2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/ieee80211_radiotap.h>
61 #include <asm/unaligned.h>
70 #define CREATE_TRACE_POINTS
73 bool ath5k_modparam_nohwcrypt
;
74 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, S_IRUGO
);
75 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
77 static bool modparam_fastchanswitch
;
78 module_param_named(fastchanswitch
, modparam_fastchanswitch
, bool, S_IRUGO
);
79 MODULE_PARM_DESC(fastchanswitch
, "Enable fast channel switching for AR2413/AR5413 radios.");
81 static bool ath5k_modparam_no_hw_rfkill_switch
;
82 module_param_named(no_hw_rfkill_switch
, ath5k_modparam_no_hw_rfkill_switch
,
84 MODULE_PARM_DESC(no_hw_rfkill_switch
, "Ignore the GPIO RFKill switch state");
88 MODULE_AUTHOR("Jiri Slaby");
89 MODULE_AUTHOR("Nick Kossifidis");
90 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
91 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
92 MODULE_LICENSE("Dual BSD/GPL");
94 static int ath5k_init(struct ieee80211_hw
*hw
);
95 static int ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
99 static const struct ath5k_srev_name srev_names
[] = {
100 #ifdef CONFIG_ATHEROS_AR231X
101 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
102 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
103 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
104 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
105 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
106 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
107 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
109 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
110 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
111 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
112 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
113 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
114 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
115 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
116 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
117 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
118 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
119 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
120 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
121 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
122 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
123 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
124 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
125 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
126 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
128 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
129 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
130 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
131 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
132 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
133 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
134 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
135 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
136 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
137 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
138 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
139 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
140 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
141 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
142 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
143 #ifdef CONFIG_ATHEROS_AR231X
144 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
145 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
147 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
150 static const struct ieee80211_rate ath5k_rates
[] = {
152 .hw_value
= ATH5K_RATE_CODE_1M
, },
154 .hw_value
= ATH5K_RATE_CODE_2M
,
155 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
156 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
158 .hw_value
= ATH5K_RATE_CODE_5_5M
,
159 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
160 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
162 .hw_value
= ATH5K_RATE_CODE_11M
,
163 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
164 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
166 .hw_value
= ATH5K_RATE_CODE_6M
,
169 .hw_value
= ATH5K_RATE_CODE_9M
,
172 .hw_value
= ATH5K_RATE_CODE_12M
,
175 .hw_value
= ATH5K_RATE_CODE_18M
,
178 .hw_value
= ATH5K_RATE_CODE_24M
,
181 .hw_value
= ATH5K_RATE_CODE_36M
,
184 .hw_value
= ATH5K_RATE_CODE_48M
,
187 .hw_value
= ATH5K_RATE_CODE_54M
,
191 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
193 u64 tsf
= ath5k_hw_get_tsf64(ah
);
195 if ((tsf
& 0x7fff) < rstamp
)
198 return (tsf
& ~0x7fff) | rstamp
;
202 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
204 const char *name
= "xxxxx";
207 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
208 if (srev_names
[i
].sr_type
!= type
)
211 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
212 name
= srev_names
[i
].sr_name
;
214 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
215 name
= srev_names
[i
].sr_name
;
222 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
224 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
225 return ath5k_hw_reg_read(ah
, reg_offset
);
228 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
230 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
231 ath5k_hw_reg_write(ah
, val
, reg_offset
);
234 static const struct ath_ops ath5k_common_ops
= {
235 .read
= ath5k_ioread32
,
236 .write
= ath5k_iowrite32
,
239 /***********************\
240 * Driver Initialization *
241 \***********************/
243 static int ath5k_reg_notifier(struct wiphy
*wiphy
, struct regulatory_request
*request
)
245 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
246 struct ath5k_hw
*ah
= hw
->priv
;
247 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
249 return ath_reg_notifier_apply(wiphy
, request
, regulatory
);
252 /********************\
253 * Channel/mode setup *
254 \********************/
257 * Returns true for the channel numbers used.
259 #ifdef CONFIG_ATH5K_TEST_CHANNELS
260 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
266 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
268 if (band
== IEEE80211_BAND_2GHZ
&& chan
<= 14)
271 return /* UNII 1,2 */
272 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
274 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
276 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
277 /* 802.11j 5.030-5.080 GHz (20MHz) */
278 (chan
== 8 || chan
== 12 || chan
== 16) ||
279 /* 802.11j 4.9GHz (20MHz) */
280 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
285 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
286 unsigned int mode
, unsigned int max
)
288 unsigned int count
, size
, freq
, ch
;
289 enum ieee80211_band band
;
293 /* 1..220, but 2GHz frequencies are filtered by check_channel */
295 band
= IEEE80211_BAND_5GHZ
;
300 band
= IEEE80211_BAND_2GHZ
;
303 ATH5K_WARN(ah
, "bad mode, not copying channels\n");
308 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
309 freq
= ieee80211_channel_to_frequency(ch
, band
);
311 if (freq
== 0) /* mapping failed - not a standard channel */
314 /* Write channel info, needed for ath5k_channel_ok() */
315 channels
[count
].center_freq
= freq
;
316 channels
[count
].band
= band
;
317 channels
[count
].hw_value
= mode
;
319 /* Check if channel is supported by the chipset */
320 if (!ath5k_channel_ok(ah
, &channels
[count
]))
323 if (!ath5k_is_standard_channel(ch
, band
))
333 ath5k_setup_rate_idx(struct ath5k_hw
*ah
, struct ieee80211_supported_band
*b
)
337 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
338 ah
->rate_idx
[b
->band
][i
] = -1;
340 for (i
= 0; i
< b
->n_bitrates
; i
++) {
341 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
342 if (b
->bitrates
[i
].hw_value_short
)
343 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
348 ath5k_setup_bands(struct ieee80211_hw
*hw
)
350 struct ath5k_hw
*ah
= hw
->priv
;
351 struct ieee80211_supported_band
*sband
;
352 int max_c
, count_c
= 0;
355 BUILD_BUG_ON(ARRAY_SIZE(ah
->sbands
) < IEEE80211_NUM_BANDS
);
356 max_c
= ARRAY_SIZE(ah
->channels
);
359 sband
= &ah
->sbands
[IEEE80211_BAND_2GHZ
];
360 sband
->band
= IEEE80211_BAND_2GHZ
;
361 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_2GHZ
][0];
363 if (test_bit(AR5K_MODE_11G
, ah
->ah_capabilities
.cap_mode
)) {
365 memcpy(sband
->bitrates
, &ath5k_rates
[0],
366 sizeof(struct ieee80211_rate
) * 12);
367 sband
->n_bitrates
= 12;
369 sband
->channels
= ah
->channels
;
370 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
371 AR5K_MODE_11G
, max_c
);
373 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
374 count_c
= sband
->n_channels
;
376 } else if (test_bit(AR5K_MODE_11B
, ah
->ah_capabilities
.cap_mode
)) {
378 memcpy(sband
->bitrates
, &ath5k_rates
[0],
379 sizeof(struct ieee80211_rate
) * 4);
380 sband
->n_bitrates
= 4;
382 /* 5211 only supports B rates and uses 4bit rate codes
383 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
386 if (ah
->ah_version
== AR5K_AR5211
) {
387 for (i
= 0; i
< 4; i
++) {
388 sband
->bitrates
[i
].hw_value
=
389 sband
->bitrates
[i
].hw_value
& 0xF;
390 sband
->bitrates
[i
].hw_value_short
=
391 sband
->bitrates
[i
].hw_value_short
& 0xF;
395 sband
->channels
= ah
->channels
;
396 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
397 AR5K_MODE_11B
, max_c
);
399 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
400 count_c
= sband
->n_channels
;
403 ath5k_setup_rate_idx(ah
, sband
);
405 /* 5GHz band, A mode */
406 if (test_bit(AR5K_MODE_11A
, ah
->ah_capabilities
.cap_mode
)) {
407 sband
= &ah
->sbands
[IEEE80211_BAND_5GHZ
];
408 sband
->band
= IEEE80211_BAND_5GHZ
;
409 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_5GHZ
][0];
411 memcpy(sband
->bitrates
, &ath5k_rates
[4],
412 sizeof(struct ieee80211_rate
) * 8);
413 sband
->n_bitrates
= 8;
415 sband
->channels
= &ah
->channels
[count_c
];
416 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
417 AR5K_MODE_11A
, max_c
);
419 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
421 ath5k_setup_rate_idx(ah
, sband
);
423 ath5k_debug_dump_bands(ah
);
429 * Set/change channels. We always reset the chip.
430 * To accomplish this we must first cleanup any pending DMA,
431 * then restart stuff after a la ath5k_init.
433 * Called with ah->lock.
436 ath5k_chan_set(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
)
438 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
439 "channel set, resetting (%u -> %u MHz)\n",
440 ah
->curchan
->center_freq
, chan
->center_freq
);
443 * To switch channels clear any pending DMA operations;
444 * wait long enough for the RX fifo to drain, reset the
445 * hardware at the new frequency, and then re-enable
446 * the relevant bits of the h/w.
448 return ath5k_reset(ah
, chan
, true);
451 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
453 struct ath5k_vif_iter_data
*iter_data
= data
;
455 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
457 if (iter_data
->hw_macaddr
)
458 for (i
= 0; i
< ETH_ALEN
; i
++)
459 iter_data
->mask
[i
] &=
460 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
462 if (!iter_data
->found_active
) {
463 iter_data
->found_active
= true;
464 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
467 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
468 if (ether_addr_equal(iter_data
->hw_macaddr
, mac
))
469 iter_data
->need_set_hw_addr
= false;
471 if (!iter_data
->any_assoc
) {
473 iter_data
->any_assoc
= true;
476 /* Calculate combined mode - when APs are active, operate in AP mode.
477 * Otherwise use the mode of the new interface. This can currently
478 * only deal with combinations of APs and STAs. Only one ad-hoc
479 * interfaces is allowed.
481 if (avf
->opmode
== NL80211_IFTYPE_AP
)
482 iter_data
->opmode
= NL80211_IFTYPE_AP
;
484 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
486 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
487 iter_data
->opmode
= avf
->opmode
;
492 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw
*ah
,
493 struct ieee80211_vif
*vif
)
495 struct ath_common
*common
= ath5k_hw_common(ah
);
496 struct ath5k_vif_iter_data iter_data
;
500 * Use the hardware MAC address as reference, the hardware uses it
501 * together with the BSSID mask when matching addresses.
503 iter_data
.hw_macaddr
= common
->macaddr
;
504 memset(&iter_data
.mask
, 0xff, ETH_ALEN
);
505 iter_data
.found_active
= false;
506 iter_data
.need_set_hw_addr
= true;
507 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
508 iter_data
.n_stas
= 0;
511 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
513 /* Get list of all active MAC addresses */
514 ieee80211_iterate_active_interfaces_atomic(ah
->hw
, ath5k_vif_iter
,
516 memcpy(ah
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
518 ah
->opmode
= iter_data
.opmode
;
519 if (ah
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
520 /* Nothing active, default to station mode */
521 ah
->opmode
= NL80211_IFTYPE_STATION
;
523 ath5k_hw_set_opmode(ah
, ah
->opmode
);
524 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
525 ah
->opmode
, ath_opmode_to_string(ah
->opmode
));
527 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
528 ath5k_hw_set_lladdr(ah
, iter_data
.active_mac
);
530 if (ath5k_hw_hasbssidmask(ah
))
531 ath5k_hw_set_bssid_mask(ah
, ah
->bssidmask
);
533 /* Set up RX Filter */
534 if (iter_data
.n_stas
> 1) {
535 /* If you have multiple STA interfaces connected to
536 * different APs, ARPs are not received (most of the time?)
537 * Enabling PROMISC appears to fix that problem.
539 ah
->filter_flags
|= AR5K_RX_FILTER_PROM
;
542 rfilt
= ah
->filter_flags
;
543 ath5k_hw_set_rx_filter(ah
, rfilt
);
544 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
548 ath5k_hw_to_driver_rix(struct ath5k_hw
*ah
, int hw_rix
)
552 /* return base rate on errors */
553 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
554 "hw_rix out of bounds: %x\n", hw_rix
))
557 rix
= ah
->rate_idx
[ah
->curchan
->band
][hw_rix
];
558 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
569 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_hw
*ah
, dma_addr_t
*skb_addr
)
571 struct ath_common
*common
= ath5k_hw_common(ah
);
575 * Allocate buffer with headroom_needed space for the
576 * fake physical layer header at the start.
578 skb
= ath_rxbuf_alloc(common
,
583 ATH5K_ERR(ah
, "can't alloc skbuff of size %u\n",
588 *skb_addr
= dma_map_single(ah
->dev
,
589 skb
->data
, common
->rx_bufsize
,
592 if (unlikely(dma_mapping_error(ah
->dev
, *skb_addr
))) {
593 ATH5K_ERR(ah
, "%s: DMA mapping failed\n", __func__
);
601 ath5k_rxbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
603 struct sk_buff
*skb
= bf
->skb
;
604 struct ath5k_desc
*ds
;
608 skb
= ath5k_rx_skb_alloc(ah
, &bf
->skbaddr
);
615 * Setup descriptors. For receive we always terminate
616 * the descriptor list with a self-linked entry so we'll
617 * not get overrun under high load (as can happen with a
618 * 5212 when ANI processing enables PHY error frames).
620 * To ensure the last descriptor is self-linked we create
621 * each descriptor as self-linked and add it to the end. As
622 * each additional descriptor is added the previous self-linked
623 * entry is "fixed" naturally. This should be safe even
624 * if DMA is happening. When processing RX interrupts we
625 * never remove/process the last, self-linked, entry on the
626 * descriptor list. This ensures the hardware always has
627 * someplace to write a new frame.
630 ds
->ds_link
= bf
->daddr
; /* link to self */
631 ds
->ds_data
= bf
->skbaddr
;
632 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
634 ATH5K_ERR(ah
, "%s: could not setup RX desc\n", __func__
);
638 if (ah
->rxlink
!= NULL
)
639 *ah
->rxlink
= bf
->daddr
;
640 ah
->rxlink
= &ds
->ds_link
;
644 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
646 struct ieee80211_hdr
*hdr
;
647 enum ath5k_pkt_type htype
;
650 hdr
= (struct ieee80211_hdr
*)skb
->data
;
651 fc
= hdr
->frame_control
;
653 if (ieee80211_is_beacon(fc
))
654 htype
= AR5K_PKT_TYPE_BEACON
;
655 else if (ieee80211_is_probe_resp(fc
))
656 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
657 else if (ieee80211_is_atim(fc
))
658 htype
= AR5K_PKT_TYPE_ATIM
;
659 else if (ieee80211_is_pspoll(fc
))
660 htype
= AR5K_PKT_TYPE_PSPOLL
;
662 htype
= AR5K_PKT_TYPE_NORMAL
;
668 ath5k_txbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
,
669 struct ath5k_txq
*txq
, int padsize
)
671 struct ath5k_desc
*ds
= bf
->desc
;
672 struct sk_buff
*skb
= bf
->skb
;
673 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
674 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
675 struct ieee80211_rate
*rate
;
676 unsigned int mrr_rate
[3], mrr_tries
[3];
683 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
686 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
689 rate
= ieee80211_get_tx_rate(ah
->hw
, info
);
695 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
696 flags
|= AR5K_TXDESC_NOACK
;
698 rc_flags
= info
->control
.rates
[0].flags
;
699 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
700 rate
->hw_value_short
: rate
->hw_value
;
704 /* FIXME: If we are in g mode and rate is a CCK rate
705 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
706 * from tx power (value is in dB units already) */
707 if (info
->control
.hw_key
) {
708 keyidx
= info
->control
.hw_key
->hw_key_idx
;
709 pktlen
+= info
->control
.hw_key
->icv_len
;
711 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
712 flags
|= AR5K_TXDESC_RTSENA
;
713 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
714 duration
= le16_to_cpu(ieee80211_rts_duration(ah
->hw
,
715 info
->control
.vif
, pktlen
, info
));
717 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
718 flags
|= AR5K_TXDESC_CTSENA
;
719 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
720 duration
= le16_to_cpu(ieee80211_ctstoself_duration(ah
->hw
,
721 info
->control
.vif
, pktlen
, info
));
723 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
724 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
725 get_hw_packet_type(skb
),
726 (ah
->power_level
* 2),
728 info
->control
.rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
733 /* Set up MRR descriptor */
734 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
735 memset(mrr_rate
, 0, sizeof(mrr_rate
));
736 memset(mrr_tries
, 0, sizeof(mrr_tries
));
737 for (i
= 0; i
< 3; i
++) {
738 rate
= ieee80211_get_alt_retry_rate(ah
->hw
, info
, i
);
742 mrr_rate
[i
] = rate
->hw_value
;
743 mrr_tries
[i
] = info
->control
.rates
[i
+ 1].count
;
746 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
747 mrr_rate
[0], mrr_tries
[0],
748 mrr_rate
[1], mrr_tries
[1],
749 mrr_rate
[2], mrr_tries
[2]);
753 ds
->ds_data
= bf
->skbaddr
;
755 spin_lock_bh(&txq
->lock
);
756 list_add_tail(&bf
->list
, &txq
->q
);
758 if (txq
->link
== NULL
) /* is this first packet? */
759 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
760 else /* no, so only link it */
761 *txq
->link
= bf
->daddr
;
763 txq
->link
= &ds
->ds_link
;
764 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
766 spin_unlock_bh(&txq
->lock
);
770 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
774 /*******************\
775 * Descriptors setup *
776 \*******************/
779 ath5k_desc_alloc(struct ath5k_hw
*ah
)
781 struct ath5k_desc
*ds
;
782 struct ath5k_buf
*bf
;
787 /* allocate descriptors */
788 ah
->desc_len
= sizeof(struct ath5k_desc
) *
789 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
791 ah
->desc
= dma_alloc_coherent(ah
->dev
, ah
->desc_len
,
792 &ah
->desc_daddr
, GFP_KERNEL
);
793 if (ah
->desc
== NULL
) {
794 ATH5K_ERR(ah
, "can't allocate descriptors\n");
800 ATH5K_DBG(ah
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
801 ds
, ah
->desc_len
, (unsigned long long)ah
->desc_daddr
);
803 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
804 sizeof(struct ath5k_buf
), GFP_KERNEL
);
806 ATH5K_ERR(ah
, "can't allocate bufptr\n");
812 INIT_LIST_HEAD(&ah
->rxbuf
);
813 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
816 list_add_tail(&bf
->list
, &ah
->rxbuf
);
819 INIT_LIST_HEAD(&ah
->txbuf
);
820 ah
->txbuf_len
= ATH_TXBUF
;
821 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
824 list_add_tail(&bf
->list
, &ah
->txbuf
);
828 INIT_LIST_HEAD(&ah
->bcbuf
);
829 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
832 list_add_tail(&bf
->list
, &ah
->bcbuf
);
837 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
844 ath5k_txbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
849 dma_unmap_single(ah
->dev
, bf
->skbaddr
, bf
->skb
->len
,
851 dev_kfree_skb_any(bf
->skb
);
854 bf
->desc
->ds_data
= 0;
858 ath5k_rxbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
860 struct ath_common
*common
= ath5k_hw_common(ah
);
865 dma_unmap_single(ah
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
867 dev_kfree_skb_any(bf
->skb
);
870 bf
->desc
->ds_data
= 0;
874 ath5k_desc_free(struct ath5k_hw
*ah
)
876 struct ath5k_buf
*bf
;
878 list_for_each_entry(bf
, &ah
->txbuf
, list
)
879 ath5k_txbuf_free_skb(ah
, bf
);
880 list_for_each_entry(bf
, &ah
->rxbuf
, list
)
881 ath5k_rxbuf_free_skb(ah
, bf
);
882 list_for_each_entry(bf
, &ah
->bcbuf
, list
)
883 ath5k_txbuf_free_skb(ah
, bf
);
885 /* Free memory associated with all descriptors */
886 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
899 static struct ath5k_txq
*
900 ath5k_txq_setup(struct ath5k_hw
*ah
,
901 int qtype
, int subtype
)
903 struct ath5k_txq
*txq
;
904 struct ath5k_txq_info qi
= {
905 .tqi_subtype
= subtype
,
906 /* XXX: default values not correct for B and XR channels,
908 .tqi_aifs
= AR5K_TUNE_AIFS
,
909 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
910 .tqi_cw_max
= AR5K_TUNE_CWMAX
915 * Enable interrupts only for EOL and DESC conditions.
916 * We mark tx descriptors to receive a DESC interrupt
917 * when a tx queue gets deep; otherwise we wait for the
918 * EOL to reap descriptors. Note that this is done to
919 * reduce interrupt load and this only defers reaping
920 * descriptors, never transmitting frames. Aside from
921 * reducing interrupts this also permits more concurrency.
922 * The only potential downside is if the tx queue backs
923 * up in which case the top half of the kernel may backup
924 * due to a lack of tx descriptors.
926 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
927 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
928 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
931 * NB: don't print a message, this happens
932 * normally on parts with too few tx queues
934 return ERR_PTR(qnum
);
936 txq
= &ah
->txqs
[qnum
];
940 INIT_LIST_HEAD(&txq
->q
);
941 spin_lock_init(&txq
->lock
);
944 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
945 txq
->txq_poll_mark
= false;
948 return &ah
->txqs
[qnum
];
952 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
954 struct ath5k_txq_info qi
= {
955 /* XXX: default values not correct for B and XR channels,
957 .tqi_aifs
= AR5K_TUNE_AIFS
,
958 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
959 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
960 /* NB: for dynamic turbo, don't enable any other interrupts */
961 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
964 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
968 ath5k_beaconq_config(struct ath5k_hw
*ah
)
970 struct ath5k_txq_info qi
;
973 ret
= ath5k_hw_get_tx_queueprops(ah
, ah
->bhalq
, &qi
);
977 if (ah
->opmode
== NL80211_IFTYPE_AP
||
978 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
980 * Always burst out beacon and CAB traffic
981 * (aifs = cwmin = cwmax = 0)
986 } else if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
988 * Adhoc mode; backoff between 0 and (2 * cw_min).
992 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
995 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
996 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
997 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
999 ret
= ath5k_hw_set_tx_queueprops(ah
, ah
->bhalq
, &qi
);
1001 ATH5K_ERR(ah
, "%s: unable to update parameters for beacon "
1002 "hardware queue!\n", __func__
);
1005 ret
= ath5k_hw_reset_tx_queue(ah
, ah
->bhalq
); /* push to h/w */
1009 /* reconfigure cabq with ready time to 80% of beacon_interval */
1010 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1014 qi
.tqi_ready_time
= (ah
->bintval
* 80) / 100;
1015 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1019 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1025 * ath5k_drain_tx_buffs - Empty tx buffers
1027 * @ah The &struct ath5k_hw
1029 * Empty tx buffers from all queues in preparation
1030 * of a reset or during shutdown.
1032 * NB: this assumes output has been stopped and
1033 * we do not need to block ath5k_tx_tasklet
1036 ath5k_drain_tx_buffs(struct ath5k_hw
*ah
)
1038 struct ath5k_txq
*txq
;
1039 struct ath5k_buf
*bf
, *bf0
;
1042 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
1043 if (ah
->txqs
[i
].setup
) {
1045 spin_lock_bh(&txq
->lock
);
1046 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1047 ath5k_debug_printtxbuf(ah
, bf
);
1049 ath5k_txbuf_free_skb(ah
, bf
);
1051 spin_lock(&ah
->txbuflock
);
1052 list_move_tail(&bf
->list
, &ah
->txbuf
);
1055 spin_unlock(&ah
->txbuflock
);
1058 txq
->txq_poll_mark
= false;
1059 spin_unlock_bh(&txq
->lock
);
1065 ath5k_txq_release(struct ath5k_hw
*ah
)
1067 struct ath5k_txq
*txq
= ah
->txqs
;
1070 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++, txq
++)
1072 ath5k_hw_release_tx_queue(ah
, txq
->qnum
);
1083 * Enable the receive h/w following a reset.
1086 ath5k_rx_start(struct ath5k_hw
*ah
)
1088 struct ath_common
*common
= ath5k_hw_common(ah
);
1089 struct ath5k_buf
*bf
;
1092 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1094 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1095 common
->cachelsz
, common
->rx_bufsize
);
1097 spin_lock_bh(&ah
->rxbuflock
);
1099 list_for_each_entry(bf
, &ah
->rxbuf
, list
) {
1100 ret
= ath5k_rxbuf_setup(ah
, bf
);
1102 spin_unlock_bh(&ah
->rxbuflock
);
1106 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1107 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1108 spin_unlock_bh(&ah
->rxbuflock
);
1110 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1111 ath5k_update_bssid_mask_and_opmode(ah
, NULL
); /* set filters, etc. */
1112 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1120 * Disable the receive logic on PCU (DRU)
1121 * In preparation for a shutdown.
1123 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1127 ath5k_rx_stop(struct ath5k_hw
*ah
)
1130 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1131 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1133 ath5k_debug_printrxbuffs(ah
);
1137 ath5k_rx_decrypted(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1138 struct ath5k_rx_status
*rs
)
1140 struct ath_common
*common
= ath5k_hw_common(ah
);
1141 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1142 unsigned int keyix
, hlen
;
1144 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1145 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1146 return RX_FLAG_DECRYPTED
;
1148 /* Apparently when a default key is used to decrypt the packet
1149 the hw does not set the index used to decrypt. In such cases
1150 get the index from the packet. */
1151 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1152 if (ieee80211_has_protected(hdr
->frame_control
) &&
1153 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1154 skb
->len
>= hlen
+ 4) {
1155 keyix
= skb
->data
[hlen
+ 3] >> 6;
1157 if (test_bit(keyix
, common
->keymap
))
1158 return RX_FLAG_DECRYPTED
;
1166 ath5k_check_ibss_tsf(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1167 struct ieee80211_rx_status
*rxs
)
1169 struct ath_common
*common
= ath5k_hw_common(ah
);
1172 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1174 if (ieee80211_is_beacon(mgmt
->frame_control
) &&
1175 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1176 ether_addr_equal(mgmt
->bssid
, common
->curbssid
)) {
1178 * Received an IBSS beacon with the same BSSID. Hardware *must*
1179 * have updated the local TSF. We have to work around various
1180 * hardware bugs, though...
1182 tsf
= ath5k_hw_get_tsf64(ah
);
1183 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1184 hw_tu
= TSF_TO_TU(tsf
);
1186 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1187 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188 (unsigned long long)bc_tstamp
,
1189 (unsigned long long)rxs
->mactime
,
1190 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1191 (unsigned long long)tsf
);
1194 * Sometimes the HW will give us a wrong tstamp in the rx
1195 * status, causing the timestamp extension to go wrong.
1196 * (This seems to happen especially with beacon frames bigger
1197 * than 78 byte (incl. FCS))
1198 * But we know that the receive timestamp must be later than the
1199 * timestamp of the beacon since HW must have synced to that.
1201 * NOTE: here we assume mactime to be after the frame was
1202 * received, not like mac80211 which defines it at the start.
1204 if (bc_tstamp
> rxs
->mactime
) {
1205 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1206 "fixing mactime from %llx to %llx\n",
1207 (unsigned long long)rxs
->mactime
,
1208 (unsigned long long)tsf
);
1213 * Local TSF might have moved higher than our beacon timers,
1214 * in that case we have to update them to continue sending
1215 * beacons. This also takes care of synchronizing beacon sending
1216 * times with other stations.
1218 if (hw_tu
>= ah
->nexttbtt
)
1219 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1221 /* Check if the beacon timers are still correct, because a TSF
1222 * update might have created a window between them - for a
1223 * longer description see the comment of this function: */
1224 if (!ath5k_hw_check_beacon_timers(ah
, ah
->bintval
)) {
1225 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1226 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1227 "fixed beacon timers after beacon receive\n");
1233 ath5k_update_beacon_rssi(struct ath5k_hw
*ah
, struct sk_buff
*skb
, int rssi
)
1235 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1236 struct ath_common
*common
= ath5k_hw_common(ah
);
1238 /* only beacons from our BSSID */
1239 if (!ieee80211_is_beacon(mgmt
->frame_control
) ||
1240 !ether_addr_equal(mgmt
->bssid
, common
->curbssid
))
1243 ewma_add(&ah
->ah_beacon_rssi_avg
, rssi
);
1245 /* in IBSS mode we should keep RSSI statistics per neighbour */
1246 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1250 * Compute padding position. skb must contain an IEEE 802.11 frame
1252 static int ath5k_common_padpos(struct sk_buff
*skb
)
1254 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1255 __le16 frame_control
= hdr
->frame_control
;
1258 if (ieee80211_has_a4(frame_control
))
1261 if (ieee80211_is_data_qos(frame_control
))
1262 padpos
+= IEEE80211_QOS_CTL_LEN
;
1268 * This function expects an 802.11 frame and returns the number of
1269 * bytes added, or -1 if we don't have enough header room.
1271 static int ath5k_add_padding(struct sk_buff
*skb
)
1273 int padpos
= ath5k_common_padpos(skb
);
1274 int padsize
= padpos
& 3;
1276 if (padsize
&& skb
->len
> padpos
) {
1278 if (skb_headroom(skb
) < padsize
)
1281 skb_push(skb
, padsize
);
1282 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1290 * The MAC header is padded to have 32-bit boundary if the
1291 * packet payload is non-zero. The general calculation for
1292 * padsize would take into account odd header lengths:
1293 * padsize = 4 - (hdrlen & 3); however, since only
1294 * even-length headers are used, padding can only be 0 or 2
1295 * bytes and we can optimize this a bit. We must not try to
1296 * remove padding from short control frames that do not have a
1299 * This function expects an 802.11 frame and returns the number of
1302 static int ath5k_remove_padding(struct sk_buff
*skb
)
1304 int padpos
= ath5k_common_padpos(skb
);
1305 int padsize
= padpos
& 3;
1307 if (padsize
&& skb
->len
>= padpos
+ padsize
) {
1308 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1309 skb_pull(skb
, padsize
);
1317 ath5k_receive_frame(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1318 struct ath5k_rx_status
*rs
)
1320 struct ieee80211_rx_status
*rxs
;
1322 ath5k_remove_padding(skb
);
1324 rxs
= IEEE80211_SKB_RXCB(skb
);
1327 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1328 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1331 * always extend the mac timestamp, since this information is
1332 * also needed for proper IBSS merging.
1334 * XXX: it might be too late to do it here, since rs_tstamp is
1335 * 15bit only. that means TSF extension has to be done within
1336 * 32768usec (about 32ms). it might be necessary to move this to
1337 * the interrupt handler, like it is done in madwifi.
1339 * Unfortunately we don't know when the hardware takes the rx
1340 * timestamp (beginning of phy frame, data frame, end of rx?).
1341 * The only thing we know is that it is hardware specific...
1342 * On AR5213 it seems the rx timestamp is at the end of the
1343 * frame, but I'm not sure.
1345 * NOTE: mac80211 defines mactime at the beginning of the first
1346 * data symbol. Since we don't have any time references it's
1347 * impossible to comply to that. This affects IBSS merge only
1348 * right now, so it's not too bad...
1350 rxs
->mactime
= ath5k_extend_tsf(ah
, rs
->rs_tstamp
);
1351 rxs
->flag
|= RX_FLAG_MACTIME_MPDU
;
1353 rxs
->freq
= ah
->curchan
->center_freq
;
1354 rxs
->band
= ah
->curchan
->band
;
1356 rxs
->signal
= ah
->ah_noise_floor
+ rs
->rs_rssi
;
1358 rxs
->antenna
= rs
->rs_antenna
;
1360 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1361 ah
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1363 ah
->stats
.antenna_rx
[0]++; /* invalid */
1365 rxs
->rate_idx
= ath5k_hw_to_driver_rix(ah
, rs
->rs_rate
);
1366 rxs
->flag
|= ath5k_rx_decrypted(ah
, skb
, rs
);
1368 if (rxs
->rate_idx
>= 0 && rs
->rs_rate
==
1369 ah
->sbands
[ah
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1370 rxs
->flag
|= RX_FLAG_SHORTPRE
;
1372 trace_ath5k_rx(ah
, skb
);
1374 ath5k_update_beacon_rssi(ah
, skb
, rs
->rs_rssi
);
1376 /* check beacons in IBSS mode */
1377 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
)
1378 ath5k_check_ibss_tsf(ah
, skb
, rxs
);
1380 ieee80211_rx(ah
->hw
, skb
);
1383 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1385 * Check if we want to further process this frame or not. Also update
1386 * statistics. Return true if we want this frame, false if not.
1389 ath5k_receive_frame_ok(struct ath5k_hw
*ah
, struct ath5k_rx_status
*rs
)
1391 ah
->stats
.rx_all_count
++;
1392 ah
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1394 if (unlikely(rs
->rs_status
)) {
1395 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1396 ah
->stats
.rxerr_crc
++;
1397 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1398 ah
->stats
.rxerr_fifo
++;
1399 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1400 ah
->stats
.rxerr_phy
++;
1401 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1402 ah
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1405 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1407 * Decrypt error. If the error occurred
1408 * because there was no hardware key, then
1409 * let the frame through so the upper layers
1410 * can process it. This is necessary for 5210
1411 * parts which have no way to setup a ``clear''
1414 * XXX do key cache faulting
1416 ah
->stats
.rxerr_decrypt
++;
1417 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1418 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1421 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1422 ah
->stats
.rxerr_mic
++;
1426 /* reject any frames with non-crypto errors */
1427 if (rs
->rs_status
& ~(AR5K_RXERR_DECRYPT
))
1431 if (unlikely(rs
->rs_more
)) {
1432 ah
->stats
.rxerr_jumbo
++;
1439 ath5k_set_current_imask(struct ath5k_hw
*ah
)
1441 enum ath5k_int imask
;
1442 unsigned long flags
;
1444 spin_lock_irqsave(&ah
->irqlock
, flags
);
1447 imask
&= ~AR5K_INT_RX_ALL
;
1449 imask
&= ~AR5K_INT_TX_ALL
;
1450 ath5k_hw_set_imr(ah
, imask
);
1451 spin_unlock_irqrestore(&ah
->irqlock
, flags
);
1455 ath5k_tasklet_rx(unsigned long data
)
1457 struct ath5k_rx_status rs
= {};
1458 struct sk_buff
*skb
, *next_skb
;
1459 dma_addr_t next_skb_addr
;
1460 struct ath5k_hw
*ah
= (void *)data
;
1461 struct ath_common
*common
= ath5k_hw_common(ah
);
1462 struct ath5k_buf
*bf
;
1463 struct ath5k_desc
*ds
;
1466 spin_lock(&ah
->rxbuflock
);
1467 if (list_empty(&ah
->rxbuf
)) {
1468 ATH5K_WARN(ah
, "empty rx buf pool\n");
1472 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1473 BUG_ON(bf
->skb
== NULL
);
1477 /* bail if HW is still using self-linked descriptor */
1478 if (ath5k_hw_get_rxdp(ah
) == bf
->daddr
)
1481 ret
= ah
->ah_proc_rx_desc(ah
, ds
, &rs
);
1482 if (unlikely(ret
== -EINPROGRESS
))
1484 else if (unlikely(ret
)) {
1485 ATH5K_ERR(ah
, "error in processing rx descriptor\n");
1486 ah
->stats
.rxerr_proc
++;
1490 if (ath5k_receive_frame_ok(ah
, &rs
)) {
1491 next_skb
= ath5k_rx_skb_alloc(ah
, &next_skb_addr
);
1494 * If we can't replace bf->skb with a new skb under
1495 * memory pressure, just skip this packet
1500 dma_unmap_single(ah
->dev
, bf
->skbaddr
,
1504 skb_put(skb
, rs
.rs_datalen
);
1506 ath5k_receive_frame(ah
, skb
, &rs
);
1509 bf
->skbaddr
= next_skb_addr
;
1512 list_move_tail(&bf
->list
, &ah
->rxbuf
);
1513 } while (ath5k_rxbuf_setup(ah
, bf
) == 0);
1515 spin_unlock(&ah
->rxbuflock
);
1516 ah
->rx_pending
= false;
1517 ath5k_set_current_imask(ah
);
1526 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1527 struct ath5k_txq
*txq
)
1529 struct ath5k_hw
*ah
= hw
->priv
;
1530 struct ath5k_buf
*bf
;
1531 unsigned long flags
;
1534 trace_ath5k_tx(ah
, skb
, txq
);
1537 * The hardware expects the header padded to 4 byte boundaries.
1538 * If this is not the case, we add the padding after the header.
1540 padsize
= ath5k_add_padding(skb
);
1542 ATH5K_ERR(ah
, "tx hdrlen not %%4: not enough"
1543 " headroom to pad");
1547 if (txq
->txq_len
>= txq
->txq_max
&&
1548 txq
->qnum
<= AR5K_TX_QUEUE_ID_DATA_MAX
)
1549 ieee80211_stop_queue(hw
, txq
->qnum
);
1551 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1552 if (list_empty(&ah
->txbuf
)) {
1553 ATH5K_ERR(ah
, "no further txbuf available, dropping packet\n");
1554 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1555 ieee80211_stop_queues(hw
);
1558 bf
= list_first_entry(&ah
->txbuf
, struct ath5k_buf
, list
);
1559 list_del(&bf
->list
);
1561 if (list_empty(&ah
->txbuf
))
1562 ieee80211_stop_queues(hw
);
1563 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1567 if (ath5k_txbuf_setup(ah
, bf
, txq
, padsize
)) {
1569 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1570 list_add_tail(&bf
->list
, &ah
->txbuf
);
1572 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1578 dev_kfree_skb_any(skb
);
1582 ath5k_tx_frame_completed(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1583 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
)
1585 struct ieee80211_tx_info
*info
;
1589 ah
->stats
.tx_all_count
++;
1590 ah
->stats
.tx_bytes_count
+= skb
->len
;
1591 info
= IEEE80211_SKB_CB(skb
);
1593 tries
[0] = info
->status
.rates
[0].count
;
1594 tries
[1] = info
->status
.rates
[1].count
;
1595 tries
[2] = info
->status
.rates
[2].count
;
1597 ieee80211_tx_info_clear_status(info
);
1599 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1600 struct ieee80211_tx_rate
*r
=
1601 &info
->status
.rates
[i
];
1603 r
->count
= tries
[i
];
1606 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1607 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1609 if (unlikely(ts
->ts_status
)) {
1610 ah
->stats
.ack_fail
++;
1611 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1612 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1613 ah
->stats
.txerr_filt
++;
1615 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1616 ah
->stats
.txerr_retry
++;
1617 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1618 ah
->stats
.txerr_fifo
++;
1620 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1621 info
->status
.ack_signal
= ts
->ts_rssi
;
1623 /* count the successful attempt as well */
1624 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1628 * Remove MAC header padding before giving the frame
1631 ath5k_remove_padding(skb
);
1633 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1634 ah
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1636 ah
->stats
.antenna_tx
[0]++; /* invalid */
1638 trace_ath5k_tx_complete(ah
, skb
, txq
, ts
);
1639 ieee80211_tx_status(ah
->hw
, skb
);
1643 ath5k_tx_processq(struct ath5k_hw
*ah
, struct ath5k_txq
*txq
)
1645 struct ath5k_tx_status ts
= {};
1646 struct ath5k_buf
*bf
, *bf0
;
1647 struct ath5k_desc
*ds
;
1648 struct sk_buff
*skb
;
1651 spin_lock(&txq
->lock
);
1652 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1654 txq
->txq_poll_mark
= false;
1656 /* skb might already have been processed last time. */
1657 if (bf
->skb
!= NULL
) {
1660 ret
= ah
->ah_proc_tx_desc(ah
, ds
, &ts
);
1661 if (unlikely(ret
== -EINPROGRESS
))
1663 else if (unlikely(ret
)) {
1665 "error %d while processing "
1666 "queue %u\n", ret
, txq
->qnum
);
1673 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
,
1675 ath5k_tx_frame_completed(ah
, skb
, txq
, &ts
);
1679 * It's possible that the hardware can say the buffer is
1680 * completed when it hasn't yet loaded the ds_link from
1681 * host memory and moved on.
1682 * Always keep the last descriptor to avoid HW races...
1684 if (ath5k_hw_get_txdp(ah
, txq
->qnum
) != bf
->daddr
) {
1685 spin_lock(&ah
->txbuflock
);
1686 list_move_tail(&bf
->list
, &ah
->txbuf
);
1689 spin_unlock(&ah
->txbuflock
);
1692 spin_unlock(&txq
->lock
);
1693 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1694 ieee80211_wake_queue(ah
->hw
, txq
->qnum
);
1698 ath5k_tasklet_tx(unsigned long data
)
1701 struct ath5k_hw
*ah
= (void *)data
;
1703 for (i
= 0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1704 if (ah
->txqs
[i
].setup
&& (ah
->ah_txq_isr_txok_all
& BIT(i
)))
1705 ath5k_tx_processq(ah
, &ah
->txqs
[i
]);
1707 ah
->tx_pending
= false;
1708 ath5k_set_current_imask(ah
);
1717 * Setup the beacon frame for transmit.
1720 ath5k_beacon_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
1722 struct sk_buff
*skb
= bf
->skb
;
1723 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1724 struct ath5k_desc
*ds
;
1728 const int padsize
= 0;
1730 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
1732 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1733 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1734 (unsigned long long)bf
->skbaddr
);
1736 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
)) {
1737 ATH5K_ERR(ah
, "beacon DMA mapping failed\n");
1738 dev_kfree_skb_any(skb
);
1744 antenna
= ah
->ah_tx_ant
;
1746 flags
= AR5K_TXDESC_NOACK
;
1747 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1748 ds
->ds_link
= bf
->daddr
; /* self-linked */
1749 flags
|= AR5K_TXDESC_VEOL
;
1754 * If we use multiple antennas on AP and use
1755 * the Sectored AP scenario, switch antenna every
1756 * 4 beacons to make sure everybody hears our AP.
1757 * When a client tries to associate, hw will keep
1758 * track of the tx antenna to be used for this client
1759 * automatically, based on ACKed packets.
1761 * Note: AP still listens and transmits RTS on the
1762 * default antenna which is supposed to be an omni.
1764 * Note2: On sectored scenarios it's possible to have
1765 * multiple antennas (1 omni -- the default -- and 14
1766 * sectors), so if we choose to actually support this
1767 * mode, we need to allow the user to set how many antennas
1768 * we have and tweak the code below to send beacons
1771 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1772 antenna
= ah
->bsent
& 4 ? 2 : 1;
1775 /* FIXME: If we are in g mode and rate is a CCK rate
1776 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777 * from tx power (value is in dB units already) */
1778 ds
->ds_data
= bf
->skbaddr
;
1779 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1780 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1781 AR5K_PKT_TYPE_BEACON
, (ah
->power_level
* 2),
1782 ieee80211_get_tx_rate(ah
->hw
, info
)->hw_value
,
1783 1, AR5K_TXKEYIX_INVALID
,
1784 antenna
, flags
, 0, 0);
1790 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1795 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1796 * this is called only once at config_bss time, for AP we do it every
1797 * SWBA interrupt so that the TIM will reflect buffered frames.
1799 * Called with the beacon lock.
1802 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1805 struct ath5k_hw
*ah
= hw
->priv
;
1806 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
1807 struct sk_buff
*skb
;
1809 if (WARN_ON(!vif
)) {
1814 skb
= ieee80211_beacon_get(hw
, vif
);
1821 ath5k_txbuf_free_skb(ah
, avf
->bbuf
);
1822 avf
->bbuf
->skb
= skb
;
1823 ret
= ath5k_beacon_setup(ah
, avf
->bbuf
);
1829 * Transmit a beacon frame at SWBA. Dynamic updates to the
1830 * frame contents are done as needed and the slot time is
1831 * also adjusted based on current state.
1833 * This is called from software irq context (beacontq tasklets)
1834 * or user context from ath5k_beacon_config.
1837 ath5k_beacon_send(struct ath5k_hw
*ah
)
1839 struct ieee80211_vif
*vif
;
1840 struct ath5k_vif
*avf
;
1841 struct ath5k_buf
*bf
;
1842 struct sk_buff
*skb
;
1845 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1848 * Check if the previous beacon has gone out. If
1849 * not, don't don't try to post another: skip this
1850 * period and wait for the next. Missed beacons
1851 * indicate a problem and should not occur. If we
1852 * miss too many consecutive beacons reset the device.
1854 if (unlikely(ath5k_hw_num_tx_pending(ah
, ah
->bhalq
) != 0)) {
1856 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1857 "missed %u consecutive beacons\n", ah
->bmisscount
);
1858 if (ah
->bmisscount
> 10) { /* NB: 10 is a guess */
1859 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1860 "stuck beacon time (%u missed)\n",
1862 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1863 "stuck beacon, resetting\n");
1864 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
1868 if (unlikely(ah
->bmisscount
!= 0)) {
1869 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1870 "resume beacon xmit after %u misses\n",
1875 if ((ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
+
1876 ah
->num_mesh_vifs
> 1) ||
1877 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1878 u64 tsf
= ath5k_hw_get_tsf64(ah
);
1879 u32 tsftu
= TSF_TO_TU(tsf
);
1880 int slot
= ((tsftu
% ah
->bintval
) * ATH_BCBUF
) / ah
->bintval
;
1881 vif
= ah
->bslot
[(slot
+ 1) % ATH_BCBUF
];
1882 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1883 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1884 (unsigned long long)tsf
, tsftu
, ah
->bintval
, slot
, vif
);
1885 } else /* only one interface */
1891 avf
= (void *)vif
->drv_priv
;
1895 * Stop any current dma and put the new frame on the queue.
1896 * This should never fail since we check above that no frames
1897 * are still pending on the queue.
1899 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
))) {
1900 ATH5K_WARN(ah
, "beacon queue %u didn't start/stop ?\n", ah
->bhalq
);
1901 /* NB: hw still stops DMA, so proceed */
1904 /* refresh the beacon for AP or MESH mode */
1905 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1906 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1907 err
= ath5k_beacon_update(ah
->hw
, vif
);
1912 if (unlikely(bf
->skb
== NULL
|| ah
->opmode
== NL80211_IFTYPE_STATION
||
1913 ah
->opmode
== NL80211_IFTYPE_MONITOR
)) {
1914 ATH5K_WARN(ah
, "bf=%p bf_skb=%p\n", bf
, bf
->skb
);
1918 trace_ath5k_tx(ah
, bf
->skb
, &ah
->txqs
[ah
->bhalq
]);
1920 ath5k_hw_set_txdp(ah
, ah
->bhalq
, bf
->daddr
);
1921 ath5k_hw_start_tx_dma(ah
, ah
->bhalq
);
1922 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
1923 ah
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
1925 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1927 ath5k_tx_queue(ah
->hw
, skb
, ah
->cabq
);
1929 if (ah
->cabq
->txq_len
>= ah
->cabq
->txq_max
)
1932 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1939 * ath5k_beacon_update_timers - update beacon timers
1941 * @ah: struct ath5k_hw pointer we are operating on
1942 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1943 * beacon timer update based on the current HW TSF.
1945 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1946 * of a received beacon or the current local hardware TSF and write it to the
1947 * beacon timer registers.
1949 * This is called in a variety of situations, e.g. when a beacon is received,
1950 * when a TSF update has been detected, but also when an new IBSS is created or
1951 * when we otherwise know we have to update the timers, but we keep it in this
1952 * function to have it all together in one place.
1955 ath5k_beacon_update_timers(struct ath5k_hw
*ah
, u64 bc_tsf
)
1957 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
1960 intval
= ah
->bintval
& AR5K_BEACON_PERIOD
;
1961 if (ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
1962 + ah
->num_mesh_vifs
> 1) {
1963 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
1965 ATH5K_WARN(ah
, "intval %u is too low, min 15\n",
1968 if (WARN_ON(!intval
))
1971 /* beacon TSF converted to TU */
1972 bc_tu
= TSF_TO_TU(bc_tsf
);
1974 /* current TSF converted to TU */
1975 hw_tsf
= ath5k_hw_get_tsf64(ah
);
1976 hw_tu
= TSF_TO_TU(hw_tsf
);
1978 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1979 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1980 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1981 * configuration we need to make sure it is bigger than that. */
1985 * no beacons received, called internally.
1986 * just need to refresh timers based on HW TSF.
1988 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
1989 } else if (bc_tsf
== 0) {
1991 * no beacon received, probably called by ath5k_reset_tsf().
1992 * reset TSF to start with 0.
1995 intval
|= AR5K_BEACON_RESET_TSF
;
1996 } else if (bc_tsf
> hw_tsf
) {
1998 * beacon received, SW merge happened but HW TSF not yet updated.
1999 * not possible to reconfigure timers yet, but next time we
2000 * receive a beacon with the same BSSID, the hardware will
2001 * automatically update the TSF and then we need to reconfigure
2004 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2005 "need to wait for HW TSF sync\n");
2009 * most important case for beacon synchronization between STA.
2011 * beacon received and HW TSF has been already updated by HW.
2012 * update next TBTT based on the TSF of the beacon, but make
2013 * sure it is ahead of our local TSF timer.
2015 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2019 ah
->nexttbtt
= nexttbtt
;
2021 intval
|= AR5K_BEACON_ENA
;
2022 ath5k_hw_init_beacon_timers(ah
, nexttbtt
, intval
);
2025 * debugging output last in order to preserve the time critical aspect
2029 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2030 "reconfigured timers based on HW TSF\n");
2031 else if (bc_tsf
== 0)
2032 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2033 "reset HW TSF and timers\n");
2035 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2036 "updated timers based on beacon TSF\n");
2038 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2039 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2040 (unsigned long long) bc_tsf
,
2041 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2042 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2043 intval
& AR5K_BEACON_PERIOD
,
2044 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2045 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2049 * ath5k_beacon_config - Configure the beacon queues and interrupts
2051 * @ah: struct ath5k_hw pointer we are operating on
2053 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2054 * interrupts to detect TSF updates only.
2057 ath5k_beacon_config(struct ath5k_hw
*ah
)
2059 spin_lock_bh(&ah
->block
);
2061 ah
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2063 if (ah
->enable_beacon
) {
2065 * In IBSS mode we use a self-linked tx descriptor and let the
2066 * hardware send the beacons automatically. We have to load it
2068 * We use the SWBA interrupt only to keep track of the beacon
2069 * timers in order to detect automatic TSF updates.
2071 ath5k_beaconq_config(ah
);
2073 ah
->imask
|= AR5K_INT_SWBA
;
2075 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2076 if (ath5k_hw_hasveol(ah
))
2077 ath5k_beacon_send(ah
);
2079 ath5k_beacon_update_timers(ah
, -1);
2081 ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
);
2084 ath5k_hw_set_imr(ah
, ah
->imask
);
2086 spin_unlock_bh(&ah
->block
);
2089 static void ath5k_tasklet_beacon(unsigned long data
)
2091 struct ath5k_hw
*ah
= (struct ath5k_hw
*) data
;
2094 * Software beacon alert--time to send a beacon.
2096 * In IBSS mode we use this interrupt just to
2097 * keep track of the next TBTT (target beacon
2098 * transmission time) in order to detect whether
2099 * automatic TSF updates happened.
2101 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2102 /* XXX: only if VEOL supported */
2103 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2104 ah
->nexttbtt
+= ah
->bintval
;
2105 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2106 "SWBA nexttbtt: %x hw_tu: %x "
2110 (unsigned long long) tsf
);
2112 spin_lock(&ah
->block
);
2113 ath5k_beacon_send(ah
);
2114 spin_unlock(&ah
->block
);
2119 /********************\
2120 * Interrupt handling *
2121 \********************/
2124 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2126 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2127 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2128 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2130 /* Run ANI only when calibration is not active */
2132 ah
->ah_cal_next_ani
= jiffies
+
2133 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2134 tasklet_schedule(&ah
->ani_tasklet
);
2136 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_short
) &&
2137 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2138 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2140 /* Run calibration only when another calibration
2143 * Note: This is for both full/short calibration,
2144 * if it's time for a full one, ath5k_calibrate_work will deal
2147 ah
->ah_cal_next_short
= jiffies
+
2148 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2149 ieee80211_queue_work(ah
->hw
, &ah
->calib_work
);
2151 /* we could use SWI to generate enough interrupts to meet our
2152 * calibration interval requirements, if necessary:
2153 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2157 ath5k_schedule_rx(struct ath5k_hw
*ah
)
2159 ah
->rx_pending
= true;
2160 tasklet_schedule(&ah
->rxtq
);
2164 ath5k_schedule_tx(struct ath5k_hw
*ah
)
2166 ah
->tx_pending
= true;
2167 tasklet_schedule(&ah
->txtq
);
2171 ath5k_intr(int irq
, void *dev_id
)
2173 struct ath5k_hw
*ah
= dev_id
;
2174 enum ath5k_int status
;
2175 unsigned int counter
= 1000;
2179 * If hw is not ready (or detached) and we get an
2180 * interrupt, or if we have no interrupts pending
2181 * (that means it's not for us) skip it.
2183 * NOTE: Group 0/1 PCI interface registers are not
2184 * supported on WiSOCs, so we can't check for pending
2185 * interrupts (ISR belongs to another register group
2188 if (unlikely(test_bit(ATH_STAT_INVALID
, ah
->status
) ||
2189 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2190 !ath5k_hw_is_intr_pending(ah
))))
2195 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2197 ATH5K_DBG(ah
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2201 * Fatal hw error -> Log and reset
2203 * Fatal errors are unrecoverable so we have to
2204 * reset the card. These errors include bus and
2207 if (unlikely(status
& AR5K_INT_FATAL
)) {
2209 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2210 "fatal int, resetting\n");
2211 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2214 * RX Overrun -> Count and reset if needed
2216 * Receive buffers are full. Either the bus is busy or
2217 * the CPU is not fast enough to process all received
2220 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2223 * Older chipsets need a reset to come out of this
2224 * condition, but we treat it as RX for newer chips.
2225 * We don't know exactly which versions need a reset
2226 * this guess is copied from the HAL.
2228 ah
->stats
.rxorn_intr
++;
2230 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2231 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2232 "rx overrun, resetting\n");
2233 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2235 ath5k_schedule_rx(ah
);
2239 /* Software Beacon Alert -> Schedule beacon tasklet */
2240 if (status
& AR5K_INT_SWBA
)
2241 tasklet_hi_schedule(&ah
->beacontq
);
2244 * No more RX descriptors -> Just count
2246 * NB: the hardware should re-read the link when
2247 * RXE bit is written, but it doesn't work at
2248 * least on older hardware revs.
2250 if (status
& AR5K_INT_RXEOL
)
2251 ah
->stats
.rxeol_intr
++;
2254 /* TX Underrun -> Bump tx trigger level */
2255 if (status
& AR5K_INT_TXURN
)
2256 ath5k_hw_update_tx_triglevel(ah
, true);
2258 /* RX -> Schedule rx tasklet */
2259 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2260 ath5k_schedule_rx(ah
);
2262 /* TX -> Schedule tx tasklet */
2263 if (status
& (AR5K_INT_TXOK
2267 ath5k_schedule_tx(ah
);
2269 /* Missed beacon -> TODO
2270 if (status & AR5K_INT_BMISS)
2273 /* MIB event -> Update counters and notify ANI */
2274 if (status
& AR5K_INT_MIB
) {
2275 ah
->stats
.mib_intr
++;
2276 ath5k_hw_update_mib_counters(ah
);
2277 ath5k_ani_mib_intr(ah
);
2280 /* GPIO -> Notify RFKill layer */
2281 if (status
& AR5K_INT_GPIO
)
2282 tasklet_schedule(&ah
->rf_kill
.toggleq
);
2286 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2289 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2292 * Until we handle rx/tx interrupts mask them on IMR
2294 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2295 * and unset after we 've handled the interrupts.
2297 if (ah
->rx_pending
|| ah
->tx_pending
)
2298 ath5k_set_current_imask(ah
);
2300 if (unlikely(!counter
))
2301 ATH5K_WARN(ah
, "too many interrupts, giving up for now\n");
2303 /* Fire up calibration poll */
2304 ath5k_intr_calibration_poll(ah
);
2310 * Periodically recalibrate the PHY to account
2311 * for temperature/environment changes.
2314 ath5k_calibrate_work(struct work_struct
*work
)
2316 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2319 /* Should we run a full calibration ? */
2320 if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2322 ah
->ah_cal_next_full
= jiffies
+
2323 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2324 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2326 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
2327 "running full calibration\n");
2329 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2331 * Rfgain is out of bounds, reset the chip
2332 * to load new gain values.
2334 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2335 "got new rfgain, resetting\n");
2336 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2339 ah
->ah_cal_mask
|= AR5K_CALIBRATION_SHORT
;
2342 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2343 ieee80211_frequency_to_channel(ah
->curchan
->center_freq
),
2344 ah
->curchan
->hw_value
);
2346 if (ath5k_hw_phy_calibrate(ah
, ah
->curchan
))
2347 ATH5K_ERR(ah
, "calibration of channel %u failed\n",
2348 ieee80211_frequency_to_channel(
2349 ah
->curchan
->center_freq
));
2351 /* Clear calibration flags */
2352 if (ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
)
2353 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2354 else if (ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)
2355 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_SHORT
;
2360 ath5k_tasklet_ani(unsigned long data
)
2362 struct ath5k_hw
*ah
= (void *)data
;
2364 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2365 ath5k_ani_calibration(ah
);
2366 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2371 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2373 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2374 tx_complete_work
.work
);
2375 struct ath5k_txq
*txq
;
2377 bool needreset
= false;
2379 mutex_lock(&ah
->lock
);
2381 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
2382 if (ah
->txqs
[i
].setup
) {
2384 spin_lock_bh(&txq
->lock
);
2385 if (txq
->txq_len
> 1) {
2386 if (txq
->txq_poll_mark
) {
2387 ATH5K_DBG(ah
, ATH5K_DEBUG_XMIT
,
2388 "TX queue stuck %d\n",
2392 spin_unlock_bh(&txq
->lock
);
2395 txq
->txq_poll_mark
= true;
2398 spin_unlock_bh(&txq
->lock
);
2403 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2404 "TX queues stuck, resetting\n");
2405 ath5k_reset(ah
, NULL
, true);
2408 mutex_unlock(&ah
->lock
);
2410 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2411 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2415 /*************************\
2416 * Initialization routines *
2417 \*************************/
2419 static const struct ieee80211_iface_limit if_limits
[] = {
2420 { .max
= 2048, .types
= BIT(NL80211_IFTYPE_STATION
) },
2421 { .max
= 4, .types
=
2422 #ifdef CONFIG_MAC80211_MESH
2423 BIT(NL80211_IFTYPE_MESH_POINT
) |
2425 BIT(NL80211_IFTYPE_AP
) },
2428 static const struct ieee80211_iface_combination if_comb
= {
2429 .limits
= if_limits
,
2430 .n_limits
= ARRAY_SIZE(if_limits
),
2431 .max_interfaces
= 2048,
2432 .num_different_channels
= 1,
2436 ath5k_init_ah(struct ath5k_hw
*ah
, const struct ath_bus_ops
*bus_ops
)
2438 struct ieee80211_hw
*hw
= ah
->hw
;
2439 struct ath_common
*common
;
2443 /* Initialize driver private data */
2444 SET_IEEE80211_DEV(hw
, ah
->dev
);
2445 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
2446 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2447 IEEE80211_HW_SIGNAL_DBM
|
2448 IEEE80211_HW_REPORTS_TX_ACK_STATUS
;
2450 hw
->wiphy
->interface_modes
=
2451 BIT(NL80211_IFTYPE_AP
) |
2452 BIT(NL80211_IFTYPE_STATION
) |
2453 BIT(NL80211_IFTYPE_ADHOC
) |
2454 BIT(NL80211_IFTYPE_MESH_POINT
);
2456 hw
->wiphy
->iface_combinations
= &if_comb
;
2457 hw
->wiphy
->n_iface_combinations
= 1;
2459 /* SW support for IBSS_RSN is provided by mac80211 */
2460 hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
2462 /* both antennas can be configured as RX or TX */
2463 hw
->wiphy
->available_antennas_tx
= 0x3;
2464 hw
->wiphy
->available_antennas_rx
= 0x3;
2466 hw
->extra_tx_headroom
= 2;
2467 hw
->channel_change_time
= 5000;
2470 * Mark the device as detached to avoid processing
2471 * interrupts until setup is complete.
2473 __set_bit(ATH_STAT_INVALID
, ah
->status
);
2475 ah
->opmode
= NL80211_IFTYPE_STATION
;
2477 mutex_init(&ah
->lock
);
2478 spin_lock_init(&ah
->rxbuflock
);
2479 spin_lock_init(&ah
->txbuflock
);
2480 spin_lock_init(&ah
->block
);
2481 spin_lock_init(&ah
->irqlock
);
2483 /* Setup interrupt handler */
2484 ret
= request_irq(ah
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", ah
);
2486 ATH5K_ERR(ah
, "request_irq failed\n");
2490 common
= ath5k_hw_common(ah
);
2491 common
->ops
= &ath5k_common_ops
;
2492 common
->bus_ops
= bus_ops
;
2496 common
->clockrate
= 40;
2499 * Cache line size is used to size and align various
2500 * structures used to communicate with the hardware.
2502 ath5k_read_cachesize(common
, &csz
);
2503 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2505 spin_lock_init(&common
->cc_lock
);
2507 /* Initialize device */
2508 ret
= ath5k_hw_init(ah
);
2512 /* Set up multi-rate retry capabilities */
2513 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
2515 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2516 AR5K_INIT_RETRY_LONG
);
2519 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2521 /* Finish private driver data initialization */
2522 ret
= ath5k_init(hw
);
2526 ATH5K_INFO(ah
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2527 ath5k_chip_name(AR5K_VERSION_MAC
, ah
->ah_mac_srev
),
2529 ah
->ah_phy_revision
);
2531 if (!ah
->ah_single_chip
) {
2532 /* Single chip radio (!RF5111) */
2533 if (ah
->ah_radio_5ghz_revision
&&
2534 !ah
->ah_radio_2ghz_revision
) {
2535 /* No 5GHz support -> report 2GHz radio */
2536 if (!test_bit(AR5K_MODE_11A
,
2537 ah
->ah_capabilities
.cap_mode
)) {
2538 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2539 ath5k_chip_name(AR5K_VERSION_RAD
,
2540 ah
->ah_radio_5ghz_revision
),
2541 ah
->ah_radio_5ghz_revision
);
2542 /* No 2GHz support (5110 and some
2543 * 5GHz only cards) -> report 5GHz radio */
2544 } else if (!test_bit(AR5K_MODE_11B
,
2545 ah
->ah_capabilities
.cap_mode
)) {
2546 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2547 ath5k_chip_name(AR5K_VERSION_RAD
,
2548 ah
->ah_radio_5ghz_revision
),
2549 ah
->ah_radio_5ghz_revision
);
2550 /* Multiband radio */
2552 ATH5K_INFO(ah
, "RF%s multiband radio found"
2554 ath5k_chip_name(AR5K_VERSION_RAD
,
2555 ah
->ah_radio_5ghz_revision
),
2556 ah
->ah_radio_5ghz_revision
);
2559 /* Multi chip radio (RF5111 - RF2111) ->
2560 * report both 2GHz/5GHz radios */
2561 else if (ah
->ah_radio_5ghz_revision
&&
2562 ah
->ah_radio_2ghz_revision
) {
2563 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2564 ath5k_chip_name(AR5K_VERSION_RAD
,
2565 ah
->ah_radio_5ghz_revision
),
2566 ah
->ah_radio_5ghz_revision
);
2567 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2568 ath5k_chip_name(AR5K_VERSION_RAD
,
2569 ah
->ah_radio_2ghz_revision
),
2570 ah
->ah_radio_2ghz_revision
);
2574 ath5k_debug_init_device(ah
);
2576 /* ready to process interrupts */
2577 __clear_bit(ATH_STAT_INVALID
, ah
->status
);
2581 ath5k_hw_deinit(ah
);
2583 free_irq(ah
->irq
, ah
);
2589 ath5k_stop_locked(struct ath5k_hw
*ah
)
2592 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2593 test_bit(ATH_STAT_INVALID
, ah
->status
));
2596 * Shutdown the hardware and driver:
2597 * stop output from above
2598 * disable interrupts
2600 * turn off the radio
2601 * clear transmit machinery
2602 * clear receive machinery
2603 * drain and release tx queues
2604 * reclaim beacon resources
2605 * power down hardware
2607 * Note that some of this work is not possible if the
2608 * hardware is gone (invalid).
2610 ieee80211_stop_queues(ah
->hw
);
2612 if (!test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2614 ath5k_hw_set_imr(ah
, 0);
2615 synchronize_irq(ah
->irq
);
2617 ath5k_hw_dma_stop(ah
);
2618 ath5k_drain_tx_buffs(ah
);
2619 ath5k_hw_phy_disable(ah
);
2625 int ath5k_start(struct ieee80211_hw
*hw
)
2627 struct ath5k_hw
*ah
= hw
->priv
;
2628 struct ath_common
*common
= ath5k_hw_common(ah
);
2631 mutex_lock(&ah
->lock
);
2633 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "mode %d\n", ah
->opmode
);
2636 * Stop anything previously setup. This is safe
2637 * no matter this is the first time through or not.
2639 ath5k_stop_locked(ah
);
2642 * The basic interface to setting the hardware in a good
2643 * state is ``reset''. On return the hardware is known to
2644 * be powered up and with interrupts disabled. This must
2645 * be followed by initialization of the appropriate bits
2646 * and then setup of the interrupt mask.
2648 ah
->curchan
= ah
->hw
->conf
.channel
;
2649 ah
->imask
= AR5K_INT_RXOK
2659 ret
= ath5k_reset(ah
, NULL
, false);
2663 if (!ath5k_modparam_no_hw_rfkill_switch
)
2664 ath5k_rfkill_hw_start(ah
);
2667 * Reset the key cache since some parts do not reset the
2668 * contents on initial power up or resume from suspend.
2670 for (i
= 0; i
< common
->keymax
; i
++)
2671 ath_hw_keyreset(common
, (u16
) i
);
2673 /* Use higher rates for acks instead of base
2675 ah
->ah_ack_bitrate_high
= true;
2677 for (i
= 0; i
< ARRAY_SIZE(ah
->bslot
); i
++)
2678 ah
->bslot
[i
] = NULL
;
2683 mutex_unlock(&ah
->lock
);
2685 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2686 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2691 static void ath5k_stop_tasklets(struct ath5k_hw
*ah
)
2693 ah
->rx_pending
= false;
2694 ah
->tx_pending
= false;
2695 tasklet_kill(&ah
->rxtq
);
2696 tasklet_kill(&ah
->txtq
);
2697 tasklet_kill(&ah
->beacontq
);
2698 tasklet_kill(&ah
->ani_tasklet
);
2702 * Stop the device, grabbing the top-level lock to protect
2703 * against concurrent entry through ath5k_init (which can happen
2704 * if another thread does a system call and the thread doing the
2705 * stop is preempted).
2707 void ath5k_stop(struct ieee80211_hw
*hw
)
2709 struct ath5k_hw
*ah
= hw
->priv
;
2712 mutex_lock(&ah
->lock
);
2713 ret
= ath5k_stop_locked(ah
);
2714 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2716 * Don't set the card in full sleep mode!
2718 * a) When the device is in this state it must be carefully
2719 * woken up or references to registers in the PCI clock
2720 * domain may freeze the bus (and system). This varies
2721 * by chip and is mostly an issue with newer parts
2722 * (madwifi sources mentioned srev >= 0x78) that go to
2723 * sleep more quickly.
2725 * b) On older chips full sleep results a weird behaviour
2726 * during wakeup. I tested various cards with srev < 0x78
2727 * and they don't wake up after module reload, a second
2728 * module reload is needed to bring the card up again.
2730 * Until we figure out what's going on don't enable
2731 * full chip reset on any chip (this is what Legacy HAL
2732 * and Sam's HAL do anyway). Instead Perform a full reset
2733 * on the device (same as initial state after attach) and
2734 * leave it idle (keep MAC/BB on warm reset) */
2735 ret
= ath5k_hw_on_hold(ah
);
2737 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2738 "putting device to sleep\n");
2742 mutex_unlock(&ah
->lock
);
2744 ath5k_stop_tasklets(ah
);
2746 cancel_delayed_work_sync(&ah
->tx_complete_work
);
2748 if (!ath5k_modparam_no_hw_rfkill_switch
)
2749 ath5k_rfkill_hw_stop(ah
);
2753 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2754 * and change to the given channel.
2756 * This should be called with ah->lock.
2759 ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
2762 struct ath_common
*common
= ath5k_hw_common(ah
);
2766 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "resetting\n");
2768 ath5k_hw_set_imr(ah
, 0);
2769 synchronize_irq(ah
->irq
);
2770 ath5k_stop_tasklets(ah
);
2772 /* Save ani mode and disable ANI during
2773 * reset. If we don't we might get false
2774 * PHY error interrupts. */
2775 ani_mode
= ah
->ani_state
.ani_mode
;
2776 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2778 /* We are going to empty hw queues
2779 * so we should also free any remaining
2781 ath5k_drain_tx_buffs(ah
);
2785 fast
= ((chan
!= NULL
) && modparam_fastchanswitch
) ? 1 : 0;
2787 ret
= ath5k_hw_reset(ah
, ah
->opmode
, ah
->curchan
, fast
, skip_pcu
);
2789 ATH5K_ERR(ah
, "can't reset hardware (%d)\n", ret
);
2793 ret
= ath5k_rx_start(ah
);
2795 ATH5K_ERR(ah
, "can't start recv logic\n");
2799 ath5k_ani_init(ah
, ani_mode
);
2802 * Set calibration intervals
2804 * Note: We don't need to run calibration imediately
2805 * since some initial calibration is done on reset
2806 * even for fast channel switching. Also on scanning
2807 * this will get set again and again and it won't get
2808 * executed unless we connect somewhere and spend some
2809 * time on the channel (that's what calibration needs
2810 * anyway to be accurate).
2812 ah
->ah_cal_next_full
= jiffies
+
2813 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2814 ah
->ah_cal_next_ani
= jiffies
+
2815 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2816 ah
->ah_cal_next_short
= jiffies
+
2817 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2819 ewma_init(&ah
->ah_beacon_rssi_avg
, 1024, 8);
2821 /* clear survey data and cycle counters */
2822 memset(&ah
->survey
, 0, sizeof(ah
->survey
));
2823 spin_lock_bh(&common
->cc_lock
);
2824 ath_hw_cycle_counters_update(common
);
2825 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2826 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2827 spin_unlock_bh(&common
->cc_lock
);
2830 * Change channels and update the h/w rate map if we're switching;
2831 * e.g. 11a to 11b/g.
2833 * We may be doing a reset in response to an ioctl that changes the
2834 * channel so update any state that might change as a result.
2838 /* ath5k_chan_change(ah, c); */
2840 ath5k_beacon_config(ah
);
2841 /* intrs are enabled by ath5k_beacon_config */
2843 ieee80211_wake_queues(ah
->hw
);
2850 static void ath5k_reset_work(struct work_struct
*work
)
2852 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2855 mutex_lock(&ah
->lock
);
2856 ath5k_reset(ah
, NULL
, true);
2857 mutex_unlock(&ah
->lock
);
2860 static int __devinit
2861 ath5k_init(struct ieee80211_hw
*hw
)
2864 struct ath5k_hw
*ah
= hw
->priv
;
2865 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2866 struct ath5k_txq
*txq
;
2867 u8 mac
[ETH_ALEN
] = {};
2872 * Collect the channel list. The 802.11 layer
2873 * is responsible for filtering this list based
2874 * on settings like the phy mode and regulatory
2875 * domain restrictions.
2877 ret
= ath5k_setup_bands(hw
);
2879 ATH5K_ERR(ah
, "can't get channels\n");
2884 * Allocate tx+rx descriptors and populate the lists.
2886 ret
= ath5k_desc_alloc(ah
);
2888 ATH5K_ERR(ah
, "can't allocate descriptors\n");
2893 * Allocate hardware transmit queues: one queue for
2894 * beacon frames and one data queue for each QoS
2895 * priority. Note that hw functions handle resetting
2896 * these queues at the needed time.
2898 ret
= ath5k_beaconq_setup(ah
);
2900 ATH5K_ERR(ah
, "can't setup a beacon xmit queue\n");
2904 ah
->cabq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_CAB
, 0);
2905 if (IS_ERR(ah
->cabq
)) {
2906 ATH5K_ERR(ah
, "can't setup cab queue\n");
2907 ret
= PTR_ERR(ah
->cabq
);
2911 /* 5211 and 5212 usually support 10 queues but we better rely on the
2912 * capability information */
2913 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
2914 /* This order matches mac80211's queue priority, so we can
2915 * directly use the mac80211 queue number without any mapping */
2916 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
2918 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2922 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
2924 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2928 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2930 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2934 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
2936 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2942 /* older hardware (5210) can only support one data queue */
2943 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2945 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2952 tasklet_init(&ah
->rxtq
, ath5k_tasklet_rx
, (unsigned long)ah
);
2953 tasklet_init(&ah
->txtq
, ath5k_tasklet_tx
, (unsigned long)ah
);
2954 tasklet_init(&ah
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)ah
);
2955 tasklet_init(&ah
->ani_tasklet
, ath5k_tasklet_ani
, (unsigned long)ah
);
2957 INIT_WORK(&ah
->reset_work
, ath5k_reset_work
);
2958 INIT_WORK(&ah
->calib_work
, ath5k_calibrate_work
);
2959 INIT_DELAYED_WORK(&ah
->tx_complete_work
, ath5k_tx_complete_poll_work
);
2961 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
2963 ATH5K_ERR(ah
, "unable to read address from EEPROM\n");
2967 SET_IEEE80211_PERM_ADDR(hw
, mac
);
2968 /* All MAC address bits matter for ACKs */
2969 ath5k_update_bssid_mask_and_opmode(ah
, NULL
);
2971 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
2972 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
2974 ATH5K_ERR(ah
, "can't initialize regulatory system\n");
2978 ret
= ieee80211_register_hw(hw
);
2980 ATH5K_ERR(ah
, "can't register ieee80211 hw\n");
2984 if (!ath_is_world_regd(regulatory
))
2985 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
2987 ath5k_init_leds(ah
);
2989 ath5k_sysfs_register(ah
);
2993 ath5k_txq_release(ah
);
2995 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
2997 ath5k_desc_free(ah
);
3003 ath5k_deinit_ah(struct ath5k_hw
*ah
)
3005 struct ieee80211_hw
*hw
= ah
->hw
;
3008 * NB: the order of these is important:
3009 * o call the 802.11 layer before detaching ath5k_hw to
3010 * ensure callbacks into the driver to delete global
3011 * key cache entries can be handled
3012 * o reclaim the tx queue data structures after calling
3013 * the 802.11 layer as we'll get called back to reclaim
3014 * node state and potentially want to use them
3015 * o to cleanup the tx queues the hal is called, so detach
3017 * XXX: ??? detach ath5k_hw ???
3018 * Other than that, it's straightforward...
3020 ieee80211_unregister_hw(hw
);
3021 ath5k_desc_free(ah
);
3022 ath5k_txq_release(ah
);
3023 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3024 ath5k_unregister_leds(ah
);
3026 ath5k_sysfs_unregister(ah
);
3028 * NB: can't reclaim these until after ieee80211_ifdetach
3029 * returns because we'll get called back to reclaim node
3030 * state and potentially want to use them.
3032 ath5k_hw_deinit(ah
);
3033 free_irq(ah
->irq
, ah
);
3037 ath5k_any_vif_assoc(struct ath5k_hw
*ah
)
3039 struct ath5k_vif_iter_data iter_data
;
3040 iter_data
.hw_macaddr
= NULL
;
3041 iter_data
.any_assoc
= false;
3042 iter_data
.need_set_hw_addr
= false;
3043 iter_data
.found_active
= true;
3045 ieee80211_iterate_active_interfaces_atomic(ah
->hw
, ath5k_vif_iter
,
3047 return iter_data
.any_assoc
;
3051 ath5k_set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3053 struct ath5k_hw
*ah
= hw
->priv
;
3055 rfilt
= ath5k_hw_get_rx_filter(ah
);
3057 rfilt
|= AR5K_RX_FILTER_BEACON
;
3059 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3060 ath5k_hw_set_rx_filter(ah
, rfilt
);
3061 ah
->filter_flags
= rfilt
;
3064 void _ath5k_printk(const struct ath5k_hw
*ah
, const char *level
,
3065 const char *fmt
, ...)
3067 struct va_format vaf
;
3070 va_start(args
, fmt
);
3076 printk("%s" pr_fmt("%s: %pV"),
3077 level
, wiphy_name(ah
->hw
->wiphy
), &vaf
);
3079 printk("%s" pr_fmt("%pV"), level
, &vaf
);