1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
42 #include <linux/gfp.h>
45 #include <asm/byteorder.h>
46 #include <asm/uaccess.h>
50 #include <asm/idprom.h>
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/pci-bridge.h>
57 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h>
61 #include <linux/sungem_phy.h>
64 /* Stripping FCS is causing problems, disabled for now */
67 #define DEFAULT_MSG (NETIF_MSG_DRV | \
71 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 SUPPORTED_Pause | SUPPORTED_Autoneg)
76 #define DRV_NAME "sungem"
77 #define DRV_VERSION "1.0"
78 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
80 static char version
[] __devinitdata
=
81 DRV_NAME
".c:v" DRV_VERSION
" " DRV_AUTHOR
"\n";
83 MODULE_AUTHOR(DRV_AUTHOR
);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL");
87 #define GEM_MODULE_NAME "gem"
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
90 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
91 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
93 /* These models only differ from the original GEM in
94 * that their tx/rx fifos are of a different size and
95 * they only support 10/100 speeds. -DaveM
97 * Apple's GMAC does support gigabit on machines with
98 * the BCM54xx PHYs. -BenH
100 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
101 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
103 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
105 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
107 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
109 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
111 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
112 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
117 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
119 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
126 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
127 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
128 cmd
|= (MIF_FRAME_TAMSB
);
129 writel(cmd
, gp
->regs
+ MIF_FRAME
);
132 cmd
= readl(gp
->regs
+ MIF_FRAME
);
133 if (cmd
& MIF_FRAME_TALSB
)
142 return cmd
& MIF_FRAME_DATA
;
145 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
147 struct gem
*gp
= netdev_priv(dev
);
148 return __phy_read(gp
, mii_id
, reg
);
151 static inline u16
phy_read(struct gem
*gp
, int reg
)
153 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
156 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
163 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
164 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
165 cmd
|= (MIF_FRAME_TAMSB
);
166 cmd
|= (val
& MIF_FRAME_DATA
);
167 writel(cmd
, gp
->regs
+ MIF_FRAME
);
170 cmd
= readl(gp
->regs
+ MIF_FRAME
);
171 if (cmd
& MIF_FRAME_TALSB
)
178 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
180 struct gem
*gp
= netdev_priv(dev
);
181 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
184 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
186 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
189 static inline void gem_enable_ints(struct gem
*gp
)
191 /* Enable all interrupts but TXDONE */
192 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
195 static inline void gem_disable_ints(struct gem
*gp
)
197 /* Disable all interrupts, including TXDONE */
198 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
199 (void)readl(gp
->regs
+ GREG_IMASK
); /* write posting */
202 static void gem_get_cell(struct gem
*gp
)
204 BUG_ON(gp
->cell_enabled
< 0);
206 #ifdef CONFIG_PPC_PMAC
207 if (gp
->cell_enabled
== 1) {
209 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
212 #endif /* CONFIG_PPC_PMAC */
215 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem
*gp
)
218 BUG_ON(gp
->cell_enabled
<= 0);
220 #ifdef CONFIG_PPC_PMAC
221 if (gp
->cell_enabled
== 0) {
223 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
226 #endif /* CONFIG_PPC_PMAC */
229 static inline void gem_netif_stop(struct gem
*gp
)
231 gp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
232 napi_disable(&gp
->napi
);
233 netif_tx_disable(gp
->dev
);
236 static inline void gem_netif_start(struct gem
*gp
)
238 /* NOTE: unconditional netif_wake_queue is only
239 * appropriate so long as all callers are assured to
240 * have free tx slots.
242 netif_wake_queue(gp
->dev
);
243 napi_enable(&gp
->napi
);
246 static void gem_schedule_reset(struct gem
*gp
)
248 gp
->reset_task_pending
= 1;
249 schedule_work(&gp
->reset_task
);
252 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
254 if (netif_msg_intr(gp
))
255 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
258 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
260 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
263 if (netif_msg_intr(gp
))
264 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
265 gp
->dev
->name
, pcs_istat
);
267 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
268 netdev_err(dev
, "PCS irq but no link status change???\n");
272 /* The link status bit latches on zero, so you must
273 * read it twice in such a case to see a transition
274 * to the link being up.
276 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
277 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
279 (readl(gp
->regs
+ PCS_MIISTAT
) &
282 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
283 /* The remote-fault indication is only valid
284 * when autoneg has completed.
286 if (pcs_miistat
& PCS_MIISTAT_RF
)
287 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
289 netdev_info(dev
, "PCS AutoNEG complete\n");
292 if (pcs_miistat
& PCS_MIISTAT_LS
) {
293 netdev_info(dev
, "PCS link is now up\n");
294 netif_carrier_on(gp
->dev
);
296 netdev_info(dev
, "PCS link is now down\n");
297 netif_carrier_off(gp
->dev
);
298 /* If this happens and the link timer is not running,
299 * reset so we re-negotiate.
301 if (!timer_pending(&gp
->link_timer
))
308 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
310 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
312 if (netif_msg_intr(gp
))
313 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
314 gp
->dev
->name
, txmac_stat
);
316 /* Defer timer expiration is quite normal,
317 * don't even log the event.
319 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
320 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
323 if (txmac_stat
& MAC_TXSTAT_URUN
) {
324 netdev_err(dev
, "TX MAC xmit underrun\n");
325 dev
->stats
.tx_fifo_errors
++;
328 if (txmac_stat
& MAC_TXSTAT_MPE
) {
329 netdev_err(dev
, "TX MAC max packet size error\n");
330 dev
->stats
.tx_errors
++;
333 /* The rest are all cases of one of the 16-bit TX
336 if (txmac_stat
& MAC_TXSTAT_NCE
)
337 dev
->stats
.collisions
+= 0x10000;
339 if (txmac_stat
& MAC_TXSTAT_ECE
) {
340 dev
->stats
.tx_aborted_errors
+= 0x10000;
341 dev
->stats
.collisions
+= 0x10000;
344 if (txmac_stat
& MAC_TXSTAT_LCE
) {
345 dev
->stats
.tx_aborted_errors
+= 0x10000;
346 dev
->stats
.collisions
+= 0x10000;
349 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events.
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following.
358 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset.
361 static int gem_rxmac_reset(struct gem
*gp
)
363 struct net_device
*dev
= gp
->dev
;
368 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
370 for (limit
= 0; limit
< 5000; limit
++) {
371 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
376 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
380 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
381 gp
->regs
+ MAC_RXCFG
);
382 for (limit
= 0; limit
< 5000; limit
++) {
383 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
388 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
392 /* Second, disable RX DMA. */
393 writel(0, gp
->regs
+ RXDMA_CFG
);
394 for (limit
= 0; limit
< 5000; limit
++) {
395 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
400 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
406 /* Execute RX reset command. */
407 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
408 gp
->regs
+ GREG_SWRST
);
409 for (limit
= 0; limit
< 5000; limit
++) {
410 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
415 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
419 /* Refresh the RX ring. */
420 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
421 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
423 if (gp
->rx_skbs
[i
] == NULL
) {
424 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
428 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
430 gp
->rx_new
= gp
->rx_old
= 0;
432 /* Now we must reprogram the rest of RX unit. */
433 desc_dma
= (u64
) gp
->gblock_dvma
;
434 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
435 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
436 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
437 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
438 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
439 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
440 writel(val
, gp
->regs
+ RXDMA_CFG
);
441 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
442 writel(((5 & RXDMA_BLANK_IPKTS
) |
443 ((8 << 12) & RXDMA_BLANK_ITIME
)),
444 gp
->regs
+ RXDMA_BLANK
);
446 writel(((5 & RXDMA_BLANK_IPKTS
) |
447 ((4 << 12) & RXDMA_BLANK_ITIME
)),
448 gp
->regs
+ RXDMA_BLANK
);
449 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
450 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
451 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
452 val
= readl(gp
->regs
+ RXDMA_CFG
);
453 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
454 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
455 val
= readl(gp
->regs
+ MAC_RXCFG
);
456 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
461 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
463 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
466 if (netif_msg_intr(gp
))
467 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 gp
->dev
->name
, rxmac_stat
);
470 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
471 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
473 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
474 dev
->stats
.rx_over_errors
++;
475 dev
->stats
.rx_fifo_errors
++;
477 ret
= gem_rxmac_reset(gp
);
480 if (rxmac_stat
& MAC_RXSTAT_ACE
)
481 dev
->stats
.rx_frame_errors
+= 0x10000;
483 if (rxmac_stat
& MAC_RXSTAT_CCE
)
484 dev
->stats
.rx_crc_errors
+= 0x10000;
486 if (rxmac_stat
& MAC_RXSTAT_LCE
)
487 dev
->stats
.rx_length_errors
+= 0x10000;
489 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
495 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
497 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
499 if (netif_msg_intr(gp
))
500 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
501 gp
->dev
->name
, mac_cstat
);
503 /* This interrupt is just for pause frame and pause
504 * tracking. It is useful for diagnostics and debug
505 * but probably by default we will mask these events.
507 if (mac_cstat
& MAC_CSTAT_PS
)
510 if (mac_cstat
& MAC_CSTAT_PRCV
)
511 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
516 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
518 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
519 u32 reg_val
, changed_bits
;
521 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
522 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
524 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
529 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
531 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
533 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
534 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
535 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
537 if (pci_estat
& GREG_PCIESTAT_BADACK
)
538 pr_cont(" <No ACK64# during ABS64 cycle>");
539 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
540 pr_cont(" <Delayed transaction timeout>");
541 if (pci_estat
& GREG_PCIESTAT_OTHER
)
545 pci_estat
|= GREG_PCIESTAT_OTHER
;
546 netdev_err(dev
, "PCI error\n");
549 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
552 /* Interrogate PCI config space for the
555 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
557 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
559 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
560 netdev_err(dev
, "PCI parity error detected\n");
561 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
562 netdev_err(dev
, "PCI target abort\n");
563 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
564 netdev_err(dev
, "PCI master acks target abort\n");
565 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
566 netdev_err(dev
, "PCI master abort\n");
567 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
568 netdev_err(dev
, "PCI system error SERR#\n");
569 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
570 netdev_err(dev
, "PCI parity error\n");
572 /* Write the error bits back to clear them. */
573 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
574 PCI_STATUS_SIG_TARGET_ABORT
|
575 PCI_STATUS_REC_TARGET_ABORT
|
576 PCI_STATUS_REC_MASTER_ABORT
|
577 PCI_STATUS_SIG_SYSTEM_ERROR
|
578 PCI_STATUS_DETECTED_PARITY
);
579 pci_write_config_word(gp
->pdev
,
580 PCI_STATUS
, pci_cfg_stat
);
583 /* For all PCI errors, we should reset the chip. */
587 /* All non-normal interrupt conditions get serviced here.
588 * Returns non-zero if we should just exit the interrupt
589 * handler right now (ie. if we reset the card which invalidates
590 * all of the other original irq status bits).
592 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
594 if (gem_status
& GREG_STAT_RXNOBUF
) {
595 /* Frame arrived, no free RX buffers available. */
596 if (netif_msg_rx_err(gp
))
597 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
599 dev
->stats
.rx_dropped
++;
602 if (gem_status
& GREG_STAT_RXTAGERR
) {
603 /* corrupt RX tag framing */
604 if (netif_msg_rx_err(gp
))
605 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
607 dev
->stats
.rx_errors
++;
612 if (gem_status
& GREG_STAT_PCS
) {
613 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
617 if (gem_status
& GREG_STAT_TXMAC
) {
618 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
622 if (gem_status
& GREG_STAT_RXMAC
) {
623 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
627 if (gem_status
& GREG_STAT_MAC
) {
628 if (gem_mac_interrupt(dev
, gp
, gem_status
))
632 if (gem_status
& GREG_STAT_MIF
) {
633 if (gem_mif_interrupt(dev
, gp
, gem_status
))
637 if (gem_status
& GREG_STAT_PCIERR
) {
638 if (gem_pci_interrupt(dev
, gp
, gem_status
))
645 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
650 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
651 while (entry
!= limit
) {
658 if (netif_msg_tx_done(gp
))
659 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
660 gp
->dev
->name
, entry
);
661 skb
= gp
->tx_skbs
[entry
];
662 if (skb_shinfo(skb
)->nr_frags
) {
663 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
667 last
&= (TX_RING_SIZE
- 1);
669 walk
= NEXT_TX(walk
);
678 gp
->tx_skbs
[entry
] = NULL
;
679 dev
->stats
.tx_bytes
+= skb
->len
;
681 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
682 txd
= &gp
->init_block
->txd
[entry
];
684 dma_addr
= le64_to_cpu(txd
->buffer
);
685 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
687 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
688 entry
= NEXT_TX(entry
);
691 dev
->stats
.tx_packets
++;
696 /* Need to make the tx_old update visible to gem_start_xmit()
697 * before checking for netif_queue_stopped(). Without the
698 * memory barrier, there is a small possibility that gem_start_xmit()
699 * will miss it and cause the queue to be stopped forever.
703 if (unlikely(netif_queue_stopped(dev
) &&
704 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))) {
705 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
707 __netif_tx_lock(txq
, smp_processor_id());
708 if (netif_queue_stopped(dev
) &&
709 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
710 netif_wake_queue(dev
);
711 __netif_tx_unlock(txq
);
715 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
717 int cluster_start
, curr
, count
, kick
;
719 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
723 while (curr
!= limit
) {
724 curr
= NEXT_RX(curr
);
726 struct gem_rxd
*rxd
=
727 &gp
->init_block
->rxd
[cluster_start
];
729 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
731 cluster_start
= NEXT_RX(cluster_start
);
732 if (cluster_start
== curr
)
741 writel(kick
, gp
->regs
+ RXDMA_KICK
);
745 #define ALIGNED_RX_SKB_ADDR(addr) \
746 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__
struct sk_buff
*gem_alloc_skb(struct net_device
*dev
, int size
,
750 struct sk_buff
*skb
= alloc_skb(size
+ 64, gfp_flags
);
753 unsigned long offset
= ALIGNED_RX_SKB_ADDR(skb
->data
);
754 skb_reserve(skb
, offset
);
759 static int gem_rx(struct gem
*gp
, int work_to_do
)
761 struct net_device
*dev
= gp
->dev
;
762 int entry
, drops
, work_done
= 0;
766 if (netif_msg_rx_status(gp
))
767 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
768 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
772 done
= readl(gp
->regs
+ RXDMA_DONE
);
774 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
776 u64 status
= le64_to_cpu(rxd
->status_word
);
780 if ((status
& RXDCTRL_OWN
) != 0)
783 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
786 /* When writing back RX descriptor, GEM writes status
787 * then buffer address, possibly in separate transactions.
788 * If we don't wait for the chip to write both, we could
789 * post a new buffer to this descriptor then have GEM spam
790 * on the buffer address. We sync on the RX completion
791 * register to prevent this from happening.
794 done
= readl(gp
->regs
+ RXDMA_DONE
);
799 /* We can now account for the work we're about to do */
802 skb
= gp
->rx_skbs
[entry
];
804 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
805 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
806 dev
->stats
.rx_errors
++;
808 dev
->stats
.rx_length_errors
++;
809 if (len
& RXDCTRL_BAD
)
810 dev
->stats
.rx_crc_errors
++;
812 /* We'll just return it to GEM. */
814 dev
->stats
.rx_dropped
++;
818 dma_addr
= le64_to_cpu(rxd
->buffer
);
819 if (len
> RX_COPY_THRESHOLD
) {
820 struct sk_buff
*new_skb
;
822 new_skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
823 if (new_skb
== NULL
) {
827 pci_unmap_page(gp
->pdev
, dma_addr
,
828 RX_BUF_ALLOC_SIZE(gp
),
830 gp
->rx_skbs
[entry
] = new_skb
;
831 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
832 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
833 virt_to_page(new_skb
->data
),
834 offset_in_page(new_skb
->data
),
835 RX_BUF_ALLOC_SIZE(gp
),
836 PCI_DMA_FROMDEVICE
));
837 skb_reserve(new_skb
, RX_OFFSET
);
839 /* Trim the original skb for the netif. */
842 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
844 if (copy_skb
== NULL
) {
849 skb_reserve(copy_skb
, 2);
850 skb_put(copy_skb
, len
);
851 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
852 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
853 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
855 /* We'll reuse the original ring buffer. */
859 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
860 skb
->csum
= csum_unfold(csum
);
861 skb
->ip_summed
= CHECKSUM_COMPLETE
;
862 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
864 napi_gro_receive(&gp
->napi
, skb
);
866 dev
->stats
.rx_packets
++;
867 dev
->stats
.rx_bytes
+= len
;
870 entry
= NEXT_RX(entry
);
873 gem_post_rxds(gp
, entry
);
878 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
883 static int gem_poll(struct napi_struct
*napi
, int budget
)
885 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
886 struct net_device
*dev
= gp
->dev
;
891 /* Handle anomalies */
892 if (unlikely(gp
->status
& GREG_STAT_ABNORMAL
)) {
893 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
896 /* We run the abnormal interrupt handling code with
897 * the Tx lock. It only resets the Rx portion of the
898 * chip, but we need to guard it against DMA being
899 * restarted by the link poll timer
901 __netif_tx_lock(txq
, smp_processor_id());
902 reset
= gem_abnormal_irq(dev
, gp
, gp
->status
);
903 __netif_tx_unlock(txq
);
905 gem_schedule_reset(gp
);
911 /* Run TX completion thread */
912 gem_tx(dev
, gp
, gp
->status
);
914 /* Run RX thread. We don't use any locking here,
915 * code willing to do bad things - like cleaning the
916 * rx ring - must call napi_disable(), which
917 * schedule_timeout()'s if polling is already disabled.
919 work_done
+= gem_rx(gp
, budget
- work_done
);
921 if (work_done
>= budget
)
924 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
925 } while (gp
->status
& GREG_STAT_NAPI
);
933 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
935 struct net_device
*dev
= dev_id
;
936 struct gem
*gp
= netdev_priv(dev
);
938 if (napi_schedule_prep(&gp
->napi
)) {
939 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
941 if (unlikely(gem_status
== 0)) {
942 napi_enable(&gp
->napi
);
945 if (netif_msg_intr(gp
))
946 printk(KERN_DEBUG
"%s: gem_interrupt() gem_status: 0x%x\n",
947 gp
->dev
->name
, gem_status
);
949 gp
->status
= gem_status
;
950 gem_disable_ints(gp
);
951 __napi_schedule(&gp
->napi
);
954 /* If polling was disabled at the time we received that
955 * interrupt, we may return IRQ_HANDLED here while we
956 * should return IRQ_NONE. No big deal...
961 #ifdef CONFIG_NET_POLL_CONTROLLER
962 static void gem_poll_controller(struct net_device
*dev
)
964 struct gem
*gp
= netdev_priv(dev
);
966 disable_irq(gp
->pdev
->irq
);
967 gem_interrupt(gp
->pdev
->irq
, dev
);
968 enable_irq(gp
->pdev
->irq
);
972 static void gem_tx_timeout(struct net_device
*dev
)
974 struct gem
*gp
= netdev_priv(dev
);
976 netdev_err(dev
, "transmit timed out, resetting\n");
978 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
979 readl(gp
->regs
+ TXDMA_CFG
),
980 readl(gp
->regs
+ MAC_TXSTAT
),
981 readl(gp
->regs
+ MAC_TXCFG
));
982 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
983 readl(gp
->regs
+ RXDMA_CFG
),
984 readl(gp
->regs
+ MAC_RXSTAT
),
985 readl(gp
->regs
+ MAC_RXCFG
));
987 gem_schedule_reset(gp
);
990 static __inline__
int gem_intme(int entry
)
992 /* Algorithm: IRQ every 1/2 of descriptors. */
993 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
999 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
1000 struct net_device
*dev
)
1002 struct gem
*gp
= netdev_priv(dev
);
1007 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1008 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
1009 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1011 ctrl
= (TXDCTRL_CENAB
|
1012 (csum_start_off
<< 15) |
1013 (csum_stuff_off
<< 21));
1016 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1))) {
1017 /* This is a hard error, log it. */
1018 if (!netif_queue_stopped(dev
)) {
1019 netif_stop_queue(dev
);
1020 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1022 return NETDEV_TX_BUSY
;
1026 gp
->tx_skbs
[entry
] = skb
;
1028 if (skb_shinfo(skb
)->nr_frags
== 0) {
1029 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1034 mapping
= pci_map_page(gp
->pdev
,
1035 virt_to_page(skb
->data
),
1036 offset_in_page(skb
->data
),
1037 len
, PCI_DMA_TODEVICE
);
1038 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1039 if (gem_intme(entry
))
1040 ctrl
|= TXDCTRL_INTME
;
1041 txd
->buffer
= cpu_to_le64(mapping
);
1043 txd
->control_word
= cpu_to_le64(ctrl
);
1044 entry
= NEXT_TX(entry
);
1046 struct gem_txd
*txd
;
1049 dma_addr_t first_mapping
;
1050 int frag
, first_entry
= entry
;
1053 if (gem_intme(entry
))
1054 intme
|= TXDCTRL_INTME
;
1056 /* We must give this initial chunk to the device last.
1057 * Otherwise we could race with the device.
1059 first_len
= skb_headlen(skb
);
1060 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1061 offset_in_page(skb
->data
),
1062 first_len
, PCI_DMA_TODEVICE
);
1063 entry
= NEXT_TX(entry
);
1065 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1066 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1071 len
= skb_frag_size(this_frag
);
1072 mapping
= skb_frag_dma_map(&gp
->pdev
->dev
, this_frag
,
1073 0, len
, DMA_TO_DEVICE
);
1075 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1076 this_ctrl
|= TXDCTRL_EOF
;
1078 txd
= &gp
->init_block
->txd
[entry
];
1079 txd
->buffer
= cpu_to_le64(mapping
);
1081 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1083 if (gem_intme(entry
))
1084 intme
|= TXDCTRL_INTME
;
1086 entry
= NEXT_TX(entry
);
1088 txd
= &gp
->init_block
->txd
[first_entry
];
1089 txd
->buffer
= cpu_to_le64(first_mapping
);
1092 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1096 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))) {
1097 netif_stop_queue(dev
);
1099 /* netif_stop_queue() must be done before checking
1100 * checking tx index in TX_BUFFS_AVAIL() below, because
1101 * in gem_tx(), we update tx_old before checking for
1102 * netif_queue_stopped().
1105 if (TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
1106 netif_wake_queue(dev
);
1108 if (netif_msg_tx_queued(gp
))
1109 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1110 dev
->name
, entry
, skb
->len
);
1112 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1114 return NETDEV_TX_OK
;
1117 static void gem_pcs_reset(struct gem
*gp
)
1122 /* Reset PCS unit. */
1123 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1124 val
|= PCS_MIICTRL_RST
;
1125 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1128 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1134 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1137 static void gem_pcs_reinit_adv(struct gem
*gp
)
1141 /* Make sure PCS is disabled while changing advertisement
1144 val
= readl(gp
->regs
+ PCS_CFG
);
1145 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1146 writel(val
, gp
->regs
+ PCS_CFG
);
1148 /* Advertise all capabilities except asymmetric
1151 val
= readl(gp
->regs
+ PCS_MIIADV
);
1152 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1153 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1154 writel(val
, gp
->regs
+ PCS_MIIADV
);
1156 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1157 * and re-enable PCS.
1159 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1160 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1161 val
&= ~PCS_MIICTRL_WB
;
1162 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1164 val
= readl(gp
->regs
+ PCS_CFG
);
1165 val
|= PCS_CFG_ENABLE
;
1166 writel(val
, gp
->regs
+ PCS_CFG
);
1168 /* Make sure serialink loopback is off. The meaning
1169 * of this bit is logically inverted based upon whether
1170 * you are in Serialink or SERDES mode.
1172 val
= readl(gp
->regs
+ PCS_SCTRL
);
1173 if (gp
->phy_type
== phy_serialink
)
1174 val
&= ~PCS_SCTRL_LOOP
;
1176 val
|= PCS_SCTRL_LOOP
;
1177 writel(val
, gp
->regs
+ PCS_SCTRL
);
1180 #define STOP_TRIES 32
1182 static void gem_reset(struct gem
*gp
)
1187 /* Make sure we won't get any more interrupts */
1188 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1190 /* Reset the chip */
1191 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1192 gp
->regs
+ GREG_SWRST
);
1198 val
= readl(gp
->regs
+ GREG_SWRST
);
1201 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1204 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1206 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1207 gem_pcs_reinit_adv(gp
);
1210 static void gem_start_dma(struct gem
*gp
)
1214 /* We are ready to rock, turn everything on. */
1215 val
= readl(gp
->regs
+ TXDMA_CFG
);
1216 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1217 val
= readl(gp
->regs
+ RXDMA_CFG
);
1218 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1219 val
= readl(gp
->regs
+ MAC_TXCFG
);
1220 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1221 val
= readl(gp
->regs
+ MAC_RXCFG
);
1222 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1224 (void) readl(gp
->regs
+ MAC_RXCFG
);
1227 gem_enable_ints(gp
);
1229 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1232 /* DMA won't be actually stopped before about 4ms tho ...
1234 static void gem_stop_dma(struct gem
*gp
)
1238 /* We are done rocking, turn everything off. */
1239 val
= readl(gp
->regs
+ TXDMA_CFG
);
1240 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1241 val
= readl(gp
->regs
+ RXDMA_CFG
);
1242 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1243 val
= readl(gp
->regs
+ MAC_TXCFG
);
1244 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1245 val
= readl(gp
->regs
+ MAC_RXCFG
);
1246 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1248 (void) readl(gp
->regs
+ MAC_RXCFG
);
1250 /* Need to wait a bit ... done by the caller */
1254 // XXX dbl check what that function should do when called on PCS PHY
1255 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1257 u32 advertise
, features
;
1262 if (gp
->phy_type
!= phy_mii_mdio0
&&
1263 gp
->phy_type
!= phy_mii_mdio1
)
1266 /* Setup advertise */
1267 if (found_mii_phy(gp
))
1268 features
= gp
->phy_mii
.def
->features
;
1272 advertise
= features
& ADVERTISE_MASK
;
1273 if (gp
->phy_mii
.advertising
!= 0)
1274 advertise
&= gp
->phy_mii
.advertising
;
1276 autoneg
= gp
->want_autoneg
;
1277 speed
= gp
->phy_mii
.speed
;
1278 duplex
= gp
->phy_mii
.duplex
;
1280 /* Setup link parameters */
1283 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1284 advertise
= ep
->advertising
;
1288 speed
= ethtool_cmd_speed(ep
);
1289 duplex
= ep
->duplex
;
1293 /* Sanitize settings based on PHY capabilities */
1294 if ((features
& SUPPORTED_Autoneg
) == 0)
1296 if (speed
== SPEED_1000
&&
1297 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1299 if (speed
== SPEED_100
&&
1300 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1302 if (duplex
== DUPLEX_FULL
&&
1303 !(features
& (SUPPORTED_1000baseT_Full
|
1304 SUPPORTED_100baseT_Full
|
1305 SUPPORTED_10baseT_Full
)))
1306 duplex
= DUPLEX_HALF
;
1310 /* If we are asleep, we don't try to actually setup the PHY, we
1311 * just store the settings
1313 if (!netif_device_present(gp
->dev
)) {
1314 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1315 gp
->phy_mii
.speed
= speed
;
1316 gp
->phy_mii
.duplex
= duplex
;
1320 /* Configure PHY & start aneg */
1321 gp
->want_autoneg
= autoneg
;
1323 if (found_mii_phy(gp
))
1324 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1325 gp
->lstate
= link_aneg
;
1327 if (found_mii_phy(gp
))
1328 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1329 gp
->lstate
= link_force_ok
;
1333 gp
->timer_ticks
= 0;
1334 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1337 /* A link-up condition has occurred, initialize and enable the
1340 static int gem_set_link_modes(struct gem
*gp
)
1342 struct netdev_queue
*txq
= netdev_get_tx_queue(gp
->dev
, 0);
1343 int full_duplex
, speed
, pause
;
1350 if (found_mii_phy(gp
)) {
1351 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1353 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1354 speed
= gp
->phy_mii
.speed
;
1355 pause
= gp
->phy_mii
.pause
;
1356 } else if (gp
->phy_type
== phy_serialink
||
1357 gp
->phy_type
== phy_serdes
) {
1358 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1360 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1365 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1366 speed
, (full_duplex
? "full" : "half"));
1369 /* We take the tx queue lock to avoid collisions between
1370 * this code, the tx path and the NAPI-driven error path
1372 __netif_tx_lock(txq
, smp_processor_id());
1374 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1376 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1378 /* MAC_TXCFG_NBO must be zero. */
1380 writel(val
, gp
->regs
+ MAC_TXCFG
);
1382 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1384 (gp
->phy_type
== phy_mii_mdio0
||
1385 gp
->phy_type
== phy_mii_mdio1
)) {
1386 val
|= MAC_XIFCFG_DISE
;
1387 } else if (full_duplex
) {
1388 val
|= MAC_XIFCFG_FLED
;
1391 if (speed
== SPEED_1000
)
1392 val
|= (MAC_XIFCFG_GMII
);
1394 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1396 /* If gigabit and half-duplex, enable carrier extension
1397 * mode. Else, disable it.
1399 if (speed
== SPEED_1000
&& !full_duplex
) {
1400 val
= readl(gp
->regs
+ MAC_TXCFG
);
1401 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1403 val
= readl(gp
->regs
+ MAC_RXCFG
);
1404 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1406 val
= readl(gp
->regs
+ MAC_TXCFG
);
1407 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1409 val
= readl(gp
->regs
+ MAC_RXCFG
);
1410 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1413 if (gp
->phy_type
== phy_serialink
||
1414 gp
->phy_type
== phy_serdes
) {
1415 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1417 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1422 writel(512, gp
->regs
+ MAC_STIME
);
1424 writel(64, gp
->regs
+ MAC_STIME
);
1425 val
= readl(gp
->regs
+ MAC_MCCFG
);
1427 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1429 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1430 writel(val
, gp
->regs
+ MAC_MCCFG
);
1434 __netif_tx_unlock(txq
);
1436 if (netif_msg_link(gp
)) {
1438 netdev_info(gp
->dev
,
1439 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1444 netdev_info(gp
->dev
, "Pause is disabled\n");
1451 static int gem_mdio_link_not_up(struct gem
*gp
)
1453 switch (gp
->lstate
) {
1454 case link_force_ret
:
1455 netif_info(gp
, link
, gp
->dev
,
1456 "Autoneg failed again, keeping forced mode\n");
1457 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1458 gp
->last_forced_speed
, DUPLEX_HALF
);
1459 gp
->timer_ticks
= 5;
1460 gp
->lstate
= link_force_ok
;
1463 /* We try forced modes after a failed aneg only on PHYs that don't
1464 * have "magic_aneg" bit set, which means they internally do the
1465 * while forced-mode thingy. On these, we just restart aneg
1467 if (gp
->phy_mii
.def
->magic_aneg
)
1469 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1470 /* Try forced modes. */
1471 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1473 gp
->timer_ticks
= 5;
1474 gp
->lstate
= link_force_try
;
1476 case link_force_try
:
1477 /* Downgrade from 100 to 10 Mbps if necessary.
1478 * If already at 10Mbps, warn user about the
1479 * situation every 10 ticks.
1481 if (gp
->phy_mii
.speed
== SPEED_100
) {
1482 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1484 gp
->timer_ticks
= 5;
1485 netif_info(gp
, link
, gp
->dev
,
1486 "switching to forced 10bt\n");
1495 static void gem_link_timer(unsigned long data
)
1497 struct gem
*gp
= (struct gem
*) data
;
1498 struct net_device
*dev
= gp
->dev
;
1499 int restart_aneg
= 0;
1501 /* There's no point doing anything if we're going to be reset */
1502 if (gp
->reset_task_pending
)
1505 if (gp
->phy_type
== phy_serialink
||
1506 gp
->phy_type
== phy_serdes
) {
1507 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1509 if (!(val
& PCS_MIISTAT_LS
))
1510 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1512 if ((val
& PCS_MIISTAT_LS
) != 0) {
1513 if (gp
->lstate
== link_up
)
1516 gp
->lstate
= link_up
;
1517 netif_carrier_on(dev
);
1518 (void)gem_set_link_modes(gp
);
1522 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1523 /* Ok, here we got a link. If we had it due to a forced
1524 * fallback, and we were configured for autoneg, we do
1525 * retry a short autoneg pass. If you know your hub is
1526 * broken, use ethtool ;)
1528 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1529 gp
->lstate
= link_force_ret
;
1530 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1531 gp
->timer_ticks
= 5;
1532 if (netif_msg_link(gp
))
1534 "Got link after fallback, retrying autoneg once...\n");
1535 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1536 } else if (gp
->lstate
!= link_up
) {
1537 gp
->lstate
= link_up
;
1538 netif_carrier_on(dev
);
1539 if (gem_set_link_modes(gp
))
1543 /* If the link was previously up, we restart the
1546 if (gp
->lstate
== link_up
) {
1547 gp
->lstate
= link_down
;
1548 netif_info(gp
, link
, dev
, "Link down\n");
1549 netif_carrier_off(dev
);
1550 gem_schedule_reset(gp
);
1551 /* The reset task will restart the timer */
1553 } else if (++gp
->timer_ticks
> 10) {
1554 if (found_mii_phy(gp
))
1555 restart_aneg
= gem_mdio_link_not_up(gp
);
1561 gem_begin_auto_negotiation(gp
, NULL
);
1565 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1568 static void gem_clean_rings(struct gem
*gp
)
1570 struct gem_init_block
*gb
= gp
->init_block
;
1571 struct sk_buff
*skb
;
1573 dma_addr_t dma_addr
;
1575 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1576 struct gem_rxd
*rxd
;
1579 if (gp
->rx_skbs
[i
] != NULL
) {
1580 skb
= gp
->rx_skbs
[i
];
1581 dma_addr
= le64_to_cpu(rxd
->buffer
);
1582 pci_unmap_page(gp
->pdev
, dma_addr
,
1583 RX_BUF_ALLOC_SIZE(gp
),
1584 PCI_DMA_FROMDEVICE
);
1585 dev_kfree_skb_any(skb
);
1586 gp
->rx_skbs
[i
] = NULL
;
1588 rxd
->status_word
= 0;
1593 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1594 if (gp
->tx_skbs
[i
] != NULL
) {
1595 struct gem_txd
*txd
;
1598 skb
= gp
->tx_skbs
[i
];
1599 gp
->tx_skbs
[i
] = NULL
;
1601 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1602 int ent
= i
& (TX_RING_SIZE
- 1);
1604 txd
= &gb
->txd
[ent
];
1605 dma_addr
= le64_to_cpu(txd
->buffer
);
1606 pci_unmap_page(gp
->pdev
, dma_addr
,
1607 le64_to_cpu(txd
->control_word
) &
1608 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1610 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1613 dev_kfree_skb_any(skb
);
1618 static void gem_init_rings(struct gem
*gp
)
1620 struct gem_init_block
*gb
= gp
->init_block
;
1621 struct net_device
*dev
= gp
->dev
;
1623 dma_addr_t dma_addr
;
1625 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1627 gem_clean_rings(gp
);
1629 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1630 (unsigned)VLAN_ETH_FRAME_LEN
);
1632 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1633 struct sk_buff
*skb
;
1634 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1636 skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_KERNEL
);
1639 rxd
->status_word
= 0;
1643 gp
->rx_skbs
[i
] = skb
;
1644 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1645 dma_addr
= pci_map_page(gp
->pdev
,
1646 virt_to_page(skb
->data
),
1647 offset_in_page(skb
->data
),
1648 RX_BUF_ALLOC_SIZE(gp
),
1649 PCI_DMA_FROMDEVICE
);
1650 rxd
->buffer
= cpu_to_le64(dma_addr
);
1652 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1653 skb_reserve(skb
, RX_OFFSET
);
1656 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1657 struct gem_txd
*txd
= &gb
->txd
[i
];
1659 txd
->control_word
= 0;
1666 /* Init PHY interface and start link poll state machine */
1667 static void gem_init_phy(struct gem
*gp
)
1671 /* Revert MIF CFG setting done on stop_phy */
1672 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1673 mifcfg
&= ~MIF_CFG_BBMODE
;
1674 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1676 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1679 /* Those delay sucks, the HW seem to love them though, I'll
1680 * serisouly consider breaking some locks here to be able
1681 * to schedule instead
1683 for (i
= 0; i
< 3; i
++) {
1684 #ifdef CONFIG_PPC_PMAC
1685 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1688 /* Some PHYs used by apple have problem getting back to us,
1689 * we do an additional reset here
1691 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1693 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1696 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1700 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1701 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1704 /* Init datapath mode register. */
1705 if (gp
->phy_type
== phy_mii_mdio0
||
1706 gp
->phy_type
== phy_mii_mdio1
) {
1707 val
= PCS_DMODE_MGM
;
1708 } else if (gp
->phy_type
== phy_serialink
) {
1709 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1711 val
= PCS_DMODE_ESM
;
1714 writel(val
, gp
->regs
+ PCS_DMODE
);
1717 if (gp
->phy_type
== phy_mii_mdio0
||
1718 gp
->phy_type
== phy_mii_mdio1
) {
1719 /* Reset and detect MII PHY */
1720 sungem_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1723 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1724 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1727 gem_pcs_reinit_adv(gp
);
1730 /* Default aneg parameters */
1731 gp
->timer_ticks
= 0;
1732 gp
->lstate
= link_down
;
1733 netif_carrier_off(gp
->dev
);
1735 /* Print things out */
1736 if (gp
->phy_type
== phy_mii_mdio0
||
1737 gp
->phy_type
== phy_mii_mdio1
)
1738 netdev_info(gp
->dev
, "Found %s PHY\n",
1739 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
1741 gem_begin_auto_negotiation(gp
, NULL
);
1744 static void gem_init_dma(struct gem
*gp
)
1746 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1749 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1750 writel(val
, gp
->regs
+ TXDMA_CFG
);
1752 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1753 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1754 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1756 writel(0, gp
->regs
+ TXDMA_KICK
);
1758 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1759 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1760 writel(val
, gp
->regs
+ RXDMA_CFG
);
1762 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1763 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1765 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1767 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1768 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1769 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1771 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1772 writel(((5 & RXDMA_BLANK_IPKTS
) |
1773 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1774 gp
->regs
+ RXDMA_BLANK
);
1776 writel(((5 & RXDMA_BLANK_IPKTS
) |
1777 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1778 gp
->regs
+ RXDMA_BLANK
);
1781 static u32
gem_setup_multicast(struct gem
*gp
)
1786 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1787 (netdev_mc_count(gp
->dev
) > 256)) {
1788 for (i
=0; i
<16; i
++)
1789 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1790 rxcfg
|= MAC_RXCFG_HFE
;
1791 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1792 rxcfg
|= MAC_RXCFG_PROM
;
1796 struct netdev_hw_addr
*ha
;
1799 memset(hash_table
, 0, sizeof(hash_table
));
1800 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1801 crc
= ether_crc_le(6, ha
->addr
);
1803 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1805 for (i
=0; i
<16; i
++)
1806 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1807 rxcfg
|= MAC_RXCFG_HFE
;
1813 static void gem_init_mac(struct gem
*gp
)
1815 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1817 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1819 writel(0x00, gp
->regs
+ MAC_IPG0
);
1820 writel(0x08, gp
->regs
+ MAC_IPG1
);
1821 writel(0x04, gp
->regs
+ MAC_IPG2
);
1822 writel(0x40, gp
->regs
+ MAC_STIME
);
1823 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1825 /* Ethernet payload + header + FCS + optional VLAN tag. */
1826 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1828 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1829 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1830 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1831 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1833 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1835 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1836 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1837 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1839 writel(0, gp
->regs
+ MAC_ADDR3
);
1840 writel(0, gp
->regs
+ MAC_ADDR4
);
1841 writel(0, gp
->regs
+ MAC_ADDR5
);
1843 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1844 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1845 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1847 writel(0, gp
->regs
+ MAC_AFILT0
);
1848 writel(0, gp
->regs
+ MAC_AFILT1
);
1849 writel(0, gp
->regs
+ MAC_AFILT2
);
1850 writel(0, gp
->regs
+ MAC_AF21MSK
);
1851 writel(0, gp
->regs
+ MAC_AF0MSK
);
1853 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1855 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1857 writel(0, gp
->regs
+ MAC_NCOLL
);
1858 writel(0, gp
->regs
+ MAC_FASUCC
);
1859 writel(0, gp
->regs
+ MAC_ECOLL
);
1860 writel(0, gp
->regs
+ MAC_LCOLL
);
1861 writel(0, gp
->regs
+ MAC_DTIMER
);
1862 writel(0, gp
->regs
+ MAC_PATMPS
);
1863 writel(0, gp
->regs
+ MAC_RFCTR
);
1864 writel(0, gp
->regs
+ MAC_LERR
);
1865 writel(0, gp
->regs
+ MAC_AERR
);
1866 writel(0, gp
->regs
+ MAC_FCSERR
);
1867 writel(0, gp
->regs
+ MAC_RXCVERR
);
1869 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1870 * them once a link is established.
1872 writel(0, gp
->regs
+ MAC_TXCFG
);
1873 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1874 writel(0, gp
->regs
+ MAC_MCCFG
);
1875 writel(0, gp
->regs
+ MAC_XIFCFG
);
1877 /* Setup MAC interrupts. We want to get all of the interesting
1878 * counter expiration events, but we do not want to hear about
1879 * normal rx/tx as the DMA engine tells us that.
1881 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1882 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1884 /* Don't enable even the PAUSE interrupts for now, we
1885 * make no use of those events other than to record them.
1887 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1889 /* Don't enable GEM's WOL in normal operations
1892 writel(0, gp
->regs
+ WOL_WAKECSR
);
1895 static void gem_init_pause_thresholds(struct gem
*gp
)
1899 /* Calculate pause thresholds. Setting the OFF threshold to the
1900 * full RX fifo size effectively disables PAUSE generation which
1901 * is what we do for 10/100 only GEMs which have FIFOs too small
1902 * to make real gains from PAUSE.
1904 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1905 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1907 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1908 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1909 int on
= off
- max_frame
;
1911 gp
->rx_pause_off
= off
;
1912 gp
->rx_pause_on
= on
;
1916 /* Configure the chip "burst" DMA mode & enable some
1917 * HW bug fixes on Apple version
1920 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1921 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1922 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1923 cfg
|= GREG_CFG_IBURST
;
1925 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1926 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1927 writel(cfg
, gp
->regs
+ GREG_CFG
);
1929 /* If Infinite Burst didn't stick, then use different
1930 * thresholds (and Apple bug fixes don't exist)
1932 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1933 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1934 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1935 writel(cfg
, gp
->regs
+ GREG_CFG
);
1939 static int gem_check_invariants(struct gem
*gp
)
1941 struct pci_dev
*pdev
= gp
->pdev
;
1944 /* On Apple's sungem, we can't rely on registers as the chip
1945 * was been powered down by the firmware. The PHY is looked
1948 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1949 gp
->phy_type
= phy_mii_mdio0
;
1950 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1951 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1954 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1955 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1956 mif_cfg
|= MIF_CFG_MDI0
;
1957 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1958 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1959 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1961 /* We hard-code the PHY address so we can properly bring it out of
1962 * reset later on, we can't really probe it at this point, though
1963 * that isn't an issue.
1965 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1966 gp
->mii_phy_addr
= 1;
1968 gp
->mii_phy_addr
= 0;
1973 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1975 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1976 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1977 /* One of the MII PHYs _must_ be present
1978 * as this chip has no gigabit PHY.
1980 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1981 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1987 /* Determine initial PHY interface type guess. MDIO1 is the
1988 * external PHY and thus takes precedence over MDIO0.
1991 if (mif_cfg
& MIF_CFG_MDI1
) {
1992 gp
->phy_type
= phy_mii_mdio1
;
1993 mif_cfg
|= MIF_CFG_PSELECT
;
1994 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1995 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1996 gp
->phy_type
= phy_mii_mdio0
;
1997 mif_cfg
&= ~MIF_CFG_PSELECT
;
1998 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2003 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2004 if (p
&& !strcmp(p
, "serdes"))
2005 gp
->phy_type
= phy_serdes
;
2008 gp
->phy_type
= phy_serialink
;
2010 if (gp
->phy_type
== phy_mii_mdio1
||
2011 gp
->phy_type
== phy_mii_mdio0
) {
2014 for (i
= 0; i
< 32; i
++) {
2015 gp
->mii_phy_addr
= i
;
2016 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2020 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2021 pr_err("RIO MII phy will not respond\n");
2024 gp
->phy_type
= phy_serdes
;
2028 /* Fetch the FIFO configurations now too. */
2029 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2030 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2032 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2033 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2034 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2035 gp
->rx_fifo_sz
!= (20 * 1024)) {
2036 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2037 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2042 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2043 gp
->rx_fifo_sz
!= (2 * 1024)) {
2044 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2045 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2048 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2055 static void gem_reinit_chip(struct gem
*gp
)
2057 /* Reset the chip */
2060 /* Make sure ints are disabled */
2061 gem_disable_ints(gp
);
2063 /* Allocate & setup ring buffers */
2066 /* Configure pause thresholds */
2067 gem_init_pause_thresholds(gp
);
2069 /* Init DMA & MAC engines */
2075 static void gem_stop_phy(struct gem
*gp
, int wol
)
2079 /* Let the chip settle down a bit, it seems that helps
2080 * for sleep mode on some models
2084 /* Make sure we aren't polling PHY status change. We
2085 * don't currently use that feature though
2087 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2088 mifcfg
&= ~MIF_CFG_POLL
;
2089 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2091 if (wol
&& gp
->has_wol
) {
2092 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2095 /* Setup wake-on-lan for MAGIC packet */
2096 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2097 gp
->regs
+ MAC_RXCFG
);
2098 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2099 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2100 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2102 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2103 csr
= WOL_WAKECSR_ENABLE
;
2104 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2105 csr
|= WOL_WAKECSR_MII
;
2106 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2108 writel(0, gp
->regs
+ MAC_RXCFG
);
2109 (void)readl(gp
->regs
+ MAC_RXCFG
);
2110 /* Machine sleep will die in strange ways if we
2111 * dont wait a bit here, looks like the chip takes
2112 * some time to really shut down
2117 writel(0, gp
->regs
+ MAC_TXCFG
);
2118 writel(0, gp
->regs
+ MAC_XIFCFG
);
2119 writel(0, gp
->regs
+ TXDMA_CFG
);
2120 writel(0, gp
->regs
+ RXDMA_CFG
);
2124 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2125 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2127 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2128 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2130 /* According to Apple, we must set the MDIO pins to this begnign
2131 * state or we may 1) eat more current, 2) damage some PHYs
2133 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2134 writel(0, gp
->regs
+ MIF_BBCLK
);
2135 writel(0, gp
->regs
+ MIF_BBDATA
);
2136 writel(0, gp
->regs
+ MIF_BBOENAB
);
2137 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2138 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2142 static int gem_do_start(struct net_device
*dev
)
2144 struct gem
*gp
= netdev_priv(dev
);
2147 /* Enable the cell */
2150 /* Make sure PCI access and bus master are enabled */
2151 rc
= pci_enable_device(gp
->pdev
);
2153 netdev_err(dev
, "Failed to enable chip on PCI bus !\n");
2155 /* Put cell and forget it for now, it will be considered as
2156 * still asleep, a new sleep cycle may bring it back
2161 pci_set_master(gp
->pdev
);
2163 /* Init & setup chip hardware */
2164 gem_reinit_chip(gp
);
2166 /* An interrupt might come in handy */
2167 rc
= request_irq(gp
->pdev
->irq
, gem_interrupt
,
2168 IRQF_SHARED
, dev
->name
, (void *)dev
);
2170 netdev_err(dev
, "failed to request irq !\n");
2173 gem_clean_rings(gp
);
2178 /* Mark us as attached again if we come from resume(), this has
2179 * no effect if we weren't detatched and needs to be done now.
2181 netif_device_attach(dev
);
2183 /* Restart NAPI & queues */
2184 gem_netif_start(gp
);
2186 /* Detect & init PHY, start autoneg etc... this will
2187 * eventually result in starting DMA operations when
2195 static void gem_do_stop(struct net_device
*dev
, int wol
)
2197 struct gem
*gp
= netdev_priv(dev
);
2199 /* Stop NAPI and stop tx queue */
2202 /* Make sure ints are disabled. We don't care about
2203 * synchronizing as NAPI is disabled, thus a stray
2204 * interrupt will do nothing bad (our irq handler
2205 * just schedules NAPI)
2207 gem_disable_ints(gp
);
2209 /* Stop the link timer */
2210 del_timer_sync(&gp
->link_timer
);
2212 /* We cannot cancel the reset task while holding the
2213 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2214 * if we did. This is not an issue however as the reset
2215 * task is synchronized vs. us (rtnl_lock) and will do
2216 * nothing if the device is down or suspended. We do
2217 * still clear reset_task_pending to avoid a spurrious
2218 * reset later on in case we do resume before it gets
2221 gp
->reset_task_pending
= 0;
2223 /* If we are going to sleep with WOL */
2230 /* Get rid of rings */
2231 gem_clean_rings(gp
);
2233 /* No irq needed anymore */
2234 free_irq(gp
->pdev
->irq
, (void *) dev
);
2236 /* Shut the PHY down eventually and setup WOL */
2237 gem_stop_phy(gp
, wol
);
2239 /* Make sure bus master is disabled */
2240 pci_disable_device(gp
->pdev
);
2242 /* Cell not needed neither if no WOL */
2247 static void gem_reset_task(struct work_struct
*work
)
2249 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2251 /* Lock out the network stack (essentially shield ourselves
2252 * against a racing open, close, control call, or suspend
2256 /* Skip the reset task if suspended or closed, or if it's
2257 * been cancelled by gem_do_stop (see comment there)
2259 if (!netif_device_present(gp
->dev
) ||
2260 !netif_running(gp
->dev
) ||
2261 !gp
->reset_task_pending
) {
2266 /* Stop the link timer */
2267 del_timer_sync(&gp
->link_timer
);
2269 /* Stop NAPI and tx */
2272 /* Reset the chip & rings */
2273 gem_reinit_chip(gp
);
2274 if (gp
->lstate
== link_up
)
2275 gem_set_link_modes(gp
);
2277 /* Restart NAPI and Tx */
2278 gem_netif_start(gp
);
2281 gp
->reset_task_pending
= 0;
2283 /* If the link is not up, restart autoneg, else restart the
2286 if (gp
->lstate
!= link_up
)
2287 gem_begin_auto_negotiation(gp
, NULL
);
2289 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
2294 static int gem_open(struct net_device
*dev
)
2296 /* We allow open while suspended, we just do nothing,
2297 * the chip will be initialized in resume()
2299 if (netif_device_present(dev
))
2300 return gem_do_start(dev
);
2304 static int gem_close(struct net_device
*dev
)
2306 if (netif_device_present(dev
))
2307 gem_do_stop(dev
, 0);
2313 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2315 struct net_device
*dev
= pci_get_drvdata(pdev
);
2316 struct gem
*gp
= netdev_priv(dev
);
2318 /* Lock the network stack first to avoid racing with open/close,
2319 * reset task and setting calls
2323 /* Not running, mark ourselves non-present, no need for
2326 if (!netif_running(dev
)) {
2327 netif_device_detach(dev
);
2331 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2332 (gp
->wake_on_lan
&& netif_running(dev
)) ?
2333 "enabled" : "disabled");
2335 /* Tell the network stack we're gone. gem_do_stop() below will
2336 * synchronize with TX, stop NAPI etc...
2338 netif_device_detach(dev
);
2340 /* Switch off chip, remember WOL setting */
2341 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2342 gem_do_stop(dev
, gp
->asleep_wol
);
2344 /* Unlock the network stack */
2350 static int gem_resume(struct pci_dev
*pdev
)
2352 struct net_device
*dev
= pci_get_drvdata(pdev
);
2353 struct gem
*gp
= netdev_priv(dev
);
2355 /* See locking comment in gem_suspend */
2358 /* Not running, mark ourselves present, no need for
2361 if (!netif_running(dev
)) {
2362 netif_device_attach(dev
);
2367 /* Restart chip. If that fails there isn't much we can do, we
2368 * leave things stopped.
2372 /* If we had WOL enabled, the cell clock was never turned off during
2373 * sleep, so we end up beeing unbalanced. Fix that here
2378 /* Unlock the network stack */
2383 #endif /* CONFIG_PM */
2385 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2387 struct gem
*gp
= netdev_priv(dev
);
2389 /* I have seen this being called while the PM was in progress,
2390 * so we shield against this. Let's also not poke at registers
2391 * while the reset task is going on.
2393 * TODO: Move stats collection elsewhere (link timer ?) and
2394 * make this a nop to avoid all those synchro issues
2396 if (!netif_device_present(dev
) || !netif_running(dev
))
2399 /* Better safe than sorry... */
2400 if (WARN_ON(!gp
->cell_enabled
))
2403 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2404 writel(0, gp
->regs
+ MAC_FCSERR
);
2406 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2407 writel(0, gp
->regs
+ MAC_AERR
);
2409 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2410 writel(0, gp
->regs
+ MAC_LERR
);
2412 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2413 dev
->stats
.collisions
+=
2414 (readl(gp
->regs
+ MAC_ECOLL
) + readl(gp
->regs
+ MAC_LCOLL
));
2415 writel(0, gp
->regs
+ MAC_ECOLL
);
2416 writel(0, gp
->regs
+ MAC_LCOLL
);
2421 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2423 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2424 struct gem
*gp
= netdev_priv(dev
);
2425 unsigned char *e
= &dev
->dev_addr
[0];
2427 if (!is_valid_ether_addr(macaddr
->sa_data
))
2428 return -EADDRNOTAVAIL
;
2430 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2432 /* We'll just catch it later when the device is up'd or resumed */
2433 if (!netif_running(dev
) || !netif_device_present(dev
))
2436 /* Better safe than sorry... */
2437 if (WARN_ON(!gp
->cell_enabled
))
2440 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2441 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2442 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2447 static void gem_set_multicast(struct net_device
*dev
)
2449 struct gem
*gp
= netdev_priv(dev
);
2450 u32 rxcfg
, rxcfg_new
;
2453 if (!netif_running(dev
) || !netif_device_present(dev
))
2456 /* Better safe than sorry... */
2457 if (gp
->reset_task_pending
|| WARN_ON(!gp
->cell_enabled
))
2460 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2461 rxcfg_new
= gem_setup_multicast(gp
);
2463 rxcfg_new
|= MAC_RXCFG_SFCS
;
2465 gp
->mac_rx_cfg
= rxcfg_new
;
2467 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2468 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2474 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2477 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2480 /* Jumbo-grams don't seem to work :-( */
2481 #define GEM_MIN_MTU 68
2483 #define GEM_MAX_MTU 1500
2485 #define GEM_MAX_MTU 9000
2488 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2490 struct gem
*gp
= netdev_priv(dev
);
2492 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2497 /* We'll just catch it later when the device is up'd or resumed */
2498 if (!netif_running(dev
) || !netif_device_present(dev
))
2501 /* Better safe than sorry... */
2502 if (WARN_ON(!gp
->cell_enabled
))
2506 gem_reinit_chip(gp
);
2507 if (gp
->lstate
== link_up
)
2508 gem_set_link_modes(gp
);
2509 gem_netif_start(gp
);
2514 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2516 struct gem
*gp
= netdev_priv(dev
);
2518 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2519 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2520 strlcpy(info
->bus_info
, pci_name(gp
->pdev
), sizeof(info
->bus_info
));
2523 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2525 struct gem
*gp
= netdev_priv(dev
);
2527 if (gp
->phy_type
== phy_mii_mdio0
||
2528 gp
->phy_type
== phy_mii_mdio1
) {
2529 if (gp
->phy_mii
.def
)
2530 cmd
->supported
= gp
->phy_mii
.def
->features
;
2532 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2533 SUPPORTED_10baseT_Full
);
2535 /* XXX hardcoded stuff for now */
2536 cmd
->port
= PORT_MII
;
2537 cmd
->transceiver
= XCVR_EXTERNAL
;
2538 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2540 /* Return current PHY settings */
2541 cmd
->autoneg
= gp
->want_autoneg
;
2542 ethtool_cmd_speed_set(cmd
, gp
->phy_mii
.speed
);
2543 cmd
->duplex
= gp
->phy_mii
.duplex
;
2544 cmd
->advertising
= gp
->phy_mii
.advertising
;
2546 /* If we started with a forced mode, we don't have a default
2547 * advertise set, we need to return something sensible so
2548 * userland can re-enable autoneg properly.
2550 if (cmd
->advertising
== 0)
2551 cmd
->advertising
= cmd
->supported
;
2552 } else { // XXX PCS ?
2554 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2555 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2557 cmd
->advertising
= cmd
->supported
;
2558 ethtool_cmd_speed_set(cmd
, 0);
2559 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2560 cmd
->transceiver
= cmd
->autoneg
= 0;
2562 /* serdes means usually a Fibre connector, with most fixed */
2563 if (gp
->phy_type
== phy_serdes
) {
2564 cmd
->port
= PORT_FIBRE
;
2565 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2566 SUPPORTED_1000baseT_Full
|
2567 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2568 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2569 cmd
->advertising
= cmd
->supported
;
2570 cmd
->transceiver
= XCVR_INTERNAL
;
2571 if (gp
->lstate
== link_up
)
2572 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
2573 cmd
->duplex
= DUPLEX_FULL
;
2577 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2582 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2584 struct gem
*gp
= netdev_priv(dev
);
2585 u32 speed
= ethtool_cmd_speed(cmd
);
2587 /* Verify the settings we care about. */
2588 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2589 cmd
->autoneg
!= AUTONEG_DISABLE
)
2592 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2593 cmd
->advertising
== 0)
2596 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2597 ((speed
!= SPEED_1000
&&
2598 speed
!= SPEED_100
&&
2599 speed
!= SPEED_10
) ||
2600 (cmd
->duplex
!= DUPLEX_HALF
&&
2601 cmd
->duplex
!= DUPLEX_FULL
)))
2604 /* Apply settings and restart link process. */
2605 if (netif_device_present(gp
->dev
)) {
2606 del_timer_sync(&gp
->link_timer
);
2607 gem_begin_auto_negotiation(gp
, cmd
);
2613 static int gem_nway_reset(struct net_device
*dev
)
2615 struct gem
*gp
= netdev_priv(dev
);
2617 if (!gp
->want_autoneg
)
2620 /* Restart link process */
2621 if (netif_device_present(gp
->dev
)) {
2622 del_timer_sync(&gp
->link_timer
);
2623 gem_begin_auto_negotiation(gp
, NULL
);
2629 static u32
gem_get_msglevel(struct net_device
*dev
)
2631 struct gem
*gp
= netdev_priv(dev
);
2632 return gp
->msg_enable
;
2635 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2637 struct gem
*gp
= netdev_priv(dev
);
2638 gp
->msg_enable
= value
;
2642 /* Add more when I understand how to program the chip */
2643 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2645 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2647 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2649 struct gem
*gp
= netdev_priv(dev
);
2651 /* Add more when I understand how to program the chip */
2653 wol
->supported
= WOL_SUPPORTED_MASK
;
2654 wol
->wolopts
= gp
->wake_on_lan
;
2661 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2663 struct gem
*gp
= netdev_priv(dev
);
2667 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2671 static const struct ethtool_ops gem_ethtool_ops
= {
2672 .get_drvinfo
= gem_get_drvinfo
,
2673 .get_link
= ethtool_op_get_link
,
2674 .get_settings
= gem_get_settings
,
2675 .set_settings
= gem_set_settings
,
2676 .nway_reset
= gem_nway_reset
,
2677 .get_msglevel
= gem_get_msglevel
,
2678 .set_msglevel
= gem_set_msglevel
,
2679 .get_wol
= gem_get_wol
,
2680 .set_wol
= gem_set_wol
,
2683 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2685 struct gem
*gp
= netdev_priv(dev
);
2686 struct mii_ioctl_data
*data
= if_mii(ifr
);
2687 int rc
= -EOPNOTSUPP
;
2689 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2690 * netif_device_present() is true and holds rtnl_lock for us
2691 * so we have nothing to worry about
2695 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2696 data
->phy_id
= gp
->mii_phy_addr
;
2697 /* Fallthrough... */
2699 case SIOCGMIIREG
: /* Read MII PHY register. */
2700 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2701 data
->reg_num
& 0x1f);
2705 case SIOCSMIIREG
: /* Write MII PHY register. */
2706 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2714 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2715 /* Fetch MAC address from vital product data of PCI ROM. */
2716 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2720 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2721 void __iomem
*p
= rom_base
+ this_offset
;
2724 if (readb(p
+ 0) != 0x90 ||
2725 readb(p
+ 1) != 0x00 ||
2726 readb(p
+ 2) != 0x09 ||
2727 readb(p
+ 3) != 0x4e ||
2728 readb(p
+ 4) != 0x41 ||
2729 readb(p
+ 5) != 0x06)
2735 for (i
= 0; i
< 6; i
++)
2736 dev_addr
[i
] = readb(p
+ i
);
2742 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2745 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2750 found
= readb(p
) == 0x55 &&
2751 readb(p
+ 1) == 0xaa &&
2752 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2753 pci_unmap_rom(pdev
, p
);
2758 /* Sun MAC prefix then 3 random bytes. */
2762 get_random_bytes(dev_addr
+ 3, 3);
2764 #endif /* not Sparc and not PPC */
2766 static int __devinit
gem_get_device_address(struct gem
*gp
)
2768 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2769 struct net_device
*dev
= gp
->dev
;
2770 const unsigned char *addr
;
2772 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2775 addr
= idprom
->id_ethaddr
;
2778 pr_err("%s: can't get mac-address\n", dev
->name
);
2782 memcpy(dev
->dev_addr
, addr
, 6);
2784 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2789 static void gem_remove_one(struct pci_dev
*pdev
)
2791 struct net_device
*dev
= pci_get_drvdata(pdev
);
2794 struct gem
*gp
= netdev_priv(dev
);
2796 unregister_netdev(dev
);
2798 /* Ensure reset task is truely gone */
2799 cancel_work_sync(&gp
->reset_task
);
2801 /* Free resources */
2802 pci_free_consistent(pdev
,
2803 sizeof(struct gem_init_block
),
2807 pci_release_regions(pdev
);
2810 pci_set_drvdata(pdev
, NULL
);
2814 static const struct net_device_ops gem_netdev_ops
= {
2815 .ndo_open
= gem_open
,
2816 .ndo_stop
= gem_close
,
2817 .ndo_start_xmit
= gem_start_xmit
,
2818 .ndo_get_stats
= gem_get_stats
,
2819 .ndo_set_rx_mode
= gem_set_multicast
,
2820 .ndo_do_ioctl
= gem_ioctl
,
2821 .ndo_tx_timeout
= gem_tx_timeout
,
2822 .ndo_change_mtu
= gem_change_mtu
,
2823 .ndo_validate_addr
= eth_validate_addr
,
2824 .ndo_set_mac_address
= gem_set_mac_address
,
2825 #ifdef CONFIG_NET_POLL_CONTROLLER
2826 .ndo_poll_controller
= gem_poll_controller
,
2830 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2831 const struct pci_device_id
*ent
)
2833 unsigned long gemreg_base
, gemreg_len
;
2834 struct net_device
*dev
;
2836 int err
, pci_using_dac
;
2838 printk_once(KERN_INFO
"%s", version
);
2840 /* Apple gmac note: during probe, the chip is powered up by
2841 * the arch code to allow the code below to work (and to let
2842 * the chip be probed on the config space. It won't stay powered
2843 * up until the interface is brought up however, so we can't rely
2844 * on register configuration done at this point.
2846 err
= pci_enable_device(pdev
);
2848 pr_err("Cannot enable MMIO operation, aborting\n");
2851 pci_set_master(pdev
);
2853 /* Configure DMA attributes. */
2855 /* All of the GEM documentation states that 64-bit DMA addressing
2856 * is fully supported and should work just fine. However the
2857 * front end for RIO based GEMs is different and only supports
2858 * 32-bit addressing.
2860 * For now we assume the various PPC GEMs are 32-bit only as well.
2862 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2863 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2864 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2867 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2869 pr_err("No usable DMA configuration, aborting\n");
2870 goto err_disable_device
;
2875 gemreg_base
= pci_resource_start(pdev
, 0);
2876 gemreg_len
= pci_resource_len(pdev
, 0);
2878 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2879 pr_err("Cannot find proper PCI device base address, aborting\n");
2881 goto err_disable_device
;
2884 dev
= alloc_etherdev(sizeof(*gp
));
2887 goto err_disable_device
;
2889 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2891 gp
= netdev_priv(dev
);
2893 err
= pci_request_regions(pdev
, DRV_NAME
);
2895 pr_err("Cannot obtain PCI resources, aborting\n");
2896 goto err_out_free_netdev
;
2902 gp
->msg_enable
= DEFAULT_MSG
;
2904 init_timer(&gp
->link_timer
);
2905 gp
->link_timer
.function
= gem_link_timer
;
2906 gp
->link_timer
.data
= (unsigned long) gp
;
2908 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
2910 gp
->lstate
= link_down
;
2911 gp
->timer_ticks
= 0;
2912 netif_carrier_off(dev
);
2914 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
2916 pr_err("Cannot map device registers, aborting\n");
2918 goto err_out_free_res
;
2921 /* On Apple, we want a reference to the Open Firmware device-tree
2922 * node. We use it for clock control.
2924 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2925 gp
->of_node
= pci_device_to_OF_node(pdev
);
2928 /* Only Apple version supports WOL afaik */
2929 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2932 /* Make sure cell is enabled */
2935 /* Make sure everything is stopped and in init state */
2938 /* Fill up the mii_phy structure (even if we won't use it) */
2939 gp
->phy_mii
.dev
= dev
;
2940 gp
->phy_mii
.mdio_read
= _phy_read
;
2941 gp
->phy_mii
.mdio_write
= _phy_write
;
2942 #ifdef CONFIG_PPC_PMAC
2943 gp
->phy_mii
.platform_data
= gp
->of_node
;
2945 /* By default, we start with autoneg */
2946 gp
->want_autoneg
= 1;
2948 /* Check fifo sizes, PHY type, etc... */
2949 if (gem_check_invariants(gp
)) {
2951 goto err_out_iounmap
;
2954 /* It is guaranteed that the returned buffer will be at least
2955 * PAGE_SIZE aligned.
2957 gp
->init_block
= (struct gem_init_block
*)
2958 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2960 if (!gp
->init_block
) {
2961 pr_err("Cannot allocate init block, aborting\n");
2963 goto err_out_iounmap
;
2966 if (gem_get_device_address(gp
))
2967 goto err_out_free_consistent
;
2969 dev
->netdev_ops
= &gem_netdev_ops
;
2970 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
2971 dev
->ethtool_ops
= &gem_ethtool_ops
;
2972 dev
->watchdog_timeo
= 5 * HZ
;
2975 /* Set that now, in case PM kicks in now */
2976 pci_set_drvdata(pdev
, dev
);
2978 /* We can do scatter/gather and HW checksum */
2979 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2980 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2982 dev
->features
|= NETIF_F_HIGHDMA
;
2984 /* Register with kernel */
2985 if (register_netdev(dev
)) {
2986 pr_err("Cannot register net device, aborting\n");
2988 goto err_out_free_consistent
;
2991 /* Undo the get_cell with appropriate locking (we could use
2992 * ndo_init/uninit but that would be even more clumsy imho)
2998 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3002 err_out_free_consistent
:
3003 gem_remove_one(pdev
);
3009 pci_release_regions(pdev
);
3011 err_out_free_netdev
:
3014 pci_disable_device(pdev
);
3020 static struct pci_driver gem_driver
= {
3021 .name
= GEM_MODULE_NAME
,
3022 .id_table
= gem_pci_tbl
,
3023 .probe
= gem_init_one
,
3024 .remove
= gem_remove_one
,
3026 .suspend
= gem_suspend
,
3027 .resume
= gem_resume
,
3028 #endif /* CONFIG_PM */
3031 static int __init
gem_init(void)
3033 return pci_register_driver(&gem_driver
);
3036 static void __exit
gem_cleanup(void)
3038 pci_unregister_driver(&gem_driver
);
3041 module_init(gem_init
);
3042 module_exit(gem_cleanup
);