1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
25 Documentation available at:
26 http://www.stlinux.com
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
53 /*#define STMMAC_DEBUG*/
55 #define DBG(nlevel, klevel, fmt, args...) \
56 ((void)(netif_msg_##nlevel(priv) && \
57 printk(KERN_##klevel fmt, ## args)))
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...) printk(fmt, ## args)
67 #define RX_DBG(fmt, args...) do { } while (0)
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...) printk(fmt, ## args)
75 #define TX_DBG(fmt, args...) do { } while (0)
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN 9000
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog
= TX_TIMEO
;
84 module_param(watchdog
, int, S_IRUGO
| S_IWUSR
);
85 MODULE_PARM_DESC(watchdog
, "Transmit timeout in milliseconds");
87 static int debug
= -1; /* -1: default, 0: no output, 16: all */
88 module_param(debug
, int, S_IRUGO
| S_IWUSR
);
89 MODULE_PARM_DESC(debug
, "Message Level (0: no output, 16: all)");
92 module_param(phyaddr
, int, S_IRUGO
);
93 MODULE_PARM_DESC(phyaddr
, "Physical device address");
95 #define DMA_TX_SIZE 256
96 static int dma_txsize
= DMA_TX_SIZE
;
97 module_param(dma_txsize
, int, S_IRUGO
| S_IWUSR
);
98 MODULE_PARM_DESC(dma_txsize
, "Number of descriptors in the TX list");
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize
= DMA_RX_SIZE
;
102 module_param(dma_rxsize
, int, S_IRUGO
| S_IWUSR
);
103 MODULE_PARM_DESC(dma_rxsize
, "Number of descriptors in the RX list");
105 static int flow_ctrl
= FLOW_OFF
;
106 module_param(flow_ctrl
, int, S_IRUGO
| S_IWUSR
);
107 MODULE_PARM_DESC(flow_ctrl
, "Flow control ability [on/off]");
109 static int pause
= PAUSE_TIME
;
110 module_param(pause
, int, S_IRUGO
| S_IWUSR
);
111 MODULE_PARM_DESC(pause
, "Flow Control Pause Time");
113 #define TC_DEFAULT 64
114 static int tc
= TC_DEFAULT
;
115 module_param(tc
, int, S_IRUGO
| S_IWUSR
);
116 MODULE_PARM_DESC(tc
, "DMA threshold control value");
118 /* Pay attention to tune this parameter; take care of both
119 * hardware capability and network stabitily/performance impact.
120 * Many tests showed that ~4ms latency seems to be good enough. */
121 #ifdef CONFIG_STMMAC_TIMER
122 #define DEFAULT_PERIODIC_RATE 256
123 static int tmrate
= DEFAULT_PERIODIC_RATE
;
124 module_param(tmrate
, int, S_IRUGO
| S_IWUSR
);
125 MODULE_PARM_DESC(tmrate
, "External timer freq. (default: 256Hz)");
128 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
129 static int buf_sz
= DMA_BUFFER_SIZE
;
130 module_param(buf_sz
, int, S_IRUGO
| S_IWUSR
);
131 MODULE_PARM_DESC(buf_sz
, "DMA buffer size");
133 static const u32 default_msg_level
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
134 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
135 NETIF_MSG_IFDOWN
| NETIF_MSG_TIMER
);
137 #define STMMAC_DEFAULT_LPI_TIMER 1000
138 static int eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
139 module_param(eee_timer
, int, S_IRUGO
| S_IWUSR
);
140 MODULE_PARM_DESC(eee_timer
, "LPI tx expiration time in msec");
141 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
143 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
);
145 #ifdef CONFIG_STMMAC_DEBUG_FS
146 static int stmmac_init_fs(struct net_device
*dev
);
147 static void stmmac_exit_fs(void);
151 * stmmac_verify_args - verify the driver parameters.
152 * Description: it verifies if some wrong parameter is passed to the driver.
153 * Note that wrong parameters are replaced with the default values.
155 static void stmmac_verify_args(void)
157 if (unlikely(watchdog
< 0))
159 if (unlikely(dma_rxsize
< 0))
160 dma_rxsize
= DMA_RX_SIZE
;
161 if (unlikely(dma_txsize
< 0))
162 dma_txsize
= DMA_TX_SIZE
;
163 if (unlikely((buf_sz
< DMA_BUFFER_SIZE
) || (buf_sz
> BUF_SIZE_16KiB
)))
164 buf_sz
= DMA_BUFFER_SIZE
;
165 if (unlikely(flow_ctrl
> 1))
166 flow_ctrl
= FLOW_AUTO
;
167 else if (likely(flow_ctrl
< 0))
168 flow_ctrl
= FLOW_OFF
;
169 if (unlikely((pause
< 0) || (pause
> 0xffff)))
172 eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
175 static void stmmac_clk_csr_set(struct stmmac_priv
*priv
)
179 clk_rate
= clk_get_rate(priv
->stmmac_clk
);
181 /* Platform provided default clk_csr would be assumed valid
182 * for all other cases except for the below mentioned ones. */
183 if (!(priv
->clk_csr
& MAC_CSR_H_FRQ_MASK
)) {
184 if (clk_rate
< CSR_F_35M
)
185 priv
->clk_csr
= STMMAC_CSR_20_35M
;
186 else if ((clk_rate
>= CSR_F_35M
) && (clk_rate
< CSR_F_60M
))
187 priv
->clk_csr
= STMMAC_CSR_35_60M
;
188 else if ((clk_rate
>= CSR_F_60M
) && (clk_rate
< CSR_F_100M
))
189 priv
->clk_csr
= STMMAC_CSR_60_100M
;
190 else if ((clk_rate
>= CSR_F_100M
) && (clk_rate
< CSR_F_150M
))
191 priv
->clk_csr
= STMMAC_CSR_100_150M
;
192 else if ((clk_rate
>= CSR_F_150M
) && (clk_rate
< CSR_F_250M
))
193 priv
->clk_csr
= STMMAC_CSR_150_250M
;
194 else if ((clk_rate
>= CSR_F_250M
) && (clk_rate
< CSR_F_300M
))
195 priv
->clk_csr
= STMMAC_CSR_250_300M
;
196 } /* For values higher than the IEEE 802.3 specified frequency
197 * we can not estimate the proper divider as it is not known
198 * the frequency of clk_csr_i. So we do not change the default
202 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
203 static void print_pkt(unsigned char *buf
, int len
)
206 pr_info("len = %d byte, buf addr: 0x%p", len
, buf
);
207 for (j
= 0; j
< len
; j
++) {
209 pr_info("\n %03x:", j
);
210 pr_info(" %02x", buf
[j
]);
216 /* minimum number of free TX descriptors required to wake up TX process */
217 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
219 static inline u32
stmmac_tx_avail(struct stmmac_priv
*priv
)
221 return priv
->dirty_tx
+ priv
->dma_tx_size
- priv
->cur_tx
- 1;
224 /* On some ST platforms, some HW system configuraton registers have to be
225 * set according to the link speed negotiated.
227 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv
*priv
)
229 struct phy_device
*phydev
= priv
->phydev
;
231 if (likely(priv
->plat
->fix_mac_speed
))
232 priv
->plat
->fix_mac_speed(priv
->plat
->bsp_priv
,
236 static void stmmac_enable_eee_mode(struct stmmac_priv
*priv
)
238 /* Check and enter in LPI mode */
239 if ((priv
->dirty_tx
== priv
->cur_tx
) &&
240 (priv
->tx_path_in_lpi_mode
== false))
241 priv
->hw
->mac
->set_eee_mode(priv
->ioaddr
);
244 void stmmac_disable_eee_mode(struct stmmac_priv
*priv
)
246 /* Exit and disable EEE in case of we are are in LPI state. */
247 priv
->hw
->mac
->reset_eee_mode(priv
->ioaddr
);
248 del_timer_sync(&priv
->eee_ctrl_timer
);
249 priv
->tx_path_in_lpi_mode
= false;
253 * stmmac_eee_ctrl_timer
256 * If there is no data transfer and if we are not in LPI state,
257 * then MAC Transmitter can be moved to LPI state.
259 static void stmmac_eee_ctrl_timer(unsigned long arg
)
261 struct stmmac_priv
*priv
= (struct stmmac_priv
*)arg
;
263 stmmac_enable_eee_mode(priv
);
264 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_TIMER(eee_timer
));
269 * @priv: private device pointer
271 * If the EEE support has been enabled while configuring the driver,
272 * if the GMAC actually supports the EEE (from the HW cap reg) and the
273 * phy can also manage EEE, so enable the LPI state and start the timer
274 * to verify if the tx path can enter in LPI state.
276 bool stmmac_eee_init(struct stmmac_priv
*priv
)
280 /* MAC core supports the EEE feature. */
281 if (priv
->dma_cap
.eee
) {
282 /* Check if the PHY supports EEE */
283 if (phy_init_eee(priv
->phydev
, 1))
286 priv
->eee_active
= 1;
287 init_timer(&priv
->eee_ctrl_timer
);
288 priv
->eee_ctrl_timer
.function
= stmmac_eee_ctrl_timer
;
289 priv
->eee_ctrl_timer
.data
= (unsigned long)priv
;
290 priv
->eee_ctrl_timer
.expires
= STMMAC_LPI_TIMER(eee_timer
);
291 add_timer(&priv
->eee_ctrl_timer
);
293 priv
->hw
->mac
->set_eee_timer(priv
->ioaddr
,
294 STMMAC_DEFAULT_LIT_LS_TIMER
,
297 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
305 static void stmmac_eee_adjust(struct stmmac_priv
*priv
)
307 /* When the EEE has been already initialised we have to
308 * modify the PLS bit in the LPI ctrl & status reg according
309 * to the PHY link status. For this reason.
311 if (priv
->eee_enabled
)
312 priv
->hw
->mac
->set_eee_pls(priv
->ioaddr
, priv
->phydev
->link
);
317 * @dev: net device structure
318 * Description: it adjusts the link parameters.
320 static void stmmac_adjust_link(struct net_device
*dev
)
322 struct stmmac_priv
*priv
= netdev_priv(dev
);
323 struct phy_device
*phydev
= priv
->phydev
;
326 unsigned int fc
= priv
->flow_ctrl
, pause_time
= priv
->pause
;
331 DBG(probe
, DEBUG
, "stmmac_adjust_link: called. address %d link %d\n",
332 phydev
->addr
, phydev
->link
);
334 spin_lock_irqsave(&priv
->lock
, flags
);
337 u32 ctrl
= readl(priv
->ioaddr
+ MAC_CTRL_REG
);
339 /* Now we make sure that we can be in full duplex mode.
340 * If not, we operate in half-duplex mode. */
341 if (phydev
->duplex
!= priv
->oldduplex
) {
343 if (!(phydev
->duplex
))
344 ctrl
&= ~priv
->hw
->link
.duplex
;
346 ctrl
|= priv
->hw
->link
.duplex
;
347 priv
->oldduplex
= phydev
->duplex
;
349 /* Flow Control operation */
351 priv
->hw
->mac
->flow_ctrl(priv
->ioaddr
, phydev
->duplex
,
354 if (phydev
->speed
!= priv
->speed
) {
356 switch (phydev
->speed
) {
358 if (likely(priv
->plat
->has_gmac
))
359 ctrl
&= ~priv
->hw
->link
.port
;
360 stmmac_hw_fix_mac_speed(priv
);
364 if (priv
->plat
->has_gmac
) {
365 ctrl
|= priv
->hw
->link
.port
;
366 if (phydev
->speed
== SPEED_100
) {
367 ctrl
|= priv
->hw
->link
.speed
;
369 ctrl
&= ~(priv
->hw
->link
.speed
);
372 ctrl
&= ~priv
->hw
->link
.port
;
374 stmmac_hw_fix_mac_speed(priv
);
377 if (netif_msg_link(priv
))
378 pr_warning("%s: Speed (%d) is not 10"
379 " or 100!\n", dev
->name
, phydev
->speed
);
383 priv
->speed
= phydev
->speed
;
386 writel(ctrl
, priv
->ioaddr
+ MAC_CTRL_REG
);
388 if (!priv
->oldlink
) {
392 } else if (priv
->oldlink
) {
396 priv
->oldduplex
= -1;
399 if (new_state
&& netif_msg_link(priv
))
400 phy_print_status(phydev
);
402 stmmac_eee_adjust(priv
);
404 spin_unlock_irqrestore(&priv
->lock
, flags
);
406 DBG(probe
, DEBUG
, "stmmac_adjust_link: exiting\n");
410 * stmmac_init_phy - PHY initialization
411 * @dev: net device structure
412 * Description: it initializes the driver's PHY state, and attaches the PHY
417 static int stmmac_init_phy(struct net_device
*dev
)
419 struct stmmac_priv
*priv
= netdev_priv(dev
);
420 struct phy_device
*phydev
;
421 char phy_id_fmt
[MII_BUS_ID_SIZE
+ 3];
422 char bus_id
[MII_BUS_ID_SIZE
];
423 int interface
= priv
->plat
->interface
;
426 priv
->oldduplex
= -1;
428 if (priv
->plat
->phy_bus_name
)
429 snprintf(bus_id
, MII_BUS_ID_SIZE
, "%s-%x",
430 priv
->plat
->phy_bus_name
, priv
->plat
->bus_id
);
432 snprintf(bus_id
, MII_BUS_ID_SIZE
, "stmmac-%x",
435 snprintf(phy_id_fmt
, MII_BUS_ID_SIZE
+ 3, PHY_ID_FMT
, bus_id
,
436 priv
->plat
->phy_addr
);
437 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt
);
439 phydev
= phy_connect(dev
, phy_id_fmt
, &stmmac_adjust_link
, 0,
442 if (IS_ERR(phydev
)) {
443 pr_err("%s: Could not attach to PHY\n", dev
->name
);
444 return PTR_ERR(phydev
);
447 /* Stop Advertising 1000BASE Capability if interface is not GMII */
448 if ((interface
== PHY_INTERFACE_MODE_MII
) ||
449 (interface
== PHY_INTERFACE_MODE_RMII
))
450 phydev
->advertising
&= ~(SUPPORTED_1000baseT_Half
|
451 SUPPORTED_1000baseT_Full
);
454 * Broken HW is sometimes missing the pull-up resistor on the
455 * MDIO line, which results in reads to non-existent devices returning
456 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
458 * Note: phydev->phy_id is the result of reading the UID PHY registers.
460 if (phydev
->phy_id
== 0) {
461 phy_disconnect(phydev
);
464 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
465 " Link = %d\n", dev
->name
, phydev
->phy_id
, phydev
->link
);
467 priv
->phydev
= phydev
;
474 * @p: pointer to the ring.
475 * @size: size of the ring.
476 * Description: display all the descriptors within the ring.
478 static void display_ring(struct dma_desc
*p
, int size
)
486 for (i
= 0; i
< size
; i
++) {
487 struct tmp_s
*x
= (struct tmp_s
*)(p
+ i
);
488 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
489 i
, (unsigned int)virt_to_phys(&p
[i
]),
490 (unsigned int)(x
->a
), (unsigned int)((x
->a
) >> 32),
496 static int stmmac_set_bfsize(int mtu
, int bufsize
)
500 if (mtu
>= BUF_SIZE_4KiB
)
502 else if (mtu
>= BUF_SIZE_2KiB
)
504 else if (mtu
>= DMA_BUFFER_SIZE
)
507 ret
= DMA_BUFFER_SIZE
;
513 * init_dma_desc_rings - init the RX/TX descriptor rings
514 * @dev: net device structure
515 * Description: this function initializes the DMA RX/TX descriptors
516 * and allocates the socket buffers. It suppors the chained and ring
519 static void init_dma_desc_rings(struct net_device
*dev
)
522 struct stmmac_priv
*priv
= netdev_priv(dev
);
524 unsigned int txsize
= priv
->dma_tx_size
;
525 unsigned int rxsize
= priv
->dma_rx_size
;
528 int des3_as_data_buf
= 0;
530 /* Set the max buffer size according to the DESC mode
531 * and the MTU. Note that RING mode allows 16KiB bsize. */
532 bfsize
= priv
->hw
->ring
->set_16kib_bfsize(dev
->mtu
);
534 if (bfsize
== BUF_SIZE_16KiB
)
535 des3_as_data_buf
= 1;
537 bfsize
= stmmac_set_bfsize(dev
->mtu
, priv
->dma_buf_sz
);
539 #ifdef CONFIG_STMMAC_TIMER
540 /* Disable interrupts on completion for the reception if timer is on */
541 if (likely(priv
->tm
->enable
))
545 DBG(probe
, INFO
, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
546 txsize
, rxsize
, bfsize
);
548 priv
->rx_skbuff_dma
= kmalloc(rxsize
* sizeof(dma_addr_t
), GFP_KERNEL
);
550 kmalloc(sizeof(struct sk_buff
*) * rxsize
, GFP_KERNEL
);
552 (struct dma_desc
*)dma_alloc_coherent(priv
->device
,
554 sizeof(struct dma_desc
),
557 priv
->tx_skbuff
= kmalloc(sizeof(struct sk_buff
*) * txsize
,
560 (struct dma_desc
*)dma_alloc_coherent(priv
->device
,
562 sizeof(struct dma_desc
),
566 if ((priv
->dma_rx
== NULL
) || (priv
->dma_tx
== NULL
)) {
567 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__
);
571 DBG(probe
, INFO
, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
573 dev
->name
, priv
->dma_rx
, priv
->dma_tx
,
574 (unsigned int)priv
->dma_rx_phy
, (unsigned int)priv
->dma_tx_phy
);
576 /* RX INITIALIZATION */
577 DBG(probe
, INFO
, "stmmac: SKB addresses:\n"
578 "skb\t\tskb data\tdma data\n");
580 for (i
= 0; i
< rxsize
; i
++) {
581 struct dma_desc
*p
= priv
->dma_rx
+ i
;
583 skb
= __netdev_alloc_skb(dev
, bfsize
+ NET_IP_ALIGN
,
585 if (unlikely(skb
== NULL
)) {
586 pr_err("%s: Rx init fails; skb is NULL\n", __func__
);
589 skb_reserve(skb
, NET_IP_ALIGN
);
590 priv
->rx_skbuff
[i
] = skb
;
591 priv
->rx_skbuff_dma
[i
] = dma_map_single(priv
->device
, skb
->data
,
592 bfsize
, DMA_FROM_DEVICE
);
594 p
->des2
= priv
->rx_skbuff_dma
[i
];
596 priv
->hw
->ring
->init_desc3(des3_as_data_buf
, p
);
598 DBG(probe
, INFO
, "[%p]\t[%p]\t[%x]\n", priv
->rx_skbuff
[i
],
599 priv
->rx_skbuff
[i
]->data
, priv
->rx_skbuff_dma
[i
]);
602 priv
->dirty_rx
= (unsigned int)(i
- rxsize
);
603 priv
->dma_buf_sz
= bfsize
;
606 /* TX INITIALIZATION */
607 for (i
= 0; i
< txsize
; i
++) {
608 priv
->tx_skbuff
[i
] = NULL
;
609 priv
->dma_tx
[i
].des2
= 0;
612 /* In case of Chained mode this sets the des3 to the next
613 * element in the chain */
614 priv
->hw
->ring
->init_dma_chain(priv
->dma_rx
, priv
->dma_rx_phy
, rxsize
);
615 priv
->hw
->ring
->init_dma_chain(priv
->dma_tx
, priv
->dma_tx_phy
, txsize
);
620 /* Clear the Rx/Tx descriptors */
621 priv
->hw
->desc
->init_rx_desc(priv
->dma_rx
, rxsize
, dis_ic
);
622 priv
->hw
->desc
->init_tx_desc(priv
->dma_tx
, txsize
);
624 if (netif_msg_hw(priv
)) {
625 pr_info("RX descriptor ring:\n");
626 display_ring(priv
->dma_rx
, rxsize
);
627 pr_info("TX descriptor ring:\n");
628 display_ring(priv
->dma_tx
, txsize
);
632 static void dma_free_rx_skbufs(struct stmmac_priv
*priv
)
636 for (i
= 0; i
< priv
->dma_rx_size
; i
++) {
637 if (priv
->rx_skbuff
[i
]) {
638 dma_unmap_single(priv
->device
, priv
->rx_skbuff_dma
[i
],
639 priv
->dma_buf_sz
, DMA_FROM_DEVICE
);
640 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
642 priv
->rx_skbuff
[i
] = NULL
;
646 static void dma_free_tx_skbufs(struct stmmac_priv
*priv
)
650 for (i
= 0; i
< priv
->dma_tx_size
; i
++) {
651 if (priv
->tx_skbuff
[i
] != NULL
) {
652 struct dma_desc
*p
= priv
->dma_tx
+ i
;
654 dma_unmap_single(priv
->device
, p
->des2
,
655 priv
->hw
->desc
->get_tx_len(p
),
657 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
658 priv
->tx_skbuff
[i
] = NULL
;
663 static void free_dma_desc_resources(struct stmmac_priv
*priv
)
665 /* Release the DMA TX/RX socket buffers */
666 dma_free_rx_skbufs(priv
);
667 dma_free_tx_skbufs(priv
);
669 /* Free the region of consistent memory previously allocated for
671 dma_free_coherent(priv
->device
,
672 priv
->dma_tx_size
* sizeof(struct dma_desc
),
673 priv
->dma_tx
, priv
->dma_tx_phy
);
674 dma_free_coherent(priv
->device
,
675 priv
->dma_rx_size
* sizeof(struct dma_desc
),
676 priv
->dma_rx
, priv
->dma_rx_phy
);
677 kfree(priv
->rx_skbuff_dma
);
678 kfree(priv
->rx_skbuff
);
679 kfree(priv
->tx_skbuff
);
683 * stmmac_dma_operation_mode - HW DMA operation mode
684 * @priv : pointer to the private device structure.
685 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
686 * or Store-And-Forward capability.
688 static void stmmac_dma_operation_mode(struct stmmac_priv
*priv
)
690 if (likely(priv
->plat
->force_sf_dma_mode
||
691 ((priv
->plat
->tx_coe
) && (!priv
->no_csum_insertion
)))) {
693 * In case of GMAC, SF mode can be enabled
694 * to perform the TX COE in HW. This depends on:
695 * 1) TX COE if actually supported
696 * 2) There is no bugged Jumbo frame support
697 * that needs to not insert csum in the TDES.
699 priv
->hw
->dma
->dma_mode(priv
->ioaddr
,
700 SF_DMA_MODE
, SF_DMA_MODE
);
703 priv
->hw
->dma
->dma_mode(priv
->ioaddr
, tc
, SF_DMA_MODE
);
708 * @priv: private driver structure
709 * Description: it reclaims resources after transmission completes.
711 static void stmmac_tx(struct stmmac_priv
*priv
)
713 unsigned int txsize
= priv
->dma_tx_size
;
715 spin_lock(&priv
->tx_lock
);
717 while (priv
->dirty_tx
!= priv
->cur_tx
) {
719 unsigned int entry
= priv
->dirty_tx
% txsize
;
720 struct sk_buff
*skb
= priv
->tx_skbuff
[entry
];
721 struct dma_desc
*p
= priv
->dma_tx
+ entry
;
723 /* Check if the descriptor is owned by the DMA. */
724 if (priv
->hw
->desc
->get_tx_owner(p
))
727 /* Verify tx error by looking at the last segment */
728 last
= priv
->hw
->desc
->get_tx_ls(p
);
731 priv
->hw
->desc
->tx_status(&priv
->dev
->stats
,
734 if (likely(tx_error
== 0)) {
735 priv
->dev
->stats
.tx_packets
++;
736 priv
->xstats
.tx_pkt_n
++;
738 priv
->dev
->stats
.tx_errors
++;
740 TX_DBG("%s: curr %d, dirty %d\n", __func__
,
741 priv
->cur_tx
, priv
->dirty_tx
);
744 dma_unmap_single(priv
->device
, p
->des2
,
745 priv
->hw
->desc
->get_tx_len(p
),
747 priv
->hw
->ring
->clean_desc3(p
);
749 if (likely(skb
!= NULL
)) {
751 priv
->tx_skbuff
[entry
] = NULL
;
754 priv
->hw
->desc
->release_tx_desc(p
);
758 if (unlikely(netif_queue_stopped(priv
->dev
) &&
759 stmmac_tx_avail(priv
) > STMMAC_TX_THRESH(priv
))) {
760 netif_tx_lock(priv
->dev
);
761 if (netif_queue_stopped(priv
->dev
) &&
762 stmmac_tx_avail(priv
) > STMMAC_TX_THRESH(priv
)) {
763 TX_DBG("%s: restart transmit\n", __func__
);
764 netif_wake_queue(priv
->dev
);
766 netif_tx_unlock(priv
->dev
);
769 if ((priv
->eee_enabled
) && (!priv
->tx_path_in_lpi_mode
)) {
770 stmmac_enable_eee_mode(priv
);
771 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_TIMER(eee_timer
));
773 spin_unlock(&priv
->tx_lock
);
776 static inline void stmmac_enable_irq(struct stmmac_priv
*priv
)
778 #ifdef CONFIG_STMMAC_TIMER
779 if (likely(priv
->tm
->enable
))
780 priv
->tm
->timer_start(tmrate
);
783 priv
->hw
->dma
->enable_dma_irq(priv
->ioaddr
);
786 static inline void stmmac_disable_irq(struct stmmac_priv
*priv
)
788 #ifdef CONFIG_STMMAC_TIMER
789 if (likely(priv
->tm
->enable
))
790 priv
->tm
->timer_stop();
793 priv
->hw
->dma
->disable_dma_irq(priv
->ioaddr
);
796 static int stmmac_has_work(struct stmmac_priv
*priv
)
798 unsigned int has_work
= 0;
799 int rxret
, tx_work
= 0;
801 rxret
= priv
->hw
->desc
->get_rx_owner(priv
->dma_rx
+
802 (priv
->cur_rx
% priv
->dma_rx_size
));
804 if (priv
->dirty_tx
!= priv
->cur_tx
)
807 if (likely(!rxret
|| tx_work
))
813 static inline void _stmmac_schedule(struct stmmac_priv
*priv
)
815 if (likely(stmmac_has_work(priv
))) {
816 stmmac_disable_irq(priv
);
817 napi_schedule(&priv
->napi
);
821 #ifdef CONFIG_STMMAC_TIMER
822 void stmmac_schedule(struct net_device
*dev
)
824 struct stmmac_priv
*priv
= netdev_priv(dev
);
826 priv
->xstats
.sched_timer_n
++;
828 _stmmac_schedule(priv
);
831 static void stmmac_no_timer_started(unsigned int x
)
835 static void stmmac_no_timer_stopped(void)
842 * @priv: pointer to the private device structure
843 * Description: it cleans the descriptors and restarts the transmission
846 static void stmmac_tx_err(struct stmmac_priv
*priv
)
848 netif_stop_queue(priv
->dev
);
850 priv
->hw
->dma
->stop_tx(priv
->ioaddr
);
851 dma_free_tx_skbufs(priv
);
852 priv
->hw
->desc
->init_tx_desc(priv
->dma_tx
, priv
->dma_tx_size
);
855 priv
->hw
->dma
->start_tx(priv
->ioaddr
);
857 priv
->dev
->stats
.tx_errors
++;
858 netif_wake_queue(priv
->dev
);
862 static void stmmac_dma_interrupt(struct stmmac_priv
*priv
)
866 status
= priv
->hw
->dma
->dma_interrupt(priv
->ioaddr
, &priv
->xstats
);
867 if (likely(status
== handle_tx_rx
))
868 _stmmac_schedule(priv
);
870 else if (unlikely(status
== tx_hard_error_bump_tc
)) {
871 /* Try to bump up the dma threshold on this failure */
872 if (unlikely(tc
!= SF_DMA_MODE
) && (tc
<= 256)) {
874 priv
->hw
->dma
->dma_mode(priv
->ioaddr
, tc
, SF_DMA_MODE
);
875 priv
->xstats
.threshold
= tc
;
877 } else if (unlikely(status
== tx_hard_error
))
881 static void stmmac_mmc_setup(struct stmmac_priv
*priv
)
883 unsigned int mode
= MMC_CNTRL_RESET_ON_READ
| MMC_CNTRL_COUNTER_RESET
|
884 MMC_CNTRL_PRESET
| MMC_CNTRL_FULL_HALF_PRESET
;
886 /* Mask MMC irq, counters are managed in SW and registers
887 * are cleared on each READ eventually. */
888 dwmac_mmc_intr_all_mask(priv
->ioaddr
);
890 if (priv
->dma_cap
.rmon
) {
891 dwmac_mmc_ctrl(priv
->ioaddr
, mode
);
892 memset(&priv
->mmc
, 0, sizeof(struct stmmac_counters
));
894 pr_info(" No MAC Management Counters available\n");
897 static u32
stmmac_get_synopsys_id(struct stmmac_priv
*priv
)
899 u32 hwid
= priv
->hw
->synopsys_uid
;
901 /* Only check valid Synopsys Id because old MAC chips
902 * have no HW registers where get the ID */
904 u32 uid
= ((hwid
& 0x0000ff00) >> 8);
905 u32 synid
= (hwid
& 0x000000ff);
907 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
916 * stmmac_selec_desc_mode
917 * @priv : private structure
918 * Description: select the Enhanced/Alternate or Normal descriptors
920 static void stmmac_selec_desc_mode(struct stmmac_priv
*priv
)
922 if (priv
->plat
->enh_desc
) {
923 pr_info(" Enhanced/Alternate descriptors\n");
924 priv
->hw
->desc
= &enh_desc_ops
;
926 pr_info(" Normal descriptors\n");
927 priv
->hw
->desc
= &ndesc_ops
;
932 * stmmac_get_hw_features
933 * @priv : private device pointer
935 * new GMAC chip generations have a new register to indicate the
936 * presence of the optional feature/functions.
937 * This can be also used to override the value passed through the
938 * platform and necessary for old MAC10/100 and GMAC chips.
940 static int stmmac_get_hw_features(struct stmmac_priv
*priv
)
944 if (priv
->hw
->dma
->get_hw_feature
) {
945 hw_cap
= priv
->hw
->dma
->get_hw_feature(priv
->ioaddr
);
947 priv
->dma_cap
.mbps_10_100
= (hw_cap
& DMA_HW_FEAT_MIISEL
);
948 priv
->dma_cap
.mbps_1000
= (hw_cap
& DMA_HW_FEAT_GMIISEL
) >> 1;
949 priv
->dma_cap
.half_duplex
= (hw_cap
& DMA_HW_FEAT_HDSEL
) >> 2;
950 priv
->dma_cap
.hash_filter
= (hw_cap
& DMA_HW_FEAT_HASHSEL
) >> 4;
951 priv
->dma_cap
.multi_addr
=
952 (hw_cap
& DMA_HW_FEAT_ADDMACADRSEL
) >> 5;
953 priv
->dma_cap
.pcs
= (hw_cap
& DMA_HW_FEAT_PCSSEL
) >> 6;
954 priv
->dma_cap
.sma_mdio
= (hw_cap
& DMA_HW_FEAT_SMASEL
) >> 8;
955 priv
->dma_cap
.pmt_remote_wake_up
=
956 (hw_cap
& DMA_HW_FEAT_RWKSEL
) >> 9;
957 priv
->dma_cap
.pmt_magic_frame
=
958 (hw_cap
& DMA_HW_FEAT_MGKSEL
) >> 10;
960 priv
->dma_cap
.rmon
= (hw_cap
& DMA_HW_FEAT_MMCSEL
) >> 11;
962 priv
->dma_cap
.time_stamp
=
963 (hw_cap
& DMA_HW_FEAT_TSVER1SEL
) >> 12;
965 priv
->dma_cap
.atime_stamp
=
966 (hw_cap
& DMA_HW_FEAT_TSVER2SEL
) >> 13;
967 /* 802.3az - Energy-Efficient Ethernet (EEE) */
968 priv
->dma_cap
.eee
= (hw_cap
& DMA_HW_FEAT_EEESEL
) >> 14;
969 priv
->dma_cap
.av
= (hw_cap
& DMA_HW_FEAT_AVSEL
) >> 15;
971 priv
->dma_cap
.tx_coe
= (hw_cap
& DMA_HW_FEAT_TXCOESEL
) >> 16;
972 priv
->dma_cap
.rx_coe_type1
=
973 (hw_cap
& DMA_HW_FEAT_RXTYP1COE
) >> 17;
974 priv
->dma_cap
.rx_coe_type2
=
975 (hw_cap
& DMA_HW_FEAT_RXTYP2COE
) >> 18;
976 priv
->dma_cap
.rxfifo_over_2048
=
977 (hw_cap
& DMA_HW_FEAT_RXFIFOSIZE
) >> 19;
978 /* TX and RX number of channels */
979 priv
->dma_cap
.number_rx_channel
=
980 (hw_cap
& DMA_HW_FEAT_RXCHCNT
) >> 20;
981 priv
->dma_cap
.number_tx_channel
=
982 (hw_cap
& DMA_HW_FEAT_TXCHCNT
) >> 22;
983 /* Alternate (enhanced) DESC mode*/
984 priv
->dma_cap
.enh_desc
=
985 (hw_cap
& DMA_HW_FEAT_ENHDESSEL
) >> 24;
992 static void stmmac_check_ether_addr(struct stmmac_priv
*priv
)
994 /* verify if the MAC address is valid, in case of failures it
995 * generates a random MAC address */
996 if (!is_valid_ether_addr(priv
->dev
->dev_addr
)) {
997 priv
->hw
->mac
->get_umac_addr((void __iomem
*)
998 priv
->dev
->base_addr
,
999 priv
->dev
->dev_addr
, 0);
1000 if (!is_valid_ether_addr(priv
->dev
->dev_addr
))
1001 eth_hw_addr_random(priv
->dev
);
1003 pr_warning("%s: device MAC address %pM\n", priv
->dev
->name
,
1004 priv
->dev
->dev_addr
);
1007 static int stmmac_init_dma_engine(struct stmmac_priv
*priv
)
1009 int pbl
= DEFAULT_DMA_PBL
, fixed_burst
= 0, burst_len
= 0;
1010 int mixed_burst
= 0;
1012 /* Some DMA parameters can be passed from the platform;
1013 * in case of these are not passed we keep a default
1014 * (good for all the chips) and init the DMA! */
1015 if (priv
->plat
->dma_cfg
) {
1016 pbl
= priv
->plat
->dma_cfg
->pbl
;
1017 fixed_burst
= priv
->plat
->dma_cfg
->fixed_burst
;
1018 mixed_burst
= priv
->plat
->dma_cfg
->mixed_burst
;
1019 burst_len
= priv
->plat
->dma_cfg
->burst_len
;
1022 return priv
->hw
->dma
->init(priv
->ioaddr
, pbl
, fixed_burst
, mixed_burst
,
1023 burst_len
, priv
->dma_tx_phy
,
1028 * stmmac_open - open entry point of the driver
1029 * @dev : pointer to the device structure.
1031 * This function is the open entry point of the driver.
1033 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1036 static int stmmac_open(struct net_device
*dev
)
1038 struct stmmac_priv
*priv
= netdev_priv(dev
);
1041 #ifdef CONFIG_STMMAC_TIMER
1042 priv
->tm
= kzalloc(sizeof(struct stmmac_timer
*), GFP_KERNEL
);
1043 if (unlikely(priv
->tm
== NULL
))
1046 priv
->tm
->freq
= tmrate
;
1048 /* Test if the external timer can be actually used.
1049 * In case of failure continue without timer. */
1050 if (unlikely((stmmac_open_ext_timer(dev
, priv
->tm
)) < 0)) {
1051 pr_warning("stmmaceth: cannot attach the external timer.\n");
1053 priv
->tm
->timer_start
= stmmac_no_timer_started
;
1054 priv
->tm
->timer_stop
= stmmac_no_timer_stopped
;
1056 priv
->tm
->enable
= 1;
1058 clk_prepare_enable(priv
->stmmac_clk
);
1060 stmmac_check_ether_addr(priv
);
1062 ret
= stmmac_init_phy(dev
);
1063 if (unlikely(ret
)) {
1064 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__
, ret
);
1068 /* Create and initialize the TX/RX descriptors chains. */
1069 priv
->dma_tx_size
= STMMAC_ALIGN(dma_txsize
);
1070 priv
->dma_rx_size
= STMMAC_ALIGN(dma_rxsize
);
1071 priv
->dma_buf_sz
= STMMAC_ALIGN(buf_sz
);
1072 init_dma_desc_rings(dev
);
1074 /* DMA initialization and SW reset */
1075 ret
= stmmac_init_dma_engine(priv
);
1077 pr_err("%s: DMA initialization failed\n", __func__
);
1081 /* Copy the MAC addr into the HW */
1082 priv
->hw
->mac
->set_umac_addr(priv
->ioaddr
, dev
->dev_addr
, 0);
1084 /* If required, perform hw setup of the bus. */
1085 if (priv
->plat
->bus_setup
)
1086 priv
->plat
->bus_setup(priv
->ioaddr
);
1088 /* Initialize the MAC Core */
1089 priv
->hw
->mac
->core_init(priv
->ioaddr
);
1091 /* Request the IRQ lines */
1092 ret
= request_irq(dev
->irq
, stmmac_interrupt
,
1093 IRQF_SHARED
, dev
->name
, dev
);
1094 if (unlikely(ret
< 0)) {
1095 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1096 __func__
, dev
->irq
, ret
);
1100 /* Request the Wake IRQ in case of another line is used for WoL */
1101 if (priv
->wol_irq
!= dev
->irq
) {
1102 ret
= request_irq(priv
->wol_irq
, stmmac_interrupt
,
1103 IRQF_SHARED
, dev
->name
, dev
);
1104 if (unlikely(ret
< 0)) {
1105 pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1106 "(error: %d)\n", __func__
, priv
->wol_irq
, ret
);
1107 goto open_error_wolirq
;
1111 /* Request the IRQ lines */
1112 if (priv
->lpi_irq
!= -ENXIO
) {
1113 ret
= request_irq(priv
->lpi_irq
, stmmac_interrupt
, IRQF_SHARED
,
1115 if (unlikely(ret
< 0)) {
1116 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1117 __func__
, priv
->lpi_irq
, ret
);
1118 goto open_error_lpiirq
;
1122 /* Enable the MAC Rx/Tx */
1123 stmmac_set_mac(priv
->ioaddr
, true);
1125 /* Set the HW DMA mode and the COE */
1126 stmmac_dma_operation_mode(priv
);
1128 /* Extra statistics */
1129 memset(&priv
->xstats
, 0, sizeof(struct stmmac_extra_stats
));
1130 priv
->xstats
.threshold
= tc
;
1132 stmmac_mmc_setup(priv
);
1134 #ifdef CONFIG_STMMAC_DEBUG_FS
1135 ret
= stmmac_init_fs(dev
);
1137 pr_warning("%s: failed debugFS registration\n", __func__
);
1139 /* Start the ball rolling... */
1140 DBG(probe
, DEBUG
, "%s: DMA RX/TX processes started...\n", dev
->name
);
1141 priv
->hw
->dma
->start_tx(priv
->ioaddr
);
1142 priv
->hw
->dma
->start_rx(priv
->ioaddr
);
1144 #ifdef CONFIG_STMMAC_TIMER
1145 priv
->tm
->timer_start(tmrate
);
1148 /* Dump DMA/MAC registers */
1149 if (netif_msg_hw(priv
)) {
1150 priv
->hw
->mac
->dump_regs(priv
->ioaddr
);
1151 priv
->hw
->dma
->dump_regs(priv
->ioaddr
);
1155 phy_start(priv
->phydev
);
1157 priv
->tx_lpi_timer
= STMMAC_DEFAULT_TWT_LS_TIMER
;
1158 priv
->eee_enabled
= stmmac_eee_init(priv
);
1160 napi_enable(&priv
->napi
);
1161 netif_start_queue(dev
);
1166 if (priv
->wol_irq
!= dev
->irq
)
1167 free_irq(priv
->wol_irq
, dev
);
1170 free_irq(dev
->irq
, dev
);
1173 #ifdef CONFIG_STMMAC_TIMER
1177 phy_disconnect(priv
->phydev
);
1179 clk_disable_unprepare(priv
->stmmac_clk
);
1185 * stmmac_release - close entry point of the driver
1186 * @dev : device pointer.
1188 * This is the stop entry point of the driver.
1190 static int stmmac_release(struct net_device
*dev
)
1192 struct stmmac_priv
*priv
= netdev_priv(dev
);
1194 if (priv
->eee_enabled
)
1195 del_timer_sync(&priv
->eee_ctrl_timer
);
1197 /* Stop and disconnect the PHY */
1199 phy_stop(priv
->phydev
);
1200 phy_disconnect(priv
->phydev
);
1201 priv
->phydev
= NULL
;
1204 netif_stop_queue(dev
);
1206 #ifdef CONFIG_STMMAC_TIMER
1207 /* Stop and release the timer */
1208 stmmac_close_ext_timer();
1209 if (priv
->tm
!= NULL
)
1212 napi_disable(&priv
->napi
);
1214 /* Free the IRQ lines */
1215 free_irq(dev
->irq
, dev
);
1216 if (priv
->wol_irq
!= dev
->irq
)
1217 free_irq(priv
->wol_irq
, dev
);
1218 if (priv
->lpi_irq
!= -ENXIO
)
1219 free_irq(priv
->lpi_irq
, dev
);
1221 /* Stop TX/RX DMA and clear the descriptors */
1222 priv
->hw
->dma
->stop_tx(priv
->ioaddr
);
1223 priv
->hw
->dma
->stop_rx(priv
->ioaddr
);
1225 /* Release and free the Rx/Tx resources */
1226 free_dma_desc_resources(priv
);
1228 /* Disable the MAC Rx/Tx */
1229 stmmac_set_mac(priv
->ioaddr
, false);
1231 netif_carrier_off(dev
);
1233 #ifdef CONFIG_STMMAC_DEBUG_FS
1236 clk_disable_unprepare(priv
->stmmac_clk
);
1243 * @skb : the socket buffer
1244 * @dev : device pointer
1245 * Description : Tx entry point of the driver.
1247 static netdev_tx_t
stmmac_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1249 struct stmmac_priv
*priv
= netdev_priv(dev
);
1250 unsigned int txsize
= priv
->dma_tx_size
;
1252 int i
, csum_insertion
= 0;
1253 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1254 struct dma_desc
*desc
, *first
;
1255 unsigned int nopaged_len
= skb_headlen(skb
);
1257 if (unlikely(stmmac_tx_avail(priv
) < nfrags
+ 1)) {
1258 if (!netif_queue_stopped(dev
)) {
1259 netif_stop_queue(dev
);
1260 /* This is a hard error, log it. */
1261 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1264 return NETDEV_TX_BUSY
;
1267 spin_lock(&priv
->tx_lock
);
1269 if (priv
->tx_path_in_lpi_mode
)
1270 stmmac_disable_eee_mode(priv
);
1272 entry
= priv
->cur_tx
% txsize
;
1274 #ifdef STMMAC_XMIT_DEBUG
1275 if ((skb
->len
> ETH_FRAME_LEN
) || nfrags
)
1276 pr_info("stmmac xmit:\n"
1277 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1278 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1279 skb
, skb
->len
, nopaged_len
, nfrags
, skb
->ip_summed
,
1280 !skb_is_gso(skb
) ? "isn't" : "is");
1283 csum_insertion
= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1285 desc
= priv
->dma_tx
+ entry
;
1288 #ifdef STMMAC_XMIT_DEBUG
1289 if ((nfrags
> 0) || (skb
->len
> ETH_FRAME_LEN
))
1290 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1291 "\t\tn_frags: %d, ip_summed: %d\n",
1292 skb
->len
, nopaged_len
, nfrags
, skb
->ip_summed
);
1294 priv
->tx_skbuff
[entry
] = skb
;
1296 if (priv
->hw
->ring
->is_jumbo_frm(skb
->len
, priv
->plat
->enh_desc
)) {
1297 entry
= priv
->hw
->ring
->jumbo_frm(priv
, skb
, csum_insertion
);
1298 desc
= priv
->dma_tx
+ entry
;
1300 desc
->des2
= dma_map_single(priv
->device
, skb
->data
,
1301 nopaged_len
, DMA_TO_DEVICE
);
1302 priv
->hw
->desc
->prepare_tx_desc(desc
, 1, nopaged_len
,
1306 for (i
= 0; i
< nfrags
; i
++) {
1307 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1308 int len
= skb_frag_size(frag
);
1310 entry
= (++priv
->cur_tx
) % txsize
;
1311 desc
= priv
->dma_tx
+ entry
;
1313 TX_DBG("\t[entry %d] segment len: %d\n", entry
, len
);
1314 desc
->des2
= skb_frag_dma_map(priv
->device
, frag
, 0, len
,
1316 priv
->tx_skbuff
[entry
] = NULL
;
1317 priv
->hw
->desc
->prepare_tx_desc(desc
, 0, len
, csum_insertion
);
1319 priv
->hw
->desc
->set_tx_owner(desc
);
1323 /* Interrupt on completition only for the latest segment */
1324 priv
->hw
->desc
->close_tx_desc(desc
);
1326 #ifdef CONFIG_STMMAC_TIMER
1327 /* Clean IC while using timer */
1328 if (likely(priv
->tm
->enable
))
1329 priv
->hw
->desc
->clear_tx_ic(desc
);
1334 /* To avoid raise condition */
1335 priv
->hw
->desc
->set_tx_owner(first
);
1340 #ifdef STMMAC_XMIT_DEBUG
1341 if (netif_msg_pktdata(priv
)) {
1342 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1343 "first=%p, nfrags=%d\n",
1344 (priv
->cur_tx
% txsize
), (priv
->dirty_tx
% txsize
),
1345 entry
, first
, nfrags
);
1346 display_ring(priv
->dma_tx
, txsize
);
1347 pr_info(">>> frame to be transmitted: ");
1348 print_pkt(skb
->data
, skb
->len
);
1351 if (unlikely(stmmac_tx_avail(priv
) <= (MAX_SKB_FRAGS
+ 1))) {
1352 TX_DBG("%s: stop transmitted packets\n", __func__
);
1353 netif_stop_queue(dev
);
1356 dev
->stats
.tx_bytes
+= skb
->len
;
1358 skb_tx_timestamp(skb
);
1360 priv
->hw
->dma
->enable_dma_transmission(priv
->ioaddr
);
1362 spin_unlock(&priv
->tx_lock
);
1364 return NETDEV_TX_OK
;
1367 static inline void stmmac_rx_refill(struct stmmac_priv
*priv
)
1369 unsigned int rxsize
= priv
->dma_rx_size
;
1370 int bfsize
= priv
->dma_buf_sz
;
1371 struct dma_desc
*p
= priv
->dma_rx
;
1373 for (; priv
->cur_rx
- priv
->dirty_rx
> 0; priv
->dirty_rx
++) {
1374 unsigned int entry
= priv
->dirty_rx
% rxsize
;
1375 if (likely(priv
->rx_skbuff
[entry
] == NULL
)) {
1376 struct sk_buff
*skb
;
1378 skb
= netdev_alloc_skb_ip_align(priv
->dev
, bfsize
);
1380 if (unlikely(skb
== NULL
))
1383 priv
->rx_skbuff
[entry
] = skb
;
1384 priv
->rx_skbuff_dma
[entry
] =
1385 dma_map_single(priv
->device
, skb
->data
, bfsize
,
1388 (p
+ entry
)->des2
= priv
->rx_skbuff_dma
[entry
];
1390 if (unlikely(priv
->plat
->has_gmac
))
1391 priv
->hw
->ring
->refill_desc3(bfsize
, p
+ entry
);
1393 RX_DBG(KERN_INFO
"\trefill entry #%d\n", entry
);
1396 priv
->hw
->desc
->set_rx_owner(p
+ entry
);
1401 static int stmmac_rx(struct stmmac_priv
*priv
, int limit
)
1403 unsigned int rxsize
= priv
->dma_rx_size
;
1404 unsigned int entry
= priv
->cur_rx
% rxsize
;
1405 unsigned int next_entry
;
1406 unsigned int count
= 0;
1407 struct dma_desc
*p
= priv
->dma_rx
+ entry
;
1408 struct dma_desc
*p_next
;
1410 #ifdef STMMAC_RX_DEBUG
1411 if (netif_msg_hw(priv
)) {
1412 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1413 display_ring(priv
->dma_rx
, rxsize
);
1416 while (!priv
->hw
->desc
->get_rx_owner(p
)) {
1424 next_entry
= (++priv
->cur_rx
) % rxsize
;
1425 p_next
= priv
->dma_rx
+ next_entry
;
1428 /* read the status of the incoming frame */
1429 status
= (priv
->hw
->desc
->rx_status(&priv
->dev
->stats
,
1431 if (unlikely(status
== discard_frame
))
1432 priv
->dev
->stats
.rx_errors
++;
1434 struct sk_buff
*skb
;
1437 frame_len
= priv
->hw
->desc
->get_rx_frame_len(p
,
1438 priv
->plat
->rx_coe
);
1439 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1440 * Type frames (LLC/LLC-SNAP) */
1441 if (unlikely(status
!= llc_snap
))
1442 frame_len
-= ETH_FCS_LEN
;
1443 #ifdef STMMAC_RX_DEBUG
1444 if (frame_len
> ETH_FRAME_LEN
)
1445 pr_debug("\tRX frame size %d, COE status: %d\n",
1448 if (netif_msg_hw(priv
))
1449 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1452 skb
= priv
->rx_skbuff
[entry
];
1453 if (unlikely(!skb
)) {
1454 pr_err("%s: Inconsistent Rx descriptor chain\n",
1456 priv
->dev
->stats
.rx_dropped
++;
1459 prefetch(skb
->data
- NET_IP_ALIGN
);
1460 priv
->rx_skbuff
[entry
] = NULL
;
1462 skb_put(skb
, frame_len
);
1463 dma_unmap_single(priv
->device
,
1464 priv
->rx_skbuff_dma
[entry
],
1465 priv
->dma_buf_sz
, DMA_FROM_DEVICE
);
1466 #ifdef STMMAC_RX_DEBUG
1467 if (netif_msg_pktdata(priv
)) {
1468 pr_info(" frame received (%dbytes)", frame_len
);
1469 print_pkt(skb
->data
, frame_len
);
1472 skb
->protocol
= eth_type_trans(skb
, priv
->dev
);
1474 if (unlikely(!priv
->plat
->rx_coe
)) {
1475 /* No RX COE for old mac10/100 devices */
1476 skb_checksum_none_assert(skb
);
1477 netif_receive_skb(skb
);
1479 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1480 napi_gro_receive(&priv
->napi
, skb
);
1483 priv
->dev
->stats
.rx_packets
++;
1484 priv
->dev
->stats
.rx_bytes
+= frame_len
;
1487 p
= p_next
; /* use prefetched values */
1490 stmmac_rx_refill(priv
);
1492 priv
->xstats
.rx_pkt_n
+= count
;
1498 * stmmac_poll - stmmac poll method (NAPI)
1499 * @napi : pointer to the napi structure.
1500 * @budget : maximum number of packets that the current CPU can receive from
1503 * This function implements the the reception process.
1504 * Also it runs the TX completion thread
1506 static int stmmac_poll(struct napi_struct
*napi
, int budget
)
1508 struct stmmac_priv
*priv
= container_of(napi
, struct stmmac_priv
, napi
);
1511 priv
->xstats
.poll_n
++;
1513 work_done
= stmmac_rx(priv
, budget
);
1515 if (work_done
< budget
) {
1516 napi_complete(napi
);
1517 stmmac_enable_irq(priv
);
1524 * @dev : Pointer to net device structure
1525 * Description: this function is called when a packet transmission fails to
1526 * complete within a reasonable tmrate. The driver will mark the error in the
1527 * netdev structure and arrange for the device to be reset to a sane state
1528 * in order to transmit a new packet.
1530 static void stmmac_tx_timeout(struct net_device
*dev
)
1532 struct stmmac_priv
*priv
= netdev_priv(dev
);
1534 /* Clear Tx resources and restart transmitting again */
1535 stmmac_tx_err(priv
);
1538 /* Configuration changes (passed on by ifconfig) */
1539 static int stmmac_config(struct net_device
*dev
, struct ifmap
*map
)
1541 if (dev
->flags
& IFF_UP
) /* can't act on a running interface */
1544 /* Don't allow changing the I/O address */
1545 if (map
->base_addr
!= dev
->base_addr
) {
1546 pr_warning("%s: can't change I/O address\n", dev
->name
);
1550 /* Don't allow changing the IRQ */
1551 if (map
->irq
!= dev
->irq
) {
1552 pr_warning("%s: can't change IRQ number %d\n",
1553 dev
->name
, dev
->irq
);
1557 /* ignore other fields */
1562 * stmmac_set_rx_mode - entry point for multicast addressing
1563 * @dev : pointer to the device structure
1565 * This function is a driver entry point which gets called by the kernel
1566 * whenever multicast addresses must be enabled/disabled.
1570 static void stmmac_set_rx_mode(struct net_device
*dev
)
1572 struct stmmac_priv
*priv
= netdev_priv(dev
);
1574 spin_lock(&priv
->lock
);
1575 priv
->hw
->mac
->set_filter(dev
, priv
->synopsys_id
);
1576 spin_unlock(&priv
->lock
);
1580 * stmmac_change_mtu - entry point to change MTU size for the device.
1581 * @dev : device pointer.
1582 * @new_mtu : the new MTU size for the device.
1583 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1584 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1585 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1587 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1590 static int stmmac_change_mtu(struct net_device
*dev
, int new_mtu
)
1592 struct stmmac_priv
*priv
= netdev_priv(dev
);
1595 if (netif_running(dev
)) {
1596 pr_err("%s: must be stopped to change its MTU\n", dev
->name
);
1600 if (priv
->plat
->enh_desc
)
1601 max_mtu
= JUMBO_LEN
;
1603 max_mtu
= SKB_MAX_HEAD(NET_SKB_PAD
+ NET_IP_ALIGN
);
1605 if ((new_mtu
< 46) || (new_mtu
> max_mtu
)) {
1606 pr_err("%s: invalid MTU, max MTU is: %d\n", dev
->name
, max_mtu
);
1611 netdev_update_features(dev
);
1616 static netdev_features_t
stmmac_fix_features(struct net_device
*dev
,
1617 netdev_features_t features
)
1619 struct stmmac_priv
*priv
= netdev_priv(dev
);
1621 if (priv
->plat
->rx_coe
== STMMAC_RX_COE_NONE
)
1622 features
&= ~NETIF_F_RXCSUM
;
1623 else if (priv
->plat
->rx_coe
== STMMAC_RX_COE_TYPE1
)
1624 features
&= ~NETIF_F_IPV6_CSUM
;
1625 if (!priv
->plat
->tx_coe
)
1626 features
&= ~NETIF_F_ALL_CSUM
;
1628 /* Some GMAC devices have a bugged Jumbo frame support that
1629 * needs to have the Tx COE disabled for oversized frames
1630 * (due to limited buffer sizes). In this case we disable
1631 * the TX csum insertionin the TDES and not use SF. */
1632 if (priv
->plat
->bugged_jumbo
&& (dev
->mtu
> ETH_DATA_LEN
))
1633 features
&= ~NETIF_F_ALL_CSUM
;
1638 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
)
1640 struct net_device
*dev
= (struct net_device
*)dev_id
;
1641 struct stmmac_priv
*priv
= netdev_priv(dev
);
1643 if (unlikely(!dev
)) {
1644 pr_err("%s: invalid dev pointer\n", __func__
);
1648 /* To handle GMAC own interrupts */
1649 if (priv
->plat
->has_gmac
) {
1650 int status
= priv
->hw
->mac
->host_irq_status((void __iomem
*)
1652 if (unlikely(status
)) {
1653 if (status
& core_mmc_tx_irq
)
1654 priv
->xstats
.mmc_tx_irq_n
++;
1655 if (status
& core_mmc_rx_irq
)
1656 priv
->xstats
.mmc_rx_irq_n
++;
1657 if (status
& core_mmc_rx_csum_offload_irq
)
1658 priv
->xstats
.mmc_rx_csum_offload_irq_n
++;
1659 if (status
& core_irq_receive_pmt_irq
)
1660 priv
->xstats
.irq_receive_pmt_irq_n
++;
1662 /* For LPI we need to save the tx status */
1663 if (status
& core_irq_tx_path_in_lpi_mode
) {
1664 priv
->xstats
.irq_tx_path_in_lpi_mode_n
++;
1665 priv
->tx_path_in_lpi_mode
= true;
1667 if (status
& core_irq_tx_path_exit_lpi_mode
) {
1668 priv
->xstats
.irq_tx_path_exit_lpi_mode_n
++;
1669 priv
->tx_path_in_lpi_mode
= false;
1671 if (status
& core_irq_rx_path_in_lpi_mode
)
1672 priv
->xstats
.irq_rx_path_in_lpi_mode_n
++;
1673 if (status
& core_irq_rx_path_exit_lpi_mode
)
1674 priv
->xstats
.irq_rx_path_exit_lpi_mode_n
++;
1678 /* To handle DMA interrupts */
1679 stmmac_dma_interrupt(priv
);
1684 #ifdef CONFIG_NET_POLL_CONTROLLER
1685 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1686 * to allow network I/O with interrupts disabled. */
1687 static void stmmac_poll_controller(struct net_device
*dev
)
1689 disable_irq(dev
->irq
);
1690 stmmac_interrupt(dev
->irq
, dev
);
1691 enable_irq(dev
->irq
);
1696 * stmmac_ioctl - Entry point for the Ioctl
1697 * @dev: Device pointer.
1698 * @rq: An IOCTL specefic structure, that can contain a pointer to
1699 * a proprietary structure used to pass information to the driver.
1700 * @cmd: IOCTL command
1702 * Currently there are no special functionality supported in IOCTL, just the
1703 * phy_mii_ioctl(...) can be invoked.
1705 static int stmmac_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1707 struct stmmac_priv
*priv
= netdev_priv(dev
);
1710 if (!netif_running(dev
))
1716 ret
= phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
1721 #ifdef CONFIG_STMMAC_DEBUG_FS
1722 static struct dentry
*stmmac_fs_dir
;
1723 static struct dentry
*stmmac_rings_status
;
1724 static struct dentry
*stmmac_dma_cap
;
1726 static int stmmac_sysfs_ring_read(struct seq_file
*seq
, void *v
)
1734 struct net_device
*dev
= seq
->private;
1735 struct stmmac_priv
*priv
= netdev_priv(dev
);
1737 seq_printf(seq
, "=======================\n");
1738 seq_printf(seq
, " RX descriptor ring\n");
1739 seq_printf(seq
, "=======================\n");
1741 for (i
= 0; i
< priv
->dma_rx_size
; i
++) {
1742 struct tmp_s
*x
= (struct tmp_s
*)(priv
->dma_rx
+ i
);
1743 seq_printf(seq
, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1744 i
, (unsigned int)(x
->a
),
1745 (unsigned int)((x
->a
) >> 32), x
->b
, x
->c
);
1746 seq_printf(seq
, "\n");
1749 seq_printf(seq
, "\n");
1750 seq_printf(seq
, "=======================\n");
1751 seq_printf(seq
, " TX descriptor ring\n");
1752 seq_printf(seq
, "=======================\n");
1754 for (i
= 0; i
< priv
->dma_tx_size
; i
++) {
1755 struct tmp_s
*x
= (struct tmp_s
*)(priv
->dma_tx
+ i
);
1756 seq_printf(seq
, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1757 i
, (unsigned int)(x
->a
),
1758 (unsigned int)((x
->a
) >> 32), x
->b
, x
->c
);
1759 seq_printf(seq
, "\n");
1765 static int stmmac_sysfs_ring_open(struct inode
*inode
, struct file
*file
)
1767 return single_open(file
, stmmac_sysfs_ring_read
, inode
->i_private
);
1770 static const struct file_operations stmmac_rings_status_fops
= {
1771 .owner
= THIS_MODULE
,
1772 .open
= stmmac_sysfs_ring_open
,
1774 .llseek
= seq_lseek
,
1775 .release
= single_release
,
1778 static int stmmac_sysfs_dma_cap_read(struct seq_file
*seq
, void *v
)
1780 struct net_device
*dev
= seq
->private;
1781 struct stmmac_priv
*priv
= netdev_priv(dev
);
1783 if (!priv
->hw_cap_support
) {
1784 seq_printf(seq
, "DMA HW features not supported\n");
1788 seq_printf(seq
, "==============================\n");
1789 seq_printf(seq
, "\tDMA HW features\n");
1790 seq_printf(seq
, "==============================\n");
1792 seq_printf(seq
, "\t10/100 Mbps %s\n",
1793 (priv
->dma_cap
.mbps_10_100
) ? "Y" : "N");
1794 seq_printf(seq
, "\t1000 Mbps %s\n",
1795 (priv
->dma_cap
.mbps_1000
) ? "Y" : "N");
1796 seq_printf(seq
, "\tHalf duple %s\n",
1797 (priv
->dma_cap
.half_duplex
) ? "Y" : "N");
1798 seq_printf(seq
, "\tHash Filter: %s\n",
1799 (priv
->dma_cap
.hash_filter
) ? "Y" : "N");
1800 seq_printf(seq
, "\tMultiple MAC address registers: %s\n",
1801 (priv
->dma_cap
.multi_addr
) ? "Y" : "N");
1802 seq_printf(seq
, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1803 (priv
->dma_cap
.pcs
) ? "Y" : "N");
1804 seq_printf(seq
, "\tSMA (MDIO) Interface: %s\n",
1805 (priv
->dma_cap
.sma_mdio
) ? "Y" : "N");
1806 seq_printf(seq
, "\tPMT Remote wake up: %s\n",
1807 (priv
->dma_cap
.pmt_remote_wake_up
) ? "Y" : "N");
1808 seq_printf(seq
, "\tPMT Magic Frame: %s\n",
1809 (priv
->dma_cap
.pmt_magic_frame
) ? "Y" : "N");
1810 seq_printf(seq
, "\tRMON module: %s\n",
1811 (priv
->dma_cap
.rmon
) ? "Y" : "N");
1812 seq_printf(seq
, "\tIEEE 1588-2002 Time Stamp: %s\n",
1813 (priv
->dma_cap
.time_stamp
) ? "Y" : "N");
1814 seq_printf(seq
, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1815 (priv
->dma_cap
.atime_stamp
) ? "Y" : "N");
1816 seq_printf(seq
, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1817 (priv
->dma_cap
.eee
) ? "Y" : "N");
1818 seq_printf(seq
, "\tAV features: %s\n", (priv
->dma_cap
.av
) ? "Y" : "N");
1819 seq_printf(seq
, "\tChecksum Offload in TX: %s\n",
1820 (priv
->dma_cap
.tx_coe
) ? "Y" : "N");
1821 seq_printf(seq
, "\tIP Checksum Offload (type1) in RX: %s\n",
1822 (priv
->dma_cap
.rx_coe_type1
) ? "Y" : "N");
1823 seq_printf(seq
, "\tIP Checksum Offload (type2) in RX: %s\n",
1824 (priv
->dma_cap
.rx_coe_type2
) ? "Y" : "N");
1825 seq_printf(seq
, "\tRXFIFO > 2048bytes: %s\n",
1826 (priv
->dma_cap
.rxfifo_over_2048
) ? "Y" : "N");
1827 seq_printf(seq
, "\tNumber of Additional RX channel: %d\n",
1828 priv
->dma_cap
.number_rx_channel
);
1829 seq_printf(seq
, "\tNumber of Additional TX channel: %d\n",
1830 priv
->dma_cap
.number_tx_channel
);
1831 seq_printf(seq
, "\tEnhanced descriptors: %s\n",
1832 (priv
->dma_cap
.enh_desc
) ? "Y" : "N");
1837 static int stmmac_sysfs_dma_cap_open(struct inode
*inode
, struct file
*file
)
1839 return single_open(file
, stmmac_sysfs_dma_cap_read
, inode
->i_private
);
1842 static const struct file_operations stmmac_dma_cap_fops
= {
1843 .owner
= THIS_MODULE
,
1844 .open
= stmmac_sysfs_dma_cap_open
,
1846 .llseek
= seq_lseek
,
1847 .release
= single_release
,
1850 static int stmmac_init_fs(struct net_device
*dev
)
1852 /* Create debugfs entries */
1853 stmmac_fs_dir
= debugfs_create_dir(STMMAC_RESOURCE_NAME
, NULL
);
1855 if (!stmmac_fs_dir
|| IS_ERR(stmmac_fs_dir
)) {
1856 pr_err("ERROR %s, debugfs create directory failed\n",
1857 STMMAC_RESOURCE_NAME
);
1862 /* Entry to report DMA RX/TX rings */
1863 stmmac_rings_status
= debugfs_create_file("descriptors_status",
1864 S_IRUGO
, stmmac_fs_dir
, dev
,
1865 &stmmac_rings_status_fops
);
1867 if (!stmmac_rings_status
|| IS_ERR(stmmac_rings_status
)) {
1868 pr_info("ERROR creating stmmac ring debugfs file\n");
1869 debugfs_remove(stmmac_fs_dir
);
1874 /* Entry to report the DMA HW features */
1875 stmmac_dma_cap
= debugfs_create_file("dma_cap", S_IRUGO
, stmmac_fs_dir
,
1876 dev
, &stmmac_dma_cap_fops
);
1878 if (!stmmac_dma_cap
|| IS_ERR(stmmac_dma_cap
)) {
1879 pr_info("ERROR creating stmmac MMC debugfs file\n");
1880 debugfs_remove(stmmac_rings_status
);
1881 debugfs_remove(stmmac_fs_dir
);
1889 static void stmmac_exit_fs(void)
1891 debugfs_remove(stmmac_rings_status
);
1892 debugfs_remove(stmmac_dma_cap
);
1893 debugfs_remove(stmmac_fs_dir
);
1895 #endif /* CONFIG_STMMAC_DEBUG_FS */
1897 static const struct net_device_ops stmmac_netdev_ops
= {
1898 .ndo_open
= stmmac_open
,
1899 .ndo_start_xmit
= stmmac_xmit
,
1900 .ndo_stop
= stmmac_release
,
1901 .ndo_change_mtu
= stmmac_change_mtu
,
1902 .ndo_fix_features
= stmmac_fix_features
,
1903 .ndo_set_rx_mode
= stmmac_set_rx_mode
,
1904 .ndo_tx_timeout
= stmmac_tx_timeout
,
1905 .ndo_do_ioctl
= stmmac_ioctl
,
1906 .ndo_set_config
= stmmac_config
,
1907 #ifdef CONFIG_NET_POLL_CONTROLLER
1908 .ndo_poll_controller
= stmmac_poll_controller
,
1910 .ndo_set_mac_address
= eth_mac_addr
,
1914 * stmmac_hw_init - Init the MAC device
1915 * @priv : pointer to the private device structure.
1916 * Description: this function detects which MAC device
1917 * (GMAC/MAC10-100) has to attached, checks the HW capability
1918 * (if supported) and sets the driver's features (for example
1919 * to use the ring or chaine mode or support the normal/enh
1920 * descriptor structure).
1922 static int stmmac_hw_init(struct stmmac_priv
*priv
)
1925 struct mac_device_info
*mac
;
1927 /* Identify the MAC HW device */
1928 if (priv
->plat
->has_gmac
) {
1929 priv
->dev
->priv_flags
|= IFF_UNICAST_FLT
;
1930 mac
= dwmac1000_setup(priv
->ioaddr
);
1932 mac
= dwmac100_setup(priv
->ioaddr
);
1939 /* To use the chained or ring mode */
1940 priv
->hw
->ring
= &ring_mode_ops
;
1942 /* Get and dump the chip ID */
1943 priv
->synopsys_id
= stmmac_get_synopsys_id(priv
);
1945 /* Get the HW capability (new GMAC newer than 3.50a) */
1946 priv
->hw_cap_support
= stmmac_get_hw_features(priv
);
1947 if (priv
->hw_cap_support
) {
1948 pr_info(" DMA HW capability register supported");
1950 /* We can override some gmac/dma configuration fields: e.g.
1951 * enh_desc, tx_coe (e.g. that are passed through the
1952 * platform) with the values from the HW capability
1953 * register (if supported).
1955 priv
->plat
->enh_desc
= priv
->dma_cap
.enh_desc
;
1956 priv
->plat
->pmt
= priv
->dma_cap
.pmt_remote_wake_up
;
1958 priv
->plat
->tx_coe
= priv
->dma_cap
.tx_coe
;
1960 if (priv
->dma_cap
.rx_coe_type2
)
1961 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE2
;
1962 else if (priv
->dma_cap
.rx_coe_type1
)
1963 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE1
;
1966 pr_info(" No HW DMA feature register supported");
1968 /* Select the enhnaced/normal descriptor structures */
1969 stmmac_selec_desc_mode(priv
);
1971 /* Enable the IPC (Checksum Offload) and check if the feature has been
1972 * enabled during the core configuration. */
1973 ret
= priv
->hw
->mac
->rx_ipc(priv
->ioaddr
);
1975 pr_warning(" RX IPC Checksum Offload not configured.\n");
1976 priv
->plat
->rx_coe
= STMMAC_RX_COE_NONE
;
1979 if (priv
->plat
->rx_coe
)
1980 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1981 priv
->plat
->rx_coe
);
1982 if (priv
->plat
->tx_coe
)
1983 pr_info(" TX Checksum insertion supported\n");
1985 if (priv
->plat
->pmt
) {
1986 pr_info(" Wake-Up On Lan supported\n");
1987 device_set_wakeup_capable(priv
->device
, 1);
1995 * @device: device pointer
1996 * @plat_dat: platform data pointer
1997 * @addr: iobase memory address
1998 * Description: this is the main probe function used to
1999 * call the alloc_etherdev, allocate the priv structure.
2001 struct stmmac_priv
*stmmac_dvr_probe(struct device
*device
,
2002 struct plat_stmmacenet_data
*plat_dat
,
2006 struct net_device
*ndev
= NULL
;
2007 struct stmmac_priv
*priv
;
2009 ndev
= alloc_etherdev(sizeof(struct stmmac_priv
));
2013 SET_NETDEV_DEV(ndev
, device
);
2015 priv
= netdev_priv(ndev
);
2016 priv
->device
= device
;
2021 stmmac_set_ethtool_ops(ndev
);
2022 priv
->pause
= pause
;
2023 priv
->plat
= plat_dat
;
2024 priv
->ioaddr
= addr
;
2025 priv
->dev
->base_addr
= (unsigned long)addr
;
2027 /* Verify driver arguments */
2028 stmmac_verify_args();
2030 /* Override with kernel parameters if supplied XXX CRS XXX
2031 * this needs to have multiple instances */
2032 if ((phyaddr
>= 0) && (phyaddr
<= 31))
2033 priv
->plat
->phy_addr
= phyaddr
;
2035 /* Init MAC and get the capabilities */
2036 stmmac_hw_init(priv
);
2038 ndev
->netdev_ops
= &stmmac_netdev_ops
;
2040 ndev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
2042 ndev
->features
|= ndev
->hw_features
| NETIF_F_HIGHDMA
;
2043 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
2044 #ifdef STMMAC_VLAN_TAG_USED
2045 /* Both mac100 and gmac support receive VLAN tag detection */
2046 ndev
->features
|= NETIF_F_HW_VLAN_RX
;
2048 priv
->msg_enable
= netif_msg_init(debug
, default_msg_level
);
2051 priv
->flow_ctrl
= FLOW_AUTO
; /* RX/TX pause on */
2053 netif_napi_add(ndev
, &priv
->napi
, stmmac_poll
, 64);
2055 spin_lock_init(&priv
->lock
);
2056 spin_lock_init(&priv
->tx_lock
);
2058 ret
= register_netdev(ndev
);
2060 pr_err("%s: ERROR %i registering the device\n", __func__
, ret
);
2061 goto error_netdev_register
;
2064 priv
->stmmac_clk
= clk_get(priv
->device
, STMMAC_RESOURCE_NAME
);
2065 if (IS_ERR(priv
->stmmac_clk
)) {
2066 pr_warning("%s: warning: cannot get CSR clock\n", __func__
);
2070 /* If a specific clk_csr value is passed from the platform
2071 * this means that the CSR Clock Range selection cannot be
2072 * changed at run-time and it is fixed. Viceversa the driver'll try to
2073 * set the MDC clock dynamically according to the csr actual
2076 if (!priv
->plat
->clk_csr
)
2077 stmmac_clk_csr_set(priv
);
2079 priv
->clk_csr
= priv
->plat
->clk_csr
;
2081 /* MDIO bus Registration */
2082 ret
= stmmac_mdio_register(ndev
);
2084 pr_debug("%s: MDIO bus (id: %d) registration failed",
2085 __func__
, priv
->plat
->bus_id
);
2086 goto error_mdio_register
;
2091 error_mdio_register
:
2092 clk_put(priv
->stmmac_clk
);
2094 unregister_netdev(ndev
);
2095 error_netdev_register
:
2096 netif_napi_del(&priv
->napi
);
2104 * @ndev: net device pointer
2105 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2106 * changes the link status, releases the DMA descriptor rings.
2108 int stmmac_dvr_remove(struct net_device
*ndev
)
2110 struct stmmac_priv
*priv
= netdev_priv(ndev
);
2112 pr_info("%s:\n\tremoving driver", __func__
);
2114 priv
->hw
->dma
->stop_rx(priv
->ioaddr
);
2115 priv
->hw
->dma
->stop_tx(priv
->ioaddr
);
2117 stmmac_set_mac(priv
->ioaddr
, false);
2118 stmmac_mdio_unregister(ndev
);
2119 netif_carrier_off(ndev
);
2120 unregister_netdev(ndev
);
2127 int stmmac_suspend(struct net_device
*ndev
)
2129 struct stmmac_priv
*priv
= netdev_priv(ndev
);
2131 unsigned long flags
;
2133 if (!ndev
|| !netif_running(ndev
))
2137 phy_stop(priv
->phydev
);
2139 spin_lock_irqsave(&priv
->lock
, flags
);
2141 netif_device_detach(ndev
);
2142 netif_stop_queue(ndev
);
2144 #ifdef CONFIG_STMMAC_TIMER
2145 priv
->tm
->timer_stop();
2146 if (likely(priv
->tm
->enable
))
2149 napi_disable(&priv
->napi
);
2151 /* Stop TX/RX DMA */
2152 priv
->hw
->dma
->stop_tx(priv
->ioaddr
);
2153 priv
->hw
->dma
->stop_rx(priv
->ioaddr
);
2154 /* Clear the Rx/Tx descriptors */
2155 priv
->hw
->desc
->init_rx_desc(priv
->dma_rx
, priv
->dma_rx_size
,
2157 priv
->hw
->desc
->init_tx_desc(priv
->dma_tx
, priv
->dma_tx_size
);
2159 /* Enable Power down mode by programming the PMT regs */
2160 if (device_may_wakeup(priv
->device
))
2161 priv
->hw
->mac
->pmt(priv
->ioaddr
, priv
->wolopts
);
2163 stmmac_set_mac(priv
->ioaddr
, false);
2164 /* Disable clock in case of PWM is off */
2165 clk_disable_unprepare(priv
->stmmac_clk
);
2167 spin_unlock_irqrestore(&priv
->lock
, flags
);
2171 int stmmac_resume(struct net_device
*ndev
)
2173 struct stmmac_priv
*priv
= netdev_priv(ndev
);
2174 unsigned long flags
;
2176 if (!netif_running(ndev
))
2179 spin_lock_irqsave(&priv
->lock
, flags
);
2181 /* Power Down bit, into the PM register, is cleared
2182 * automatically as soon as a magic packet or a Wake-up frame
2183 * is received. Anyway, it's better to manually clear
2184 * this bit because it can generate problems while resuming
2185 * from another devices (e.g. serial console). */
2186 if (device_may_wakeup(priv
->device
))
2187 priv
->hw
->mac
->pmt(priv
->ioaddr
, 0);
2189 /* enable the clk prevously disabled */
2190 clk_prepare_enable(priv
->stmmac_clk
);
2192 netif_device_attach(ndev
);
2194 /* Enable the MAC and DMA */
2195 stmmac_set_mac(priv
->ioaddr
, true);
2196 priv
->hw
->dma
->start_tx(priv
->ioaddr
);
2197 priv
->hw
->dma
->start_rx(priv
->ioaddr
);
2199 #ifdef CONFIG_STMMAC_TIMER
2200 if (likely(priv
->tm
->enable
))
2201 priv
->tm
->timer_start(tmrate
);
2203 napi_enable(&priv
->napi
);
2205 netif_start_queue(ndev
);
2207 spin_unlock_irqrestore(&priv
->lock
, flags
);
2210 phy_start(priv
->phydev
);
2215 int stmmac_freeze(struct net_device
*ndev
)
2217 if (!ndev
|| !netif_running(ndev
))
2220 return stmmac_release(ndev
);
2223 int stmmac_restore(struct net_device
*ndev
)
2225 if (!ndev
|| !netif_running(ndev
))
2228 return stmmac_open(ndev
);
2230 #endif /* CONFIG_PM */
2232 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2233 * depending on the configuration selected.
2235 static int __init
stmmac_init(void)
2240 err_plt
= stmmac_register_platform();
2241 err_pci
= stmmac_register_pci();
2243 if ((err_pci
) && (err_plt
)) {
2244 pr_err("stmmac: driver registration failed\n");
2251 static void __exit
stmmac_exit(void)
2253 stmmac_unregister_platform();
2254 stmmac_unregister_pci();
2257 module_init(stmmac_init
);
2258 module_exit(stmmac_exit
);
2261 static int __init
stmmac_cmdline_opt(char *str
)
2267 while ((opt
= strsep(&str
, ",")) != NULL
) {
2268 if (!strncmp(opt
, "debug:", 6)) {
2269 if (kstrtoint(opt
+ 6, 0, &debug
))
2271 } else if (!strncmp(opt
, "phyaddr:", 8)) {
2272 if (kstrtoint(opt
+ 8, 0, &phyaddr
))
2274 } else if (!strncmp(opt
, "dma_txsize:", 11)) {
2275 if (kstrtoint(opt
+ 11, 0, &dma_txsize
))
2277 } else if (!strncmp(opt
, "dma_rxsize:", 11)) {
2278 if (kstrtoint(opt
+ 11, 0, &dma_rxsize
))
2280 } else if (!strncmp(opt
, "buf_sz:", 7)) {
2281 if (kstrtoint(opt
+ 7, 0, &buf_sz
))
2283 } else if (!strncmp(opt
, "tc:", 3)) {
2284 if (kstrtoint(opt
+ 3, 0, &tc
))
2286 } else if (!strncmp(opt
, "watchdog:", 9)) {
2287 if (kstrtoint(opt
+ 9, 0, &watchdog
))
2289 } else if (!strncmp(opt
, "flow_ctrl:", 10)) {
2290 if (kstrtoint(opt
+ 10, 0, &flow_ctrl
))
2292 } else if (!strncmp(opt
, "pause:", 6)) {
2293 if (kstrtoint(opt
+ 6, 0, &pause
))
2295 } else if (!strncmp(opt
, "eee_timer:", 6)) {
2296 if (kstrtoint(opt
+ 10, 0, &eee_timer
))
2298 #ifdef CONFIG_STMMAC_TIMER
2299 } else if (!strncmp(opt
, "tmrate:", 7)) {
2300 if (kstrtoint(opt
+ 7, 0, &tmrate
))
2308 pr_err("%s: ERROR broken module parameter conversion", __func__
);
2312 __setup("stmmaceth=", stmmac_cmdline_opt
);
2315 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2316 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2317 MODULE_LICENSE("GPL");