adapter
->total_tx_bytes
= 0;
872 adapter
->total_tx_packets
= 0;
874 /* auto mask will automatically reenable the interrupt when we write
876 if (!igbvf_clean_tx_irq(tx_ring
))
877 /* Ring was not completely cleaned, so fire another interrupt */
878 ew32(EICS
, tx_ring
->eims_value
);
880 ew32(EIMS
, tx_ring
->eims_value
);
885 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
887 struct net_device
*netdev
= data
;
888 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
890 adapter
->int_counter0
++;
892 /* Write the ITR value calculated at the end of the
893 * previous interrupt.
895 if (adapter
->rx_ring
->set_itr
) {
896 writel(adapter
->rx_ring
->itr_val
,
897 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
898 adapter
->rx_ring
->set_itr
= 0;
901 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
902 adapter
->total_rx_bytes
= 0;
903 adapter
->total_rx_packets
= 0;
904 __napi_schedule(&adapter
->rx_ring
->napi
);
910 #define IGBVF_NO_QUEUE -1
912 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
913 int tx_queue
, int msix_vector
)
915 struct e1000_hw
*hw
= &adapter
->hw
;
918 /* 82576 uses a table-based method for assigning vectors.
919 Each queue has a single entry in the table to which we write
920 a vector number along with a "valid" bit. Sadly, the layout
921 of the table is somewhat counterintuitive. */
922 if (rx_queue
> IGBVF_NO_QUEUE
) {
923 index
= (rx_queue
>> 1);
924 ivar
= array_er32(IVAR0
, index
);
925 if (rx_queue
& 0x1) {
926 /* vector goes into third byte of register */
927 ivar
= ivar
& 0xFF00FFFF;
928 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
930 /* vector goes into low byte of register */
931 ivar
= ivar
& 0xFFFFFF00;
932 ivar
|= msix_vector
| E1000_IVAR_VALID
;
934 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
935 array_ew32(IVAR0
, index
, ivar
);
937 if (tx_queue
> IGBVF_NO_QUEUE
) {
938 index
= (tx_queue
>> 1);
939 ivar
= array_er32(IVAR0
, index
);
940 if (tx_queue
& 0x1) {
941 /* vector goes into high byte of register */
942 ivar
= ivar
& 0x00FFFFFF;
943 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
945 /* vector goes into second byte of register */
946 ivar
= ivar
& 0xFFFF00FF;
947 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
949 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
950 array_ew32(IVAR0
, index
, ivar
);
955 * igbvf_configure_msix - Configure MSI-X hardware
957 * igbvf_configure_msix sets up the hardware to properly
958 * generate MSI-X interrupts.
960 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
963 struct e1000_hw
*hw
= &adapter
->hw
;
964 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
965 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
968 adapter
->eims_enable_mask
= 0;
970 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
971 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
972 writel(tx_ring
->itr_val
, hw
->hw_addr
+ tx_ring
->itr_register
);
973 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
974 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
975 writel(rx_ring
->itr_val
, hw
->hw_addr
+ rx_ring
->itr_register
);
977 /* set vector for other causes, i.e. link changes */
979 tmp
= (vector
++ | E1000_IVAR_VALID
);
981 ew32(IVAR_MISC
, tmp
);
983 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
984 adapter
->eims_other
= 1 << (vector
- 1);
988 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
990 if (adapter
->msix_entries
) {
991 pci_disable_msix(adapter
->pdev
);
992 kfree(adapter
->msix_entries
);
993 adapter
->msix_entries
= NULL
;
998 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1000 * Attempt to configure interrupts using the best available
1001 * capabilities of the hardware and kernel.
1003 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1008 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1009 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1011 if (adapter
->msix_entries
) {
1012 for (i
= 0; i
< 3; i
++)
1013 adapter
->msix_entries
[i
].entry
= i
;
1015 err
= pci_enable_msix(adapter
->pdev
,
1016 adapter
->msix_entries
, 3);
1021 dev_err(&adapter
->pdev
->dev
,
1022 "Failed to initialize MSI-X interrupts.\n");
1023 igbvf_reset_interrupt_capability(adapter
);
1028 * igbvf_request_msix - Initialize MSI-X interrupts
1030 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1033 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1035 struct net_device
*netdev
= adapter
->netdev
;
1036 int err
= 0, vector
= 0;
1038 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1039 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1040 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1042 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1043 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1046 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1047 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1052 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1053 adapter
->tx_ring
->itr_val
= adapter
->current_itr
;
1056 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1057 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1062 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1063 adapter
->rx_ring
->itr_val
= adapter
->current_itr
;
1066 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1067 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1071 igbvf_configure_msix(adapter
);
1078 * igbvf_alloc_queues - Allocate memory for all rings
1079 * @adapter: board private structure to initialize
1081 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1083 struct net_device
*netdev
= adapter
->netdev
;
1085 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1086 if (!adapter
->tx_ring
)
1089 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1090 if (!adapter
->rx_ring
) {
1091 kfree(adapter
->tx_ring
);
1095 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1101 * igbvf_request_irq - initialize interrupts
1103 * Attempts to configure interrupts using the best available
1104 * capabilities of the hardware and kernel.
1106 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1110 /* igbvf supports msi-x only */
1111 if (adapter
->msix_entries
)
1112 err
= igbvf_request_msix(adapter
);
1117 dev_err(&adapter
->pdev
->dev
,
1118 "Unable to allocate interrupt, Error: %d\n", err
);
1123 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1125 struct net_device
*netdev
= adapter
->netdev
;
1128 if (adapter
->msix_entries
) {
1129 for (vector
= 0; vector
< 3; vector
++)
1130 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1135 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1137 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1139 struct e1000_hw
*hw
= &adapter
->hw
;
1143 if (adapter
->msix_entries
)
1148 * igbvf_irq_enable - Enable default interrupt generation settings
1150 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1152 struct e1000_hw
*hw
= &adapter
->hw
;
1154 ew32(EIAC
, adapter
->eims_enable_mask
);
1155 ew32(EIAM
, adapter
->eims_enable_mask
);
1156 ew32(EIMS
, adapter
->eims_enable_mask
);
1160 * igbvf_poll - NAPI Rx polling callback
1161 * @napi: struct associated with this polling callback
1162 * @budget: amount of packets driver is allowed to process this poll
1164 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1166 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1167 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1168 struct e1000_hw
*hw
= &adapter
->hw
;
1171 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1173 /* If not enough Rx work done, exit the polling mode */
1174 if (work_done
< budget
) {
1175 napi_complete(napi
);
1177 if (adapter
->requested_itr
& 3)
1178 igbvf_set_itr(adapter
);
1180 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1181 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1188 * igbvf_set_rlpml - set receive large packet maximum length
1189 * @adapter: board private structure
1191 * Configure the maximum size of packets that will be received
1193 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1196 struct e1000_hw
*hw
= &adapter
->hw
;
1198 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1199 e1000_rlpml_set_vf(hw
, max_frame_size
);
1202 static int igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1204 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1205 struct e1000_hw
*hw
= &adapter
->hw
;
1207 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true)) {
1208 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1211 set_bit(vid
, adapter
->active_vlans
);
1215 static int igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1217 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1218 struct e1000_hw
*hw
= &adapter
->hw
;
1220 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false)) {
1221 dev_err(&adapter
->pdev
->dev
,
1222 "Failed to remove vlan id %d\n", vid
);
1225 clear_bit(vid
, adapter
->active_vlans
);
1229 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1233 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1234 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1238 * igbvf_configure_tx - Configure Transmit Unit after Reset
1239 * @adapter: board private structure
1241 * Configure the Tx unit of the MAC after a reset.
1243 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1245 struct e1000_hw
*hw
= &adapter
->hw
;
1246 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1248 u32 txdctl
, dca_txctrl
;
1250 /* disable transmits */
1251 txdctl
= er32(TXDCTL(0));
1252 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1256 /* Setup the HW Tx Head and Tail descriptor pointers */
1257 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1258 tdba
= tx_ring
->dma
;
1259 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1260 ew32(TDBAH(0), (tdba
>> 32));
1263 tx_ring
->head
= E1000_TDH(0);
1264 tx_ring
->tail
= E1000_TDT(0);
1266 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1267 * MUST be delivered in order or it will completely screw up
1270 dca_txctrl
= er32(DCA_TXCTRL(0));
1271 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1272 ew32(DCA_TXCTRL(0), dca_txctrl
);
1274 /* enable transmits */
1275 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1276 ew32(TXDCTL(0), txdctl
);
1278 /* Setup Transmit Descriptor Settings for eop descriptor */
1279 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1281 /* enable Report Status bit */
1282 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1286 * igbvf_setup_srrctl - configure the receive control registers
1287 * @adapter: Board private structure
1289 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1291 struct e1000_hw
*hw
= &adapter
->hw
;
1294 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1295 E1000_SRRCTL_BSIZEHDR_MASK
|
1296 E1000_SRRCTL_BSIZEPKT_MASK
);
1298 /* Enable queue drop to avoid head of line blocking */
1299 srrctl
|= E1000_SRRCTL_DROP_EN
;
1301 /* Setup buffer sizes */
1302 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1303 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1305 if (adapter
->rx_buffer_len
< 2048) {
1306 adapter
->rx_ps_hdr_size
= 0;
1307 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1309 adapter
->rx_ps_hdr_size
= 128;
1310 srrctl
|= adapter
->rx_ps_hdr_size
<<
1311 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1312 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1315 ew32(SRRCTL(0), srrctl
);
1319 * igbvf_configure_rx - Configure Receive Unit after Reset
1320 * @adapter: board private structure
1322 * Configure the Rx unit of the MAC after a reset.
1324 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1326 struct e1000_hw
*hw
= &adapter
->hw
;
1327 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1331 /* disable receives */
1332 rxdctl
= er32(RXDCTL(0));
1333 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1337 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1340 * Setup the HW Rx Head and Tail Descriptor Pointers and
1341 * the Base and Length of the Rx Descriptor Ring
1343 rdba
= rx_ring
->dma
;
1344 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1345 ew32(RDBAH(0), (rdba
>> 32));
1346 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1347 rx_ring
->head
= E1000_RDH(0);
1348 rx_ring
->tail
= E1000_RDT(0);
1352 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1353 rxdctl
&= 0xFFF00000;
1354 rxdctl
|= IGBVF_RX_PTHRESH
;
1355 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1356 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1358 igbvf_set_rlpml(adapter
);
1360 /* enable receives */
1361 ew32(RXDCTL(0), rxdctl
);
1365 * igbvf_set_multi - Multicast and Promiscuous mode set
1366 * @netdev: network interface device structure
1368 * The set_multi entry point is called whenever the multicast address
1369 * list or the network interface flags are updated. This routine is
1370 * responsible for configuring the hardware for proper multicast,
1371 * promiscuous mode, and all-multi behavior.
1373 static void igbvf_set_multi(struct net_device
*netdev
)
1375 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1376 struct e1000_hw
*hw
= &adapter
->hw
;
1377 struct netdev_hw_addr
*ha
;
1378 u8
*mta_list
= NULL
;
1381 if (!netdev_mc_empty(netdev
)) {
1382 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
1384 dev_err(&adapter
->pdev
->dev
,
1385 "failed to allocate multicast filter list\n");
1390 /* prepare a packed array of only addresses. */
1392 netdev_for_each_mc_addr(ha
, netdev
)
1393 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1395 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1400 * igbvf_configure - configure the hardware for Rx and Tx
1401 * @adapter: private board structure
1403 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1405 igbvf_set_multi(adapter
->netdev
);
1407 igbvf_restore_vlan(adapter
);
1409 igbvf_configure_tx(adapter
);
1410 igbvf_setup_srrctl(adapter
);
1411 igbvf_configure_rx(adapter
);
1412 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1413 igbvf_desc_unused(adapter
->rx_ring
));
1416 /* igbvf_reset - bring the hardware into a known good state
1418 * This function boots the hardware and enables some settings that
1419 * require a configuration cycle of the hardware - those cannot be
1420 * set/changed during runtime. After reset the device needs to be
1421 * properly configured for Rx, Tx etc.
1423 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1425 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1426 struct net_device
*netdev
= adapter
->netdev
;
1427 struct e1000_hw
*hw
= &adapter
->hw
;
1429 /* Allow time for pending master requests to run */
1430 if (mac
->ops
.reset_hw(hw
))
1431 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1433 mac
->ops
.init_hw(hw
);
1435 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1436 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1438 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1442 adapter
->last_reset
= jiffies
;
1445 int igbvf_up(struct igbvf_adapter
*adapter
)
1447 struct e1000_hw
*hw
= &adapter
->hw
;
1449 /* hardware has been reset, we need to reload some things */
1450 igbvf_configure(adapter
);
1452 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1454 napi_enable(&adapter
->rx_ring
->napi
);
1455 if (adapter
->msix_entries
)
1456 igbvf_configure_msix(adapter
);
1458 /* Clear any pending interrupts. */
1460 igbvf_irq_enable(adapter
);
1462 /* start the watchdog */
1463 hw
->mac
.get_link_status
= 1;
1464 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1470 void igbvf_down(struct igbvf_adapter
*adapter
)
1472 struct net_device
*netdev
= adapter
->netdev
;
1473 struct e1000_hw
*hw
= &adapter
->hw
;
1477 * signal that we're down so the interrupt handler does not
1478 * reschedule our watchdog timer
1480 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1482 /* disable receives in the hardware */
1483 rxdctl
= er32(RXDCTL(0));
1484 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1486 netif_stop_queue(netdev
);
1488 /* disable transmits in the hardware */
1489 txdctl
= er32(TXDCTL(0));
1490 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1492 /* flush both disables and wait for them to finish */
1496 napi_disable(&adapter
->rx_ring
->napi
);
1498 igbvf_irq_disable(adapter
);
1500 del_timer_sync(&adapter
->watchdog_timer
);
1502 netif_carrier_off(netdev
);
1504 /* record the stats before reset*/
1505 igbvf_update_stats(adapter
);
1507 adapter
->link_speed
= 0;
1508 adapter
->link_duplex
= 0;
1510 igbvf_reset(adapter
);
1511 igbvf_clean_tx_ring(adapter
->tx_ring
);
1512 igbvf_clean_rx_ring(adapter
->rx_ring
);
1515 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1518 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1520 igbvf_down(adapter
);
1522 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1526 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1527 * @adapter: board private structure to initialize
1529 * igbvf_sw_init initializes the Adapter private data structure.
1530 * Fields are initialized based on PCI device information and
1531 * OS network device settings (MTU size).
1533 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1535 struct net_device
*netdev
= adapter
->netdev
;
1538 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1539 adapter
->rx_ps_hdr_size
= 0;
1540 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1541 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1543 adapter
->tx_int_delay
= 8;
1544 adapter
->tx_abs_int_delay
= 32;
1545 adapter
->rx_int_delay
= 0;
1546 adapter
->rx_abs_int_delay
= 8;
1547 adapter
->requested_itr
= 3;
1548 adapter
->current_itr
= IGBVF_START_ITR
;
1550 /* Set various function pointers */
1551 adapter
->ei
->init_ops(&adapter
->hw
);
1553 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1557 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1561 igbvf_set_interrupt_capability(adapter
);
1563 if (igbvf_alloc_queues(adapter
))
1566 spin_lock_init(&adapter
->tx_queue_lock
);
1568 /* Explicitly disable IRQ since the NIC can be in any state. */
1569 igbvf_irq_disable(adapter
);
1571 spin_lock_init(&adapter
->stats_lock
);
1573 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1577 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1579 struct e1000_hw
*hw
= &adapter
->hw
;
1581 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1582 adapter
->stats
.last_gorc
= er32(VFGORC
);
1583 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1584 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1585 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1586 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1587 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1588 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1589 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1591 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1592 adapter
->stats
.base_gorc
= er32(VFGORC
);
1593 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1594 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1595 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1596 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1597 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1598 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1599 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1603 * igbvf_open - Called when a network interface is made active
1604 * @netdev: network interface device structure
1606 * Returns 0 on success, negative value on failure
1608 * The open entry point is called when a network interface is made
1609 * active by the system (IFF_UP). At this point all resources needed
1610 * for transmit and receive operations are allocated, the interrupt
1611 * handler is registered with the OS, the watchdog timer is started,
1612 * and the stack is notified that the interface is ready.
1614 static int igbvf_open(struct net_device
*netdev
)
1616 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1617 struct e1000_hw
*hw
= &adapter
->hw
;
1620 /* disallow open during test */
1621 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1624 /* allocate transmit descriptors */
1625 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1629 /* allocate receive descriptors */
1630 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1635 * before we allocate an interrupt, we must be ready to handle it.
1636 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1637 * as soon as we call pci_request_irq, so we have to setup our
1638 * clean_rx handler before we do so.
1640 igbvf_configure(adapter
);
1642 err
= igbvf_request_irq(adapter
);
1646 /* From here on the code is the same as igbvf_up() */
1647 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1649 napi_enable(&adapter
->rx_ring
->napi
);
1651 /* clear any pending interrupts */
1654 igbvf_irq_enable(adapter
);
1656 /* start the watchdog */
1657 hw
->mac
.get_link_status
= 1;
1658 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1663 igbvf_free_rx_resources(adapter
->rx_ring
);
1665 igbvf_free_tx_resources(adapter
->tx_ring
);
1667 igbvf_reset(adapter
);
1673 * igbvf_close - Disables a network interface
1674 * @netdev: network interface device structure
1676 * Returns 0, this is not allowed to fail
1678 * The close entry point is called when an interface is de-activated
1679 * by the OS. The hardware is still under the drivers control, but
1680 * needs to be disabled. A global MAC reset is issued to stop the
1681 * hardware, and all transmit and receive resources are freed.
1683 static int igbvf_close(struct net_device
*netdev
)
1685 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1687 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1688 igbvf_down(adapter
);
1690 igbvf_free_irq(adapter
);
1692 igbvf_free_tx_resources(adapter
->tx_ring
);
1693 igbvf_free_rx_resources(adapter
->rx_ring
);
1698 * igbvf_set_mac - Change the Ethernet Address of the NIC
1699 * @netdev: network interface device structure
1700 * @p: pointer to an address structure
1702 * Returns 0 on success, negative on failure
1704 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1706 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1707 struct e1000_hw
*hw
= &adapter
->hw
;
1708 struct sockaddr
*addr
= p
;
1710 if (!is_valid_ether_addr(addr
->sa_data
))
1711 return -EADDRNOTAVAIL
;
1713 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1715 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1717 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1718 return -EADDRNOTAVAIL
;
1720 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1721 netdev
->addr_assign_type
&= ~NET_ADDR_RANDOM
;
1726 #define UPDATE_VF_COUNTER(reg, name) \
1728 u32 current_counter = er32(reg); \
1729 if (current_counter < adapter->stats.last_##name) \
1730 adapter->stats.name += 0x100000000LL; \
1731 adapter->stats.last_##name = current_counter; \
1732 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1733 adapter->stats.name |= current_counter; \
1737 * igbvf_update_stats - Update the board statistics counters
1738 * @adapter: board private structure
1740 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1742 struct e1000_hw
*hw
= &adapter
->hw
;
1743 struct pci_dev
*pdev
= adapter
->pdev
;
1746 * Prevent stats update while adapter is being reset, link is down
1747 * or if the pci connection is down.
1749 if (adapter
->link_speed
== 0)
1752 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1755 if (pci_channel_offline(pdev
))
1758 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1759 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1760 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1761 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1762 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1763 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1764 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1765 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1766 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1768 /* Fill out the OS statistics structure */
1769 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1772 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1774 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s Duplex\n",
1775 adapter
->link_speed
,
1776 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half");
1779 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1781 struct e1000_hw
*hw
= &adapter
->hw
;
1782 s32 ret_val
= E1000_SUCCESS
;
1785 /* If interface is down, stay link down */
1786 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1789 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1790 link_active
= !hw
->mac
.get_link_status
;
1792 /* if check for link returns error we will need to reset */
1793 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1794 schedule_work(&adapter
->reset_task
);
1800 * igbvf_watchdog - Timer Call-back
1801 * @data: pointer to adapter cast into an unsigned long
1803 static void igbvf_watchdog(unsigned long data
)
1805 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1807 /* Do the rest outside of interrupt context */
1808 schedule_work(&adapter
->watchdog_task
);
1811 static void igbvf_watchdog_task(struct work_struct
*work
)
1813 struct igbvf_adapter
*adapter
= container_of(work
,
1814 struct igbvf_adapter
,
1816 struct net_device
*netdev
= adapter
->netdev
;
1817 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1818 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1819 struct e1000_hw
*hw
= &adapter
->hw
;
1823 link
= igbvf_has_link(adapter
);
1826 if (!netif_carrier_ok(netdev
)) {
1827 mac
->ops
.get_link_up_info(&adapter
->hw
,
1828 &adapter
->link_speed
,
1829 &adapter
->link_duplex
);
1830 igbvf_print_link_info(adapter
);
1832 netif_carrier_on(netdev
);
1833 netif_wake_queue(netdev
);
1836 if (netif_carrier_ok(netdev
)) {
1837 adapter
->link_speed
= 0;
1838 adapter
->link_duplex
= 0;
1839 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1840 netif_carrier_off(netdev
);
1841 netif_stop_queue(netdev
);
1845 if (netif_carrier_ok(netdev
)) {
1846 igbvf_update_stats(adapter
);
1848 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1852 * We've lost link, so the controller stops DMA,
1853 * but we've got queued Tx work that's never going
1854 * to get done, so reset controller to flush Tx.
1855 * (Do the reset outside of interrupt context).
1857 adapter
->tx_timeout_count
++;
1858 schedule_work(&adapter
->reset_task
);
1862 /* Cause software interrupt to ensure Rx ring is cleaned */
1863 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1865 /* Reset the timer */
1866 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1867 mod_timer(&adapter
->watchdog_timer
,
1868 round_jiffies(jiffies
+ (2 * HZ
)));
1871 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1872 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1873 #define IGBVF_TX_FLAGS_TSO 0x00000004
1874 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1875 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1876 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1878 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1879 struct igbvf_ring
*tx_ring
,
1880 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1882 struct e1000_adv_tx_context_desc
*context_desc
;
1885 struct igbvf_buffer
*buffer_info
;
1886 u32 info
= 0, tu_cmd
= 0;
1887 u32 mss_l4len_idx
, l4len
;
1890 if (skb_header_cloned(skb
)) {
1891 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1893 dev_err(&adapter
->pdev
->dev
,
1894 "igbvf_tso returning an error\n");
1899 l4len
= tcp_hdrlen(skb
);
1902 if (skb
->protocol
== htons(ETH_P_IP
)) {
1903 struct iphdr
*iph
= ip_hdr(skb
);
1906 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1910 } else if (skb_is_gso_v6(skb
)) {
1911 ipv6_hdr(skb
)->payload_len
= 0;
1912 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1913 &ipv6_hdr(skb
)->daddr
,
1917 i
= tx_ring
->next_to_use
;
1919 buffer_info
= &tx_ring
->buffer_info
[i
];
1920 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1921 /* VLAN MACLEN IPLEN */
1922 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1923 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1924 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1925 *hdr_len
+= skb_network_offset(skb
);
1926 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1927 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1928 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1930 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1931 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1933 if (skb
->protocol
== htons(ETH_P_IP
))
1934 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1935 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1937 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1940 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1941 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1943 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1944 context_desc
->seqnum_seed
= 0;
1946 buffer_info
->time_stamp
= jiffies
;
1947 buffer_info
->next_to_watch
= i
;
1948 buffer_info
->dma
= 0;
1950 if (i
== tx_ring
->count
)
1953 tx_ring
->next_to_use
= i
;
1958 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
1959 struct igbvf_ring
*tx_ring
,
1960 struct sk_buff
*skb
, u32 tx_flags
)
1962 struct e1000_adv_tx_context_desc
*context_desc
;
1964 struct igbvf_buffer
*buffer_info
;
1965 u32 info
= 0, tu_cmd
= 0;
1967 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1968 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
1969 i
= tx_ring
->next_to_use
;
1970 buffer_info
= &tx_ring
->buffer_info
[i
];
1971 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1973 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1974 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1976 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1977 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1978 info
|= (skb_transport_header(skb
) -
1979 skb_network_header(skb
));
1982 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1984 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1986 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1987 switch (skb
->protocol
) {
1988 case __constant_htons(ETH_P_IP
):
1989 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1990 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
1991 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1993 case __constant_htons(ETH_P_IPV6
):
1994 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
1995 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2002 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2003 context_desc
->seqnum_seed
= 0;
2004 context_desc
->mss_l4len_idx
= 0;
2006 buffer_info
->time_stamp
= jiffies
;
2007 buffer_info
->next_to_watch
= i
;
2008 buffer_info
->dma
= 0;
2010 if (i
== tx_ring
->count
)
2012 tx_ring
->next_to_use
= i
;
2020 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2022 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2024 /* there is enough descriptors then we don't need to worry */
2025 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2028 netif_stop_queue(netdev
);
2032 /* We need to check again just in case room has been made available */
2033 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2036 netif_wake_queue(netdev
);
2038 ++adapter
->restart_queue
;
2042 #define IGBVF_MAX_TXD_PWR 16
2043 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2045 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2046 struct igbvf_ring
*tx_ring
,
2047 struct sk_buff
*skb
,
2050 struct igbvf_buffer
*buffer_info
;
2051 struct pci_dev
*pdev
= adapter
->pdev
;
2052 unsigned int len
= skb_headlen(skb
);
2053 unsigned int count
= 0, i
;
2056 i
= tx_ring
->next_to_use
;
2058 buffer_info
= &tx_ring
->buffer_info
[i
];
2059 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2060 buffer_info
->length
= len
;
2061 /* set time_stamp *before* dma to help avoid a possible race */
2062 buffer_info
->time_stamp
= jiffies
;
2063 buffer_info
->next_to_watch
= i
;
2064 buffer_info
->mapped_as_page
= false;
2065 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2067 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2071 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2072 const struct skb_frag_struct
*frag
;
2076 if (i
== tx_ring
->count
)
2079 frag
= &skb_shinfo(skb
)->frags
[f
];
2080 len
= skb_frag_size(frag
);
2082 buffer_info
= &tx_ring
->buffer_info
[i
];
2083 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2084 buffer_info
->length
= len
;
2085 buffer_info
->time_stamp
= jiffies
;
2086 buffer_info
->next_to_watch
= i
;
2087 buffer_info
->mapped_as_page
= true;
2088 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2090 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2094 tx_ring
->buffer_info
[i
].skb
= skb
;
2095 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2100 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2102 /* clear timestamp and dma mappings for failed buffer_info mapping */
2103 buffer_info
->dma
= 0;
2104 buffer_info
->time_stamp
= 0;
2105 buffer_info
->length
= 0;
2106 buffer_info
->next_to_watch
= 0;
2107 buffer_info
->mapped_as_page
= false;
2111 /* clear timestamp and dma mappings for remaining portion of packet */
2114 i
+= tx_ring
->count
;
2116 buffer_info
= &tx_ring
->buffer_info
[i
];
2117 igbvf_put_txbuf(adapter
, buffer_info
);
2123 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2124 struct igbvf_ring
*tx_ring
,
2125 int tx_flags
, int count
, u32 paylen
,
2128 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2129 struct igbvf_buffer
*buffer_info
;
2130 u32 olinfo_status
= 0, cmd_type_len
;
2133 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2134 E1000_ADVTXD_DCMD_DEXT
);
2136 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2137 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2139 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2140 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2142 /* insert tcp checksum */
2143 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2145 /* insert ip checksum */
2146 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2147 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2149 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2150 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2153 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2155 i
= tx_ring
->next_to_use
;
2157 buffer_info
= &tx_ring
->buffer_info
[i
];
2158 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2159 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2160 tx_desc
->read
.cmd_type_len
=
2161 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2162 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2164 if (i
== tx_ring
->count
)
2168 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2169 /* Force memory writes to complete before letting h/w
2170 * know there are new descriptors to fetch. (Only
2171 * applicable for weak-ordered memory model archs,
2172 * such as IA-64). */
2175 tx_ring
->next_to_use
= i
;
2176 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2177 /* we need this if more than one processor can write to our tail
2178 * at a time, it syncronizes IO on IA64/Altix systems */
2182 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2183 struct net_device
*netdev
,
2184 struct igbvf_ring
*tx_ring
)
2186 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2187 unsigned int first
, tx_flags
= 0;
2192 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2193 dev_kfree_skb_any(skb
);
2194 return NETDEV_TX_OK
;
2197 if (skb
->len
<= 0) {
2198 dev_kfree_skb_any(skb
);
2199 return NETDEV_TX_OK
;
2203 * need: count + 4 desc gap to keep tail from touching
2204 * + 2 desc gap to keep tail from touching head,
2205 * + 1 desc for skb->data,
2206 * + 1 desc for context descriptor,
2207 * head, otherwise try next time
2209 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2210 /* this is a hard error */
2211 return NETDEV_TX_BUSY
;
2214 if (vlan_tx_tag_present(skb
)) {
2215 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2216 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2219 if (skb
->protocol
== htons(ETH_P_IP
))
2220 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2222 first
= tx_ring
->next_to_use
;
2224 tso
= skb_is_gso(skb
) ?
2225 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2226 if (unlikely(tso
< 0)) {
2227 dev_kfree_skb_any(skb
);
2228 return NETDEV_TX_OK
;
2232 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2233 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2234 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2235 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2238 * count reflects descriptors mapped, if 0 then mapping error
2239 * has occurred and we need to rewind the descriptor queue
2241 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2244 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2246 /* Make sure there is space in the ring for the next send. */
2247 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2249 dev_kfree_skb_any(skb
);
2250 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2251 tx_ring
->next_to_use
= first
;
2254 return NETDEV_TX_OK
;
2257 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2258 struct net_device
*netdev
)
2260 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2261 struct igbvf_ring
*tx_ring
;
2263 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2264 dev_kfree_skb_any(skb
);
2265 return NETDEV_TX_OK
;
2268 tx_ring
= &adapter
->tx_ring
[0];
2270 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2274 * igbvf_tx_timeout - Respond to a Tx Hang
2275 * @netdev: network interface device structure
2277 static void igbvf_tx_timeout(struct net_device
*netdev
)
2279 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2281 /* Do the reset outside of interrupt context */
2282 adapter
->tx_timeout_count
++;
2283 schedule_work(&adapter
->reset_task
);
2286 static void igbvf_reset_task(struct work_struct
*work
)
2288 struct igbvf_adapter
*adapter
;
2289 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2291 igbvf_reinit_locked(adapter
);
2295 * igbvf_get_stats - Get System Network Statistics
2296 * @netdev: network interface device structure
2298 * Returns the address of the device statistics structure.
2299 * The statistics are actually updated from the timer callback.
2301 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2303 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2305 /* only return the current stats */
2306 return &adapter
->net_stats
;
2310 * igbvf_change_mtu - Change the Maximum Transfer Unit
2311 * @netdev: network interface device structure
2312 * @new_mtu: new value for maximum frame size
2314 * Returns 0 on success, negative on failure
2316 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2318 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2319 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2321 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2322 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2326 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2327 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2328 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2332 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2334 /* igbvf_down has a dependency on max_frame_size */
2335 adapter
->max_frame_size
= max_frame
;
2336 if (netif_running(netdev
))
2337 igbvf_down(adapter
);
2340 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2341 * means we reserve 2 more, this pushes us to allocate from the next
2343 * i.e. RXBUFFER_2048 --> size-4096 slab
2344 * However with the new *_jumbo_rx* routines, jumbo receives will use
2348 if (max_frame
<= 1024)
2349 adapter
->rx_buffer_len
= 1024;
2350 else if (max_frame
<= 2048)
2351 adapter
->rx_buffer_len
= 2048;
2353 #if (PAGE_SIZE / 2) > 16384
2354 adapter
->rx_buffer_len
= 16384;
2356 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2360 /* adjust allocation if LPE protects us, and we aren't using SBP */
2361 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2362 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2363 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2366 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2367 netdev
->mtu
, new_mtu
);
2368 netdev
->mtu
= new_mtu
;
2370 if (netif_running(netdev
))
2373 igbvf_reset(adapter
);
2375 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2380 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2388 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2390 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2391 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2396 netif_device_detach(netdev
);
2398 if (netif_running(netdev
)) {
2399 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2400 igbvf_down(adapter
);
2401 igbvf_free_irq(adapter
);
2405 retval
= pci_save_state(pdev
);
2410 pci_disable_device(pdev
);
2416 static int igbvf_resume(struct pci_dev
*pdev
)
2418 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2419 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2422 pci_restore_state(pdev
);
2423 err
= pci_enable_device_mem(pdev
);
2425 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2429 pci_set_master(pdev
);
2431 if (netif_running(netdev
)) {
2432 err
= igbvf_request_irq(adapter
);
2437 igbvf_reset(adapter
);
2439 if (netif_running(netdev
))
2442 netif_device_attach(netdev
);
2448 static void igbvf_shutdown(struct pci_dev
*pdev
)
2450 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2453 #ifdef CONFIG_NET_POLL_CONTROLLER
2455 * Polling 'interrupt' - used by things like netconsole to send skbs
2456 * without having to re-enable interrupts. It's not called while
2457 * the interrupt routine is executing.
2459 static void igbvf_netpoll(struct net_device
*netdev
)
2461 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2463 disable_irq(adapter
->pdev
->irq
);
2465 igbvf_clean_tx_irq(adapter
->tx_ring
);
2467 enable_irq(adapter
->pdev
->irq
);
2472 * igbvf_io_error_detected - called when PCI error is detected
2473 * @pdev: Pointer to PCI device
2474 * @state: The current pci connection state
2476 * This function is called after a PCI bus error affecting
2477 * this device has been detected.
2479 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2480 pci_channel_state_t state
)
2482 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2483 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2485 netif_device_detach(netdev
);
2487 if (state
== pci_channel_io_perm_failure
)
2488 return PCI_ERS_RESULT_DISCONNECT
;
2490 if (netif_running(netdev
))
2491 igbvf_down(adapter
);
2492 pci_disable_device(pdev
);
2494 /* Request a slot slot reset. */
2495 return PCI_ERS_RESULT_NEED_RESET
;
2499 * igbvf_io_slot_reset - called after the pci bus has been reset.
2500 * @pdev: Pointer to PCI device
2502 * Restart the card from scratch, as if from a cold-boot. Implementation
2503 * resembles the first-half of the igbvf_resume routine.
2505 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2507 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2508 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2510 if (pci_enable_device_mem(pdev
)) {
2512 "Cannot re-enable PCI device after reset.\n");
2513 return PCI_ERS_RESULT_DISCONNECT
;
2515 pci_set_master(pdev
);
2517 igbvf_reset(adapter
);
2519 return PCI_ERS_RESULT_RECOVERED
;
2523 * igbvf_io_resume - called when traffic can start flowing again.
2524 * @pdev: Pointer to PCI device
2526 * This callback is called when the error recovery driver tells us that
2527 * its OK to resume normal operation. Implementation resembles the
2528 * second-half of the igbvf_resume routine.
2530 static void igbvf_io_resume(struct pci_dev
*pdev
)
2532 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2533 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2535 if (netif_running(netdev
)) {
2536 if (igbvf_up(adapter
)) {
2538 "can't bring device back up after reset\n");
2543 netif_device_attach(netdev
);
2546 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2548 struct e1000_hw
*hw
= &adapter
->hw
;
2549 struct net_device
*netdev
= adapter
->netdev
;
2550 struct pci_dev
*pdev
= adapter
->pdev
;
2552 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2553 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2555 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2556 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2559 static int igbvf_set_features(struct net_device
*netdev
,
2560 netdev_features_t features
)
2562 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2564 if (features
& NETIF_F_RXCSUM
)
2565 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2567 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2572 static const struct net_device_ops igbvf_netdev_ops
= {
2573 .ndo_open
= igbvf_open
,
2574 .ndo_stop
= igbvf_close
,
2575 .ndo_start_xmit
= igbvf_xmit_frame
,
2576 .ndo_get_stats
= igbvf_get_stats
,
2577 .ndo_set_rx_mode
= igbvf_set_multi
,
2578 .ndo_set_mac_address
= igbvf_set_mac
,
2579 .ndo_change_mtu
= igbvf_change_mtu
,
2580 .ndo_do_ioctl
= igbvf_ioctl
,
2581 .ndo_tx_timeout
= igbvf_tx_timeout
,
2582 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2583 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2584 #ifdef CONFIG_NET_POLL_CONTROLLER
2585 .ndo_poll_controller
= igbvf_netpoll
,
2587 .ndo_set_features
= igbvf_set_features
,
2591 * igbvf_probe - Device Initialization Routine
2592 * @pdev: PCI device information struct
2593 * @ent: entry in igbvf_pci_tbl
2595 * Returns 0 on success, negative on failure
2597 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2598 * The OS initialization, configuring of the adapter private structure,
2599 * and a hardware reset occur.
2601 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2602 const struct pci_device_id
*ent
)
2604 struct net_device
*netdev
;
2605 struct igbvf_adapter
*adapter
;
2606 struct e1000_hw
*hw
;
2607 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2609 static int cards_found
;
2610 int err
, pci_using_dac
;
2612 err
= pci_enable_device_mem(pdev
);
2617 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2619 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2623 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
2625 err
= dma_set_coherent_mask(&pdev
->dev
,
2628 dev_err(&pdev
->dev
, "No usable DMA "
2629 "configuration, aborting\n");
2635 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2639 pci_set_master(pdev
);
2642 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2644 goto err_alloc_etherdev
;
2646 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2648 pci_set_drvdata(pdev
, netdev
);
2649 adapter
= netdev_priv(netdev
);
2651 adapter
->netdev
= netdev
;
2652 adapter
->pdev
= pdev
;
2654 adapter
->pba
= ei
->pba
;
2655 adapter
->flags
= ei
->flags
;
2656 adapter
->hw
.back
= adapter
;
2657 adapter
->hw
.mac
.type
= ei
->mac
;
2658 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
2660 /* PCI config space info */
2662 hw
->vendor_id
= pdev
->vendor
;
2663 hw
->device_id
= pdev
->device
;
2664 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2665 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2666 hw
->revision_id
= pdev
->revision
;
2669 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2670 pci_resource_len(pdev
, 0));
2672 if (!adapter
->hw
.hw_addr
)
2675 if (ei
->get_variants
) {
2676 err
= ei
->get_variants(adapter
);
2681 /* setup adapter struct */
2682 err
= igbvf_sw_init(adapter
);
2686 /* construct the net_device struct */
2687 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2689 igbvf_set_ethtool_ops(netdev
);
2690 netdev
->watchdog_timeo
= 5 * HZ
;
2691 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2693 adapter
->bd_number
= cards_found
++;
2695 netdev
->hw_features
= NETIF_F_SG
|
2702 netdev
->features
= netdev
->hw_features
|
2703 NETIF_F_HW_VLAN_TX
|
2704 NETIF_F_HW_VLAN_RX
|
2705 NETIF_F_HW_VLAN_FILTER
;
2708 netdev
->features
|= NETIF_F_HIGHDMA
;
2710 netdev
->vlan_features
|= NETIF_F_TSO
;
2711 netdev
->vlan_features
|= NETIF_F_TSO6
;
2712 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2713 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2714 netdev
->vlan_features
|= NETIF_F_SG
;
2716 /*reset the controller to put the device in a known good state */
2717 err
= hw
->mac
.ops
.reset_hw(hw
);
2719 dev_info(&pdev
->dev
,
2720 "PF still in reset state, assigning new address."
2721 " Is the PF interface up?\n");
2722 eth_hw_addr_random(netdev
);
2723 memcpy(adapter
->hw
.mac
.addr
, netdev
->dev_addr
,
2726 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2728 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2731 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
2735 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2736 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
2742 memcpy(netdev
->perm_addr
, netdev
->dev_addr
, netdev
->addr_len
);
2744 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2745 (unsigned long) adapter
);
2747 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2748 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2750 /* ring size defaults */
2751 adapter
->rx_ring
->count
= 1024;
2752 adapter
->tx_ring
->count
= 1024;
2754 /* reset the hardware with the new settings */
2755 igbvf_reset(adapter
);
2757 strcpy(netdev
->name
, "eth%d");
2758 err
= register_netdev(netdev
);
2762 /* tell the stack to leave us alone until igbvf_open() is called */
2763 netif_carrier_off(netdev
);
2764 netif_stop_queue(netdev
);
2766 igbvf_print_device_info(adapter
);
2768 igbvf_initialize_last_counter_stats(adapter
);
2773 kfree(adapter
->tx_ring
);
2774 kfree(adapter
->rx_ring
);
2776 igbvf_reset_interrupt_capability(adapter
);
2777 iounmap(adapter
->hw
.hw_addr
);
2779 free_netdev(netdev
);
2781 pci_release_regions(pdev
);
2784 pci_disable_device(pdev
);
2789 * igbvf_remove - Device Removal Routine
2790 * @pdev: PCI device information struct
2792 * igbvf_remove is called by the PCI subsystem to alert the driver
2793 * that it should release a PCI device. The could be caused by a
2794 * Hot-Plug event, or because the driver is going to be removed from
2797 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2799 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2800 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2801 struct e1000_hw
*hw
= &adapter
->hw
;
2804 * The watchdog timer may be rescheduled, so explicitly
2805 * disable it from being rescheduled.
2807 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2808 del_timer_sync(&adapter
->watchdog_timer
);
2810 cancel_work_sync(&adapter
->reset_task
);
2811 cancel_work_sync(&adapter
->watchdog_task
);
2813 unregister_netdev(netdev
);
2815 igbvf_reset_interrupt_capability(adapter
);
2818 * it is important to delete the napi struct prior to freeing the
2819 * rx ring so that you do not end up with null pointer refs
2821 netif_napi_del(&adapter
->rx_ring
->napi
);
2822 kfree(adapter
->tx_ring
);
2823 kfree(adapter
->rx_ring
);
2825 iounmap(hw
->hw_addr
);
2826 if (hw
->flash_address
)
2827 iounmap(hw
->flash_address
);
2828 pci_release_regions(pdev
);
2830 free_netdev(netdev
);
2832 pci_disable_device(pdev
);
2835 /* PCI Error Recovery (ERS) */
2836 static struct pci_error_handlers igbvf_err_handler
= {
2837 .error_detected
= igbvf_io_error_detected
,
2838 .slot_reset
= igbvf_io_slot_reset
,
2839 .resume
= igbvf_io_resume
,
2842 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl
) = {
2843 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2844 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2845 { } /* terminate list */
2847 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2849 /* PCI Device API Driver */
2850 static struct pci_driver igbvf_driver
= {
2851 .name
= igbvf_driver_name
,
2852 .id_table
= igbvf_pci_tbl
,
2853 .probe
= igbvf_probe
,
2854 .remove
= __devexit_p(igbvf_remove
),
2856 /* Power Management Hooks */
2857 .suspend
= igbvf_suspend
,
2858 .resume
= igbvf_resume
,
2860 .shutdown
= igbvf_shutdown
,
2861 .err_handler
= &igbvf_err_handler
2865 * igbvf_init_module - Driver Registration Routine
2867 * igbvf_init_module is the first routine called when the driver is
2868 * loaded. All it does is register with the PCI subsystem.
2870 static int __init
igbvf_init_module(void)
2873 pr_info("%s - version %s\n", igbvf_driver_string
, igbvf_driver_version
);
2874 pr_info("%s\n", igbvf_copyright
);
2876 ret
= pci_register_driver(&igbvf_driver
);
2880 module_init(igbvf_init_module
);
2883 * igbvf_exit_module - Driver Exit Cleanup Routine
2885 * igbvf_exit_module is called just before the driver is removed
2888 static void __exit
igbvf_exit_module(void)
2890 pci_unregister_driver(&igbvf_driver
);
2892 module_exit(igbvf_exit_module
);
2895 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2896 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2897 MODULE_LICENSE("GPL");
2898 MODULE_VERSION(DRV_VERSION
);