Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / ath / ath5k / phy.c
blob8b71a2d947e0c9348c1e1b402b4d6092e4d0b587
1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /***********************\
22 * PHY related functions *
23 \***********************/
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "rfbuffer.h"
34 #include "rfgain.h"
35 #include "../regd.h"
38 /**
39 * DOC: PHY related functions
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
45 * Here is a list of what this is all about:
47 * - Channel setting/switching
49 * - Automatic Gain Control (AGC) calibration
51 * - Noise Floor calibration
53 * - I/Q imbalance calibration (QAM correction)
55 * - Calibration due to thermal changes (gain_F)
57 * - Spur noise mitigation
59 * - RF/PHY initialization for the various operating modes and bwmodes
61 * - Antenna control
63 * - TX power control per channel/rate/packet type
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
71 /******************\
72 * Helper functions *
73 \******************/
75 /**
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum ieee80211_band
80 * Returns the revision number of a 2GHz, 5GHz or single chip
81 * radio.
83 u16
84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
86 unsigned int i;
87 u32 srev;
88 u16 ret;
91 * Set the radio chip access register
93 switch (band) {
94 case IEEE80211_BAND_2GHZ:
95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
96 break;
97 case IEEE80211_BAND_5GHZ:
98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
99 break;
100 default:
101 return 0;
104 usleep_range(2000, 2500);
106 /* ...wait until PHY is ready and read the selected radio revision */
107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
109 for (i = 0; i < 8; i++)
110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
112 if (ah->ah_version == AR5K_AR5210) {
113 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
115 } else {
116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
118 ((srev & 0x0f) << 4), 8);
121 /* Reset to the 5GHz mode */
122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
124 return ret;
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
132 * Note: We don't do any regulatory domain checks here, it's just
133 * a sanity check.
135 bool
136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
138 u16 freq = channel->center_freq;
140 /* Check if the channel is in our supported range */
141 if (channel->band == IEEE80211_BAND_2GHZ) {
142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
144 return true;
145 } else if (channel->band == IEEE80211_BAND_5GHZ)
146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
148 return true;
150 return false;
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
158 bool
159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
160 struct ieee80211_channel *channel)
162 u8 refclk_freq;
164 if ((ah->ah_radio == AR5K_RF5112) ||
165 (ah->ah_radio == AR5K_RF5413) ||
166 (ah->ah_radio == AR5K_RF2413) ||
167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
168 refclk_freq = 40;
169 else
170 refclk_freq = 32;
172 if ((channel->center_freq % refclk_freq != 0) &&
173 ((channel->center_freq % refclk_freq < 10) ||
174 (channel->center_freq % refclk_freq > 22)))
175 return true;
176 else
177 return false;
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
184 * @val: New value
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
190 * infos.
192 static unsigned int
193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
194 u32 val, u8 reg_id, bool set)
196 const struct ath5k_rf_reg *rfreg = NULL;
197 u8 offset, bank, num_bits, col, position;
198 u16 entry;
199 u32 mask, data, last_bit, bits_shifted, first_bit;
200 u32 *rfb;
201 s32 bits_left;
202 int i;
204 data = 0;
205 rfb = ah->ah_rf_banks;
207 for (i = 0; i < ah->ah_rf_regs_count; i++) {
208 if (rf_regs[i].index == reg_id) {
209 rfreg = &rf_regs[i];
210 break;
214 if (rfb == NULL || rfreg == NULL) {
215 ATH5K_PRINTF("Rf register not found!\n");
216 /* should not happen */
217 return 0;
220 bank = rfreg->bank;
221 num_bits = rfreg->field.len;
222 first_bit = rfreg->field.pos;
223 col = rfreg->field.col;
225 /* first_bit is an offset from bank's
226 * start. Since we have all banks on
227 * the same array, we use this offset
228 * to mark each bank's start */
229 offset = ah->ah_offset[bank];
231 /* Boundary check */
232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
233 ATH5K_PRINTF("invalid values at offset %u\n", offset);
234 return 0;
237 entry = ((first_bit - 1) / 8) + offset;
238 position = (first_bit - 1) % 8;
240 if (set)
241 data = ath5k_hw_bitswap(val, num_bits);
243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
244 position = 0, entry++) {
246 last_bit = (position + bits_left > 8) ? 8 :
247 position + bits_left;
249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
250 (col * 8);
252 if (set) {
253 rfb[entry] &= ~mask;
254 rfb[entry] |= ((data << position) << (col * 8)) & mask;
255 data >>= (8 - position);
256 } else {
257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
258 << bits_shifted;
259 bits_shifted += last_bit - position;
262 bits_left -= 8 - position;
265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
267 return data;
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
284 static inline int
285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
286 struct ieee80211_channel *channel)
288 /* Get exponent and mantissa and set it */
289 u32 coef_scaled, coef_exp, coef_man,
290 ds_coef_exp, ds_coef_man, clock;
292 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
293 (channel->hw_value == AR5K_MODE_11B));
295 /* Get coefficient
296 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 * we scale coef by shifting clock value by 24 for
298 * better precision since we use integers */
299 switch (ah->ah_bwmode) {
300 case AR5K_BWMODE_40MHZ:
301 clock = 40 * 2;
302 break;
303 case AR5K_BWMODE_10MHZ:
304 clock = 40 / 2;
305 break;
306 case AR5K_BWMODE_5MHZ:
307 clock = 40 / 4;
308 break;
309 default:
310 clock = 40;
311 break;
313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
315 /* Get exponent
316 * ALGO: coef_exp = 14 - highest set bit position */
317 coef_exp = ilog2(coef_scaled);
319 /* Doesn't make sense if it's zero*/
320 if (!coef_scaled || !coef_exp)
321 return -EINVAL;
323 /* Note: we've shifted coef_scaled by 24 */
324 coef_exp = 14 - (coef_exp - 24);
327 /* Get mantissa (significant digits)
328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 coef_man = coef_scaled +
330 (1 << (24 - coef_exp - 1));
332 /* Calculate delta slope coefficient exponent
333 * and mantissa (remove scaling) and set them on hw */
334 ds_coef_man = coef_man >> (24 - coef_exp);
335 ds_coef_exp = coef_exp - 16;
337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
342 return 0;
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
351 /*Just a try M.F.*/
352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
354 return 0;
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
362 static void
363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
364 struct ieee80211_channel *channel)
367 * On 5211+ read activation -> rx delay
368 * and use it (100ns steps).
370 if (ah->ah_version != AR5K_AR5210) {
371 u32 delay;
372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
373 AR5K_PHY_RX_DELAY_M;
374 delay = (channel->hw_value == AR5K_MODE_11B) ?
375 ((delay << 2) / 22) : (delay / 10);
376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
377 delay = delay << 1;
378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
379 delay = delay << 2;
380 /* XXX: /2 on turbo ? Let's be safe
381 * for now */
382 usleep_range(100 + delay, 100 + (2 * delay));
383 } else {
384 usleep_range(1000, 1500);
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
394 * DOC: RF Gain optimization
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
406 * This paper describes power drops as seen on the receiver due to
407 * probe packets
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
422 /* Initialize the gain optimization values */
423 switch (ah->ah_radio) {
424 case AR5K_RF5111:
425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
426 ah->ah_gain.g_low = 20;
427 ah->ah_gain.g_high = 35;
428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 break;
430 case AR5K_RF5112:
431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
432 ah->ah_gain.g_low = 20;
433 ah->ah_gain.g_high = 85;
434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 break;
436 default:
437 return -EINVAL;
440 return 0;
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
454 * standard traffic.
456 static void
457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
460 /* Skip if gain calibration is inactive or
461 * we already handle a probe request */
462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
463 return;
465 /* Send the packet with 2dB below max power as
466 * patent doc suggest */
467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
468 AR5K_PHY_PAPD_PROBE_TXPOWER) |
469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
482 static u32
483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
485 u32 mix, step;
486 u32 *rf;
487 const struct ath5k_gain_opt *go;
488 const struct ath5k_gain_opt_step *g_step;
489 const struct ath5k_rf_reg *rf_regs;
491 /* Only RF5112 Rev. 2 supports it */
492 if ((ah->ah_radio != AR5K_RF5112) ||
493 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494 return 0;
496 go = &rfgain_opt_5112;
497 rf_regs = rf_regs_5112a;
498 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
500 g_step = &go->go_step[ah->ah_gain.g_step_idx];
502 if (ah->ah_rf_banks == NULL)
503 return 0;
505 rf = ah->ah_rf_banks;
506 ah->ah_gain.g_f_corr = 0;
508 /* No VGA (Variable Gain Amplifier) override, skip */
509 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
510 return 0;
512 /* Mix gain stepping */
513 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
515 /* Mix gain override */
516 mix = g_step->gos_param[0];
518 switch (mix) {
519 case 3:
520 ah->ah_gain.g_f_corr = step * 2;
521 break;
522 case 2:
523 ah->ah_gain.g_f_corr = (step - 5) * 2;
524 break;
525 case 1:
526 ah->ah_gain.g_f_corr = step;
527 break;
528 default:
529 ah->ah_gain.g_f_corr = 0;
530 break;
533 return ah->ah_gain.g_f_corr;
537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
538 * @ah: The &struct ath5k_hw
540 * Check if current gain_F measurement is in the range of our
541 * power detector windows. If we get a measurement outside range
542 * we know it's not accurate (detectors can't measure anything outside
543 * their detection window) so we must ignore it.
545 * Returns true if readback was O.K. or false on failure
547 static bool
548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
550 const struct ath5k_rf_reg *rf_regs;
551 u32 step, mix_ovr, level[4];
552 u32 *rf;
554 if (ah->ah_rf_banks == NULL)
555 return false;
557 rf = ah->ah_rf_banks;
559 if (ah->ah_radio == AR5K_RF5111) {
561 rf_regs = rf_regs_5111;
562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
564 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
565 false);
567 level[0] = 0;
568 level[1] = (step == 63) ? 50 : step + 4;
569 level[2] = (step != 63) ? 64 : level[0];
570 level[3] = level[2] + 50;
572 ah->ah_gain.g_high = level[3] -
573 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
574 ah->ah_gain.g_low = level[0] +
575 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
576 } else {
578 rf_regs = rf_regs_5112;
579 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
581 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
582 false);
584 level[0] = level[2] = 0;
586 if (mix_ovr == 1) {
587 level[1] = level[3] = 83;
588 } else {
589 level[1] = level[3] = 107;
590 ah->ah_gain.g_high = 55;
594 return (ah->ah_gain.g_current >= level[0] &&
595 ah->ah_gain.g_current <= level[1]) ||
596 (ah->ah_gain.g_current >= level[2] &&
597 ah->ah_gain.g_current <= level[3]);
601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
602 * @ah: The &struct ath5k_hw
604 * Choose the right target gain based on current gain
605 * and RF gain optimization ladder
607 static s8
608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
610 const struct ath5k_gain_opt *go;
611 const struct ath5k_gain_opt_step *g_step;
612 int ret = 0;
614 switch (ah->ah_radio) {
615 case AR5K_RF5111:
616 go = &rfgain_opt_5111;
617 break;
618 case AR5K_RF5112:
619 go = &rfgain_opt_5112;
620 break;
621 default:
622 return 0;
625 g_step = &go->go_step[ah->ah_gain.g_step_idx];
627 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
629 /* Reached maximum */
630 if (ah->ah_gain.g_step_idx == 0)
631 return -1;
633 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
634 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
635 ah->ah_gain.g_step_idx > 0;
636 g_step = &go->go_step[ah->ah_gain.g_step_idx])
637 ah->ah_gain.g_target -= 2 *
638 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
639 g_step->gos_gain);
641 ret = 1;
642 goto done;
645 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
647 /* Reached minimum */
648 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
649 return -2;
651 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
652 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
653 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
654 g_step = &go->go_step[ah->ah_gain.g_step_idx])
655 ah->ah_gain.g_target -= 2 *
656 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
657 g_step->gos_gain);
659 ret = 2;
660 goto done;
663 done:
664 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
665 "ret %d, gain step %u, current gain %u, target gain %u\n",
666 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
667 ah->ah_gain.g_target);
669 return ret;
673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
674 * @ah: The &struct ath5k_hw
676 * Main callback for thermal RF gain calibration engine
677 * Check for a new gain reading and schedule an adjustment
678 * if needed.
680 * Returns one of enum ath5k_rfgain codes
682 enum ath5k_rfgain
683 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
685 u32 data, type;
686 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
688 if (ah->ah_rf_banks == NULL ||
689 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
690 return AR5K_RFGAIN_INACTIVE;
692 /* No check requested, either engine is inactive
693 * or an adjustment is already requested */
694 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
695 goto done;
697 /* Read the PAPD (Peak to Average Power Detector)
698 * register */
699 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
701 /* No probe is scheduled, read gain_F measurement */
702 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
703 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
704 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
706 /* If tx packet is CCK correct the gain_F measurement
707 * by cck ofdm gain delta */
708 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
709 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
710 ah->ah_gain.g_current +=
711 ee->ee_cck_ofdm_gain_delta;
712 else
713 ah->ah_gain.g_current +=
714 AR5K_GAIN_CCK_PROBE_CORR;
717 /* Further correct gain_F measurement for
718 * RF5112A radios */
719 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
720 ath5k_hw_rf_gainf_corr(ah);
721 ah->ah_gain.g_current =
722 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
723 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
727 /* Check if measurement is ok and if we need
728 * to adjust gain, schedule a gain adjustment,
729 * else switch back to the active state */
730 if (ath5k_hw_rf_check_gainf_readback(ah) &&
731 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
732 ath5k_hw_rf_gainf_adjust(ah)) {
733 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
734 } else {
735 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
739 done:
740 return ah->ah_gain.g_state;
744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
745 * @ah: The &struct ath5k_hw
746 * @band: One of enum ieee80211_band
748 * Write initial RF gain table to set the RF sensitivity.
750 * NOTE: This one works on all RF chips and has nothing to do
751 * with Gain_F calibration
753 static int
754 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
756 const struct ath5k_ini_rfgain *ath5k_rfg;
757 unsigned int i, size, index;
759 switch (ah->ah_radio) {
760 case AR5K_RF5111:
761 ath5k_rfg = rfgain_5111;
762 size = ARRAY_SIZE(rfgain_5111);
763 break;
764 case AR5K_RF5112:
765 ath5k_rfg = rfgain_5112;
766 size = ARRAY_SIZE(rfgain_5112);
767 break;
768 case AR5K_RF2413:
769 ath5k_rfg = rfgain_2413;
770 size = ARRAY_SIZE(rfgain_2413);
771 break;
772 case AR5K_RF2316:
773 ath5k_rfg = rfgain_2316;
774 size = ARRAY_SIZE(rfgain_2316);
775 break;
776 case AR5K_RF5413:
777 ath5k_rfg = rfgain_5413;
778 size = ARRAY_SIZE(rfgain_5413);
779 break;
780 case AR5K_RF2317:
781 case AR5K_RF2425:
782 ath5k_rfg = rfgain_2425;
783 size = ARRAY_SIZE(rfgain_2425);
784 break;
785 default:
786 return -EINVAL;
789 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
791 for (i = 0; i < size; i++) {
792 AR5K_REG_WAIT(i);
793 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
794 (u32)ath5k_rfg[i].rfg_register);
797 return 0;
801 /********************\
802 * RF Registers setup *
803 \********************/
806 * ath5k_hw_rfregs_init() - Initialize RF register settings
807 * @ah: The &struct ath5k_hw
808 * @channel: The &struct ieee80211_channel
809 * @mode: One of enum ath5k_driver_mode
811 * Setup RF registers by writing RF buffer on hw. For
812 * more infos on this, check out rfbuffer.h
814 static int
815 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
816 struct ieee80211_channel *channel,
817 unsigned int mode)
819 const struct ath5k_rf_reg *rf_regs;
820 const struct ath5k_ini_rfbuffer *ini_rfb;
821 const struct ath5k_gain_opt *go = NULL;
822 const struct ath5k_gain_opt_step *g_step;
823 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
824 u8 ee_mode = 0;
825 u32 *rfb;
826 int i, obdb = -1, bank = -1;
828 switch (ah->ah_radio) {
829 case AR5K_RF5111:
830 rf_regs = rf_regs_5111;
831 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
832 ini_rfb = rfb_5111;
833 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
834 go = &rfgain_opt_5111;
835 break;
836 case AR5K_RF5112:
837 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
838 rf_regs = rf_regs_5112a;
839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
840 ini_rfb = rfb_5112a;
841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
842 } else {
843 rf_regs = rf_regs_5112;
844 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
845 ini_rfb = rfb_5112;
846 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
848 go = &rfgain_opt_5112;
849 break;
850 case AR5K_RF2413:
851 rf_regs = rf_regs_2413;
852 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
853 ini_rfb = rfb_2413;
854 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
855 break;
856 case AR5K_RF2316:
857 rf_regs = rf_regs_2316;
858 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
859 ini_rfb = rfb_2316;
860 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
861 break;
862 case AR5K_RF5413:
863 rf_regs = rf_regs_5413;
864 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
865 ini_rfb = rfb_5413;
866 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
867 break;
868 case AR5K_RF2317:
869 rf_regs = rf_regs_2425;
870 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
871 ini_rfb = rfb_2317;
872 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
873 break;
874 case AR5K_RF2425:
875 rf_regs = rf_regs_2425;
876 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
877 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
878 ini_rfb = rfb_2425;
879 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
880 } else {
881 ini_rfb = rfb_2417;
882 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
884 break;
885 default:
886 return -EINVAL;
889 /* If it's the first time we set RF buffer, allocate
890 * ah->ah_rf_banks based on ah->ah_rf_banks_size
891 * we set above */
892 if (ah->ah_rf_banks == NULL) {
893 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
894 GFP_KERNEL);
895 if (ah->ah_rf_banks == NULL) {
896 ATH5K_ERR(ah, "out of memory\n");
897 return -ENOMEM;
901 /* Copy values to modify them */
902 rfb = ah->ah_rf_banks;
904 for (i = 0; i < ah->ah_rf_banks_size; i++) {
905 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
906 ATH5K_ERR(ah, "invalid bank\n");
907 return -EINVAL;
910 /* Bank changed, write down the offset */
911 if (bank != ini_rfb[i].rfb_bank) {
912 bank = ini_rfb[i].rfb_bank;
913 ah->ah_offset[bank] = i;
916 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
919 /* Set Output and Driver bias current (OB/DB) */
920 if (channel->band == IEEE80211_BAND_2GHZ) {
922 if (channel->hw_value == AR5K_MODE_11B)
923 ee_mode = AR5K_EEPROM_MODE_11B;
924 else
925 ee_mode = AR5K_EEPROM_MODE_11G;
927 /* For RF511X/RF211X combination we
928 * use b_OB and b_DB parameters stored
929 * in eeprom on ee->ee_ob[ee_mode][0]
931 * For all other chips we use OB/DB for 2GHz
932 * stored in the b/g modal section just like
933 * 802.11a on ee->ee_ob[ee_mode][1] */
934 if ((ah->ah_radio == AR5K_RF5111) ||
935 (ah->ah_radio == AR5K_RF5112))
936 obdb = 0;
937 else
938 obdb = 1;
940 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
941 AR5K_RF_OB_2GHZ, true);
943 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
944 AR5K_RF_DB_2GHZ, true);
946 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
947 } else if ((channel->band == IEEE80211_BAND_5GHZ) ||
948 (ah->ah_radio == AR5K_RF5111)) {
950 /* For 11a, Turbo and XR we need to choose
951 * OB/DB based on frequency range */
952 ee_mode = AR5K_EEPROM_MODE_11A;
953 obdb = channel->center_freq >= 5725 ? 3 :
954 (channel->center_freq >= 5500 ? 2 :
955 (channel->center_freq >= 5260 ? 1 :
956 (channel->center_freq > 4000 ? 0 : -1)));
958 if (obdb < 0)
959 return -EINVAL;
961 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
962 AR5K_RF_OB_5GHZ, true);
964 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
965 AR5K_RF_DB_5GHZ, true);
968 g_step = &go->go_step[ah->ah_gain.g_step_idx];
970 /* Set turbo mode (N/A on RF5413) */
971 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
972 (ah->ah_radio != AR5K_RF5413))
973 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
975 /* Bank Modifications (chip-specific) */
976 if (ah->ah_radio == AR5K_RF5111) {
978 /* Set gain_F settings according to current step */
979 if (channel->hw_value != AR5K_MODE_11B) {
981 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
982 AR5K_PHY_FRAME_CTL_TX_CLIP,
983 g_step->gos_param[0]);
985 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
986 AR5K_RF_PWD_90, true);
988 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
989 AR5K_RF_PWD_84, true);
991 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
992 AR5K_RF_RFGAIN_SEL, true);
994 /* We programmed gain_F parameters, switch back
995 * to active state */
996 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1000 /* Bank 6/7 setup */
1002 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1003 AR5K_RF_PWD_XPD, true);
1005 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1006 AR5K_RF_XPD_GAIN, true);
1008 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1009 AR5K_RF_GAIN_I, true);
1011 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1012 AR5K_RF_PLO_SEL, true);
1014 /* Tweak power detectors for half/quarter rate support */
1015 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017 u8 wait_i;
1019 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1020 AR5K_RF_WAIT_S, true);
1022 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1023 0x1f : 0x10;
1025 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1026 AR5K_RF_WAIT_I, true);
1027 ath5k_hw_rfb_op(ah, rf_regs, 3,
1028 AR5K_RF_MAX_TIME, true);
1033 if (ah->ah_radio == AR5K_RF5112) {
1035 /* Set gain_F settings according to current step */
1036 if (channel->hw_value != AR5K_MODE_11B) {
1038 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1039 AR5K_RF_MIXGAIN_OVR, true);
1041 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1042 AR5K_RF_PWD_138, true);
1044 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1045 AR5K_RF_PWD_137, true);
1047 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1048 AR5K_RF_PWD_136, true);
1050 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1051 AR5K_RF_PWD_132, true);
1053 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1054 AR5K_RF_PWD_131, true);
1056 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1057 AR5K_RF_PWD_130, true);
1059 /* We programmed gain_F parameters, switch back
1060 * to active state */
1061 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1064 /* Bank 6/7 setup */
1066 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1067 AR5K_RF_XPD_SEL, true);
1069 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1070 /* Rev. 1 supports only one xpd */
1071 ath5k_hw_rfb_op(ah, rf_regs,
1072 ee->ee_x_gain[ee_mode],
1073 AR5K_RF_XPD_GAIN, true);
1075 } else {
1076 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1077 if (ee->ee_pd_gains[ee_mode] > 1) {
1078 ath5k_hw_rfb_op(ah, rf_regs,
1079 pdg_curve_to_idx[0],
1080 AR5K_RF_PD_GAIN_LO, true);
1081 ath5k_hw_rfb_op(ah, rf_regs,
1082 pdg_curve_to_idx[1],
1083 AR5K_RF_PD_GAIN_HI, true);
1084 } else {
1085 ath5k_hw_rfb_op(ah, rf_regs,
1086 pdg_curve_to_idx[0],
1087 AR5K_RF_PD_GAIN_LO, true);
1088 ath5k_hw_rfb_op(ah, rf_regs,
1089 pdg_curve_to_idx[0],
1090 AR5K_RF_PD_GAIN_HI, true);
1093 /* Lower synth voltage on Rev 2 */
1094 if (ah->ah_radio == AR5K_RF5112 &&
1095 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1096 ath5k_hw_rfb_op(ah, rf_regs, 2,
1097 AR5K_RF_HIGH_VC_CP, true);
1099 ath5k_hw_rfb_op(ah, rf_regs, 2,
1100 AR5K_RF_MID_VC_CP, true);
1102 ath5k_hw_rfb_op(ah, rf_regs, 2,
1103 AR5K_RF_LOW_VC_CP, true);
1105 ath5k_hw_rfb_op(ah, rf_regs, 2,
1106 AR5K_RF_PUSH_UP, true);
1109 /* Decrease power consumption on 5213+ BaseBand */
1110 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1111 ath5k_hw_rfb_op(ah, rf_regs, 1,
1112 AR5K_RF_PAD2GND, true);
1114 ath5k_hw_rfb_op(ah, rf_regs, 1,
1115 AR5K_RF_XB2_LVL, true);
1117 ath5k_hw_rfb_op(ah, rf_regs, 1,
1118 AR5K_RF_XB5_LVL, true);
1120 ath5k_hw_rfb_op(ah, rf_regs, 1,
1121 AR5K_RF_PWD_167, true);
1123 ath5k_hw_rfb_op(ah, rf_regs, 1,
1124 AR5K_RF_PWD_166, true);
1128 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1129 AR5K_RF_GAIN_I, true);
1131 /* Tweak power detector for half/quarter rates */
1132 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1133 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1134 u8 pd_delay;
1136 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1137 0xf : 0x8;
1139 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1140 AR5K_RF_PD_PERIOD_A, true);
1141 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1142 AR5K_RF_PD_DELAY_A, true);
1147 if (ah->ah_radio == AR5K_RF5413 &&
1148 channel->band == IEEE80211_BAND_2GHZ) {
1150 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1151 true);
1153 /* Set optimum value for early revisions (on pci-e chips) */
1154 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1155 ah->ah_mac_srev < AR5K_SREV_AR5413)
1156 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1157 AR5K_RF_PWD_ICLOBUF_2G, true);
1161 /* Write RF banks on hw */
1162 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1163 AR5K_REG_WAIT(i);
1164 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1167 return 0;
1171 /**************************\
1172 PHY/RF channel functions
1173 \**************************/
1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1177 * @channel: The &struct ieee80211_channel
1179 * Map channel frequency to IEEE channel number and convert it
1180 * to an internal channel value used by the RF5110 chipset.
1182 static u32
1183 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1185 u32 athchan;
1187 athchan = (ath5k_hw_bitswap(
1188 (ieee80211_frequency_to_channel(
1189 channel->center_freq) - 24) / 2, 5)
1190 << 1) | (1 << 6) | 0x1;
1191 return athchan;
1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1196 * @ah: The &struct ath5k_hw
1197 * @channel: The &struct ieee80211_channel
1199 static int
1200 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1201 struct ieee80211_channel *channel)
1203 u32 data;
1206 * Set the channel and wait
1208 data = ath5k_hw_rf5110_chan2athchan(channel);
1209 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1210 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1211 usleep_range(1000, 1500);
1213 return 0;
1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1218 * @ieee: IEEE channel number
1219 * @athchan: The &struct ath5k_athchan_2ghz
1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1222 * we need to add some offsets and extra flags to the data values we pass
1223 * on to the PHY. So for every 2GHz channel this function gets called
1224 * to do the conversion.
1226 static int
1227 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1228 struct ath5k_athchan_2ghz *athchan)
1230 int channel;
1232 /* Cast this value to catch negative channel numbers (>= -19) */
1233 channel = (int)ieee;
1236 * Map 2GHz IEEE channel to 5GHz Atheros channel
1238 if (channel <= 13) {
1239 athchan->a2_athchan = 115 + channel;
1240 athchan->a2_flags = 0x46;
1241 } else if (channel == 14) {
1242 athchan->a2_athchan = 124;
1243 athchan->a2_flags = 0x44;
1244 } else if (channel >= 15 && channel <= 26) {
1245 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1246 athchan->a2_flags = 0x46;
1247 } else
1248 return -EINVAL;
1250 return 0;
1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1255 * @ah: The &struct ath5k_hw
1256 * @channel: The &struct ieee80211_channel
1258 static int
1259 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1260 struct ieee80211_channel *channel)
1262 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1263 unsigned int ath5k_channel =
1264 ieee80211_frequency_to_channel(channel->center_freq);
1265 u32 data0, data1, clock;
1266 int ret;
1269 * Set the channel on the RF5111 radio
1271 data0 = data1 = 0;
1273 if (channel->band == IEEE80211_BAND_2GHZ) {
1274 /* Map 2GHz channel to 5GHz Atheros channel ID */
1275 ret = ath5k_hw_rf5111_chan2athchan(
1276 ieee80211_frequency_to_channel(channel->center_freq),
1277 &ath5k_channel_2ghz);
1278 if (ret)
1279 return ret;
1281 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1282 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1283 << 5) | (1 << 4);
1286 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1287 clock = 1;
1288 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1289 (clock << 1) | (1 << 10) | 1;
1290 } else {
1291 clock = 0;
1292 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1293 << 2) | (clock << 1) | (1 << 10) | 1;
1296 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1297 AR5K_RF_BUFFER);
1298 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1299 AR5K_RF_BUFFER_CONTROL_3);
1301 return 0;
1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1306 * @ah: The &struct ath5k_hw
1307 * @channel: The &struct ieee80211_channel
1309 * On RF5112/2112 and newer we don't need to do any conversion.
1310 * We pass the frequency value after a few modifications to the
1311 * chip directly.
1313 * NOTE: Make sure channel frequency given is within our range or else
1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1316 static int
1317 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1318 struct ieee80211_channel *channel)
1320 u32 data, data0, data1, data2;
1321 u16 c;
1323 data = data0 = data1 = data2 = 0;
1324 c = channel->center_freq;
1326 /* My guess based on code:
1327 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1328 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1329 * (3040/2). data0 is used to set the PLL divider and data1
1330 * selects synth mode. */
1331 if (c < 4800) {
1332 /* Channel 14 and all frequencies with 2Hz spacing
1333 * below/above (non-standard channels) */
1334 if (!((c - 2224) % 5)) {
1335 /* Same as (c - 2224) / 5 */
1336 data0 = ((2 * (c - 704)) - 3040) / 10;
1337 data1 = 1;
1338 /* Channel 1 and all frequencies with 5Hz spacing
1339 * below/above (standard channels without channel 14) */
1340 } else if (!((c - 2192) % 5)) {
1341 /* Same as (c - 2192) / 5 */
1342 data0 = ((2 * (c - 672)) - 3040) / 10;
1343 data1 = 0;
1344 } else
1345 return -EINVAL;
1347 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1348 /* This is more complex, we have a single synthesizer with
1349 * 4 reference clock settings (?) based on frequency spacing
1350 * and set using data2. LO is at 4800Hz and data0 is again used
1351 * to set some divider.
1353 * NOTE: There is an old atheros presentation at Stanford
1354 * that mentions a method called dual direct conversion
1355 * with 1GHz sliding IF for RF5110. Maybe that's what we
1356 * have here, or an updated version. */
1357 } else if ((c % 5) != 2 || c > 5435) {
1358 if (!(c % 20) && c >= 5120) {
1359 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1360 data2 = ath5k_hw_bitswap(3, 2);
1361 } else if (!(c % 10)) {
1362 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1363 data2 = ath5k_hw_bitswap(2, 2);
1364 } else if (!(c % 5)) {
1365 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1366 data2 = ath5k_hw_bitswap(1, 2);
1367 } else
1368 return -EINVAL;
1369 } else {
1370 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1371 data2 = ath5k_hw_bitswap(0, 2);
1374 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1376 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1377 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1379 return 0;
1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1384 * @ah: The &struct ath5k_hw
1385 * @channel: The &struct ieee80211_channel
1387 * AR2425/2417 have a different 2GHz RF so code changes
1388 * a little bit from RF5112.
1390 static int
1391 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1392 struct ieee80211_channel *channel)
1394 u32 data, data0, data2;
1395 u16 c;
1397 data = data0 = data2 = 0;
1398 c = channel->center_freq;
1400 if (c < 4800) {
1401 data0 = ath5k_hw_bitswap((c - 2272), 8);
1402 data2 = 0;
1403 /* ? 5GHz ? */
1404 } else if ((c % 5) != 2 || c > 5435) {
1405 if (!(c % 20) && c < 5120)
1406 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1407 else if (!(c % 10))
1408 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1409 else if (!(c % 5))
1410 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1411 else
1412 return -EINVAL;
1413 data2 = ath5k_hw_bitswap(1, 2);
1414 } else {
1415 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1416 data2 = ath5k_hw_bitswap(0, 2);
1419 data = (data0 << 4) | data2 << 2 | 0x1001;
1421 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1422 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1424 return 0;
1428 * ath5k_hw_channel() - Set a channel on the radio chip
1429 * @ah: The &struct ath5k_hw
1430 * @channel: The &struct ieee80211_channel
1432 * This is the main function called to set a channel on the
1433 * radio chip based on the radio chip version.
1435 static int
1436 ath5k_hw_channel(struct ath5k_hw *ah,
1437 struct ieee80211_channel *channel)
1439 int ret;
1441 * Check bounds supported by the PHY (we don't care about regulatory
1442 * restrictions at this point).
1444 if (!ath5k_channel_ok(ah, channel)) {
1445 ATH5K_ERR(ah,
1446 "channel frequency (%u MHz) out of supported "
1447 "band range\n",
1448 channel->center_freq);
1449 return -EINVAL;
1453 * Set the channel and wait
1455 switch (ah->ah_radio) {
1456 case AR5K_RF5110:
1457 ret = ath5k_hw_rf5110_channel(ah, channel);
1458 break;
1459 case AR5K_RF5111:
1460 ret = ath5k_hw_rf5111_channel(ah, channel);
1461 break;
1462 case AR5K_RF2317:
1463 case AR5K_RF2425:
1464 ret = ath5k_hw_rf2425_channel(ah, channel);
1465 break;
1466 default:
1467 ret = ath5k_hw_rf5112_channel(ah, channel);
1468 break;
1471 if (ret)
1472 return ret;
1474 /* Set JAPAN setting for channel 14 */
1475 if (channel->center_freq == 2484) {
1476 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477 AR5K_PHY_CCKTXCTL_JAPAN);
1478 } else {
1479 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1480 AR5K_PHY_CCKTXCTL_WORLD);
1483 ah->ah_current_channel = channel;
1485 return 0;
1489 /*****************\
1490 PHY calibration
1491 \*****************/
1494 * DOC: PHY Calibration routines
1496 * Noise floor calibration: When we tell the hardware to
1497 * perform a noise floor calibration by setting the
1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1499 * sample-and-hold the minimum noise level seen at the antennas.
1500 * This value is then stored in a ring buffer of recently measured
1501 * noise floor values so we have a moving window of the last few
1502 * samples. The median of the values in the history is then loaded
1503 * into the hardware for its own use for RSSI and CCA measurements.
1504 * This type of calibration doesn't interfere with traffic.
1506 * AGC calibration: When we tell the hardware to perform
1507 * an AGC (Automatic Gain Control) calibration by setting the
1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1509 * a calibration on the DC offsets of ADCs. During this period
1510 * rx/tx gets disabled so we have to deal with it on the driver
1511 * part.
1513 * I/Q calibration: When we tell the hardware to perform
1514 * an I/Q calibration, it tries to correct I/Q imbalance and
1515 * fix QAM constellation by sampling data from rxed frames.
1516 * It doesn't interfere with traffic.
1518 * For more infos on AGC and I/Q calibration check out patent doc
1519 * #03/094463.
1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1524 * @ah: The &struct ath5k_hw
1526 static s32
1527 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1529 s32 val;
1531 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1532 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1537 * @ah: The &struct ath5k_hw
1539 void
1540 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1542 int i;
1544 ah->ah_nfcal_hist.index = 0;
1545 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1546 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1551 * @ah: The &struct ath5k_hw
1552 * @noise_floor: The NF we got from hw
1554 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1556 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1557 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1558 hist->nfval[hist->index] = noise_floor;
1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1563 * @ah: The &struct ath5k_hw
1565 static s16
1566 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1568 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1569 s16 tmp;
1570 int i, j;
1572 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1573 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1574 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1575 if (sort[j] > sort[j - 1]) {
1576 tmp = sort[j];
1577 sort[j] = sort[j - 1];
1578 sort[j - 1] = tmp;
1582 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1583 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1584 "cal %d:%d\n", i, sort[i]);
1586 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1590 * ath5k_hw_update_noise_floor() - Update NF on hardware
1591 * @ah: The &struct ath5k_hw
1593 * This is the main function we call to perform a NF calibration,
1594 * it reads NF from hardware, calculates the median and updates
1595 * NF on hw.
1597 void
1598 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 u32 val;
1602 s16 nf, threshold;
1603 u8 ee_mode;
1605 /* keep last value if calibration hasn't completed */
1606 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1607 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1608 "NF did not complete in calibration window\n");
1610 return;
1613 ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1615 ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1617 /* completed NF calibration, test threshold */
1618 nf = ath5k_hw_read_measured_noise_floor(ah);
1619 threshold = ee->ee_noise_floor_thr[ee_mode];
1621 if (nf > threshold) {
1622 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1623 "noise floor failure detected; "
1624 "read %d, threshold %d\n",
1625 nf, threshold);
1627 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1630 ath5k_hw_update_nfcal_hist(ah, nf);
1631 nf = ath5k_hw_get_median_noise_floor(ah);
1633 /* load noise floor (in .5 dBm) so the hardware will use it */
1634 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1635 val |= (nf * 2) & AR5K_PHY_NF_M;
1636 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1638 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1639 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1641 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1642 0, false);
1645 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1646 * so that we're not capped by the median we just loaded.
1647 * This will be used as the initial value for the next noise
1648 * floor calibration.
1650 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1651 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1652 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1653 AR5K_PHY_AGCCTL_NF_EN |
1654 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1655 AR5K_PHY_AGCCTL_NF);
1657 ah->ah_noise_floor = nf;
1659 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1661 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1662 "noise floor calibrated: %d\n", nf);
1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1667 * @ah: The &struct ath5k_hw
1668 * @channel: The &struct ieee80211_channel
1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1672 static int
1673 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1674 struct ieee80211_channel *channel)
1676 u32 phy_sig, phy_agc, phy_sat, beacon;
1677 int ret;
1679 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1680 return 0;
1683 * Disable beacons and RX/TX queues, wait
1685 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1686 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1687 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1688 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1690 usleep_range(2000, 2500);
1693 * Set the channel (with AGC turned off)
1695 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1696 udelay(10);
1697 ret = ath5k_hw_channel(ah, channel);
1700 * Activate PHY and wait
1702 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1703 usleep_range(1000, 1500);
1705 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1707 if (ret)
1708 return ret;
1711 * Calibrate the radio chip
1714 /* Remember normal state */
1715 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1716 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1717 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1719 /* Update radio registers */
1720 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1721 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1723 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1724 AR5K_PHY_AGCCOARSE_LO)) |
1725 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1726 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1728 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1729 AR5K_PHY_ADCSAT_THR)) |
1730 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1731 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1733 udelay(20);
1735 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1736 udelay(10);
1737 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1738 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1740 usleep_range(1000, 1500);
1743 * Enable calibration and wait until completion
1745 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1747 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1748 AR5K_PHY_AGCCTL_CAL, 0, false);
1750 /* Reset to normal state */
1751 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1752 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1753 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1755 if (ret) {
1756 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1757 channel->center_freq);
1758 return ret;
1762 * Re-enable RX/TX and beacons
1764 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1765 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1766 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1768 return 0;
1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1773 * @ah: The &struct ath5k_hw
1775 static int
1776 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1778 u32 i_pwr, q_pwr;
1779 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1780 int i;
1782 /* Skip if I/Q calibration is not needed or if it's still running */
1783 if (!ah->ah_iq_cal_needed)
1784 return -EINVAL;
1785 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1786 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1787 "I/Q calibration still running");
1788 return -EBUSY;
1791 /* Calibration has finished, get the results and re-run */
1793 /* Work around for empty results which can apparently happen on 5212:
1794 * Read registers up to 10 times until we get both i_pr and q_pwr */
1795 for (i = 0; i <= 10; i++) {
1796 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1797 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1798 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1799 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1800 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1801 if (i_pwr && q_pwr)
1802 break;
1805 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1807 if (ah->ah_version == AR5K_AR5211)
1808 q_coffd = q_pwr >> 6;
1809 else
1810 q_coffd = q_pwr >> 7;
1812 /* In case i_coffd became zero, cancel calibration
1813 * not only it's too small, it'll also result a divide
1814 * by zero later on. */
1815 if (i_coffd == 0 || q_coffd < 2)
1816 return -ECANCELED;
1818 /* Protect against loss of sign bits */
1820 i_coff = (-iq_corr) / i_coffd;
1821 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1823 if (ah->ah_version == AR5K_AR5211)
1824 q_coff = (i_pwr / q_coffd) - 64;
1825 else
1826 q_coff = (i_pwr / q_coffd) - 128;
1827 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1829 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1830 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1831 i_coff, q_coff, i_coffd, q_coffd);
1833 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1834 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1836 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1838 /* Re-enable calibration -if we don't we'll commit
1839 * the same values again and again */
1840 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1841 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1842 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1844 return 0;
1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1849 * @ah: The &struct ath5k_hw
1850 * @channel: The &struct ieee80211_channel
1852 * The main function we call from above to perform
1853 * a short or full PHY calibration based on RF chip
1854 * and current channel
1857 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1858 struct ieee80211_channel *channel)
1860 int ret;
1862 if (ah->ah_radio == AR5K_RF5110)
1863 return ath5k_hw_rf5110_calibrate(ah, channel);
1865 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1866 if (ret) {
1867 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1868 "No I/Q correction performed (%uMHz)\n",
1869 channel->center_freq);
1871 /* Happens all the time if there is not much
1872 * traffic, consider it normal behaviour. */
1873 ret = 0;
1876 /* On full calibration request a PAPD probe for
1877 * gainf calibration if needed */
1878 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1879 (ah->ah_radio == AR5K_RF5111 ||
1880 ah->ah_radio == AR5K_RF5112) &&
1881 channel->hw_value != AR5K_MODE_11B)
1882 ath5k_hw_request_rfgain_probe(ah);
1884 /* Update noise floor */
1885 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1886 ath5k_hw_update_noise_floor(ah);
1888 return ret;
1892 /***************************\
1893 * Spur mitigation functions *
1894 \***************************/
1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1898 * @ah: The &struct ath5k_hw
1899 * @channel: The &struct ieee80211_channel
1901 * This function gets called during PHY initialization to
1902 * configure the spur filter for the given channel. Spur is noise
1903 * generated due to "reflection" effects, for more information on this
1904 * method check out patent US7643810
1906 static void
1907 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1908 struct ieee80211_channel *channel)
1910 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1911 u32 mag_mask[4] = {0, 0, 0, 0};
1912 u32 pilot_mask[2] = {0, 0};
1913 /* Note: fbin values are scaled up by 2 */
1914 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1915 s32 spur_delta_phase, spur_freq_sigma_delta;
1916 s32 spur_offset, num_symbols_x16;
1917 u8 num_symbol_offsets, i, freq_band;
1919 /* Convert current frequency to fbin value (the same way channels
1920 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1921 * up by 2 so we can compare it later */
1922 if (channel->band == IEEE80211_BAND_2GHZ) {
1923 chan_fbin = (channel->center_freq - 2300) * 10;
1924 freq_band = AR5K_EEPROM_BAND_2GHZ;
1925 } else {
1926 chan_fbin = (channel->center_freq - 4900) * 10;
1927 freq_band = AR5K_EEPROM_BAND_5GHZ;
1930 /* Check if any spur_chan_fbin from EEPROM is
1931 * within our current channel's spur detection range */
1932 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1933 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1934 /* XXX: Half/Quarter channels ?*/
1935 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1936 spur_detection_window *= 2;
1938 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1939 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1941 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1942 * so it's zero if we got nothing from EEPROM */
1943 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1944 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1945 break;
1948 if ((chan_fbin - spur_detection_window <=
1949 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1950 (chan_fbin + spur_detection_window >=
1951 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1952 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1953 break;
1957 /* We need to enable spur filter for this channel */
1958 if (spur_chan_fbin) {
1959 spur_offset = spur_chan_fbin - chan_fbin;
1961 * Calculate deltas:
1962 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1963 * spur_delta_phase -> spur_offset / chip_freq << 11
1964 * Note: Both values have 100Hz resolution
1966 switch (ah->ah_bwmode) {
1967 case AR5K_BWMODE_40MHZ:
1968 /* Both sample_freq and chip_freq are 80MHz */
1969 spur_delta_phase = (spur_offset << 16) / 25;
1970 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1971 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1972 break;
1973 case AR5K_BWMODE_10MHZ:
1974 /* Both sample_freq and chip_freq are 20MHz (?) */
1975 spur_delta_phase = (spur_offset << 18) / 25;
1976 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1977 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1978 case AR5K_BWMODE_5MHZ:
1979 /* Both sample_freq and chip_freq are 10MHz (?) */
1980 spur_delta_phase = (spur_offset << 19) / 25;
1981 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1982 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1983 default:
1984 if (channel->band == IEEE80211_BAND_5GHZ) {
1985 /* Both sample_freq and chip_freq are 40MHz */
1986 spur_delta_phase = (spur_offset << 17) / 25;
1987 spur_freq_sigma_delta =
1988 (spur_delta_phase >> 10);
1989 symbol_width =
1990 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1991 } else {
1992 /* sample_freq -> 40MHz chip_freq -> 44MHz
1993 * (for b compatibility) */
1994 spur_delta_phase = (spur_offset << 17) / 25;
1995 spur_freq_sigma_delta =
1996 (spur_offset << 8) / 55;
1997 symbol_width =
1998 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2000 break;
2003 /* Calculate pilot and magnitude masks */
2005 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2006 * and divide by symbol_width to find how many symbols we have
2007 * Note: number of symbols is scaled up by 16 */
2008 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2010 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2011 if (!(num_symbols_x16 & 0xF))
2012 /* _X_ */
2013 num_symbol_offsets = 3;
2014 else
2015 /* _xx_ */
2016 num_symbol_offsets = 4;
2018 for (i = 0; i < num_symbol_offsets; i++) {
2020 /* Calculate pilot mask */
2021 s32 curr_sym_off =
2022 (num_symbols_x16 / 16) + i + 25;
2024 /* Pilot magnitude mask seems to be a way to
2025 * declare the boundaries for our detection
2026 * window or something, it's 2 for the middle
2027 * value(s) where the symbol is expected to be
2028 * and 1 on the boundary values */
2029 u8 plt_mag_map =
2030 (i == 0 || i == (num_symbol_offsets - 1))
2031 ? 1 : 2;
2033 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2034 if (curr_sym_off <= 25)
2035 pilot_mask[0] |= 1 << curr_sym_off;
2036 else if (curr_sym_off >= 27)
2037 pilot_mask[0] |= 1 << (curr_sym_off - 1);
2038 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2039 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2041 /* Calculate magnitude mask (for viterbi decoder) */
2042 if (curr_sym_off >= -1 && curr_sym_off <= 14)
2043 mag_mask[0] |=
2044 plt_mag_map << (curr_sym_off + 1) * 2;
2045 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2046 mag_mask[1] |=
2047 plt_mag_map << (curr_sym_off - 15) * 2;
2048 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2049 mag_mask[2] |=
2050 plt_mag_map << (curr_sym_off - 31) * 2;
2051 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2052 mag_mask[3] |=
2053 plt_mag_map << (curr_sym_off - 47) * 2;
2057 /* Write settings on hw to enable spur filter */
2058 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2059 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2060 /* XXX: Self correlator also ? */
2061 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2062 AR5K_PHY_IQ_PILOT_MASK_EN |
2063 AR5K_PHY_IQ_CHAN_MASK_EN |
2064 AR5K_PHY_IQ_SPUR_FILT_EN);
2066 /* Set delta phase and freq sigma delta */
2067 ath5k_hw_reg_write(ah,
2068 AR5K_REG_SM(spur_delta_phase,
2069 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2070 AR5K_REG_SM(spur_freq_sigma_delta,
2071 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2072 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2073 AR5K_PHY_TIMING_11);
2075 /* Write pilot masks */
2076 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2077 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2078 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2079 pilot_mask[1]);
2081 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2082 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2083 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2084 pilot_mask[1]);
2086 /* Write magnitude masks */
2087 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2088 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2089 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2090 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2091 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2092 mag_mask[3]);
2094 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2095 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2096 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2097 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2098 AR5K_PHY_BIN_MASK2_4_MASK_4,
2099 mag_mask[3]);
2101 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2102 AR5K_PHY_IQ_SPUR_FILT_EN) {
2103 /* Clean up spur mitigation settings and disable filter */
2104 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2105 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2106 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2107 AR5K_PHY_IQ_PILOT_MASK_EN |
2108 AR5K_PHY_IQ_CHAN_MASK_EN |
2109 AR5K_PHY_IQ_SPUR_FILT_EN);
2110 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2112 /* Clear pilot masks */
2113 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2114 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2115 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2118 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2119 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2120 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2123 /* Clear magnitude masks */
2124 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2125 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2126 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2127 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2128 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2131 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2132 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2133 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2134 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2135 AR5K_PHY_BIN_MASK2_4_MASK_4,
2141 /*****************\
2142 * Antenna control *
2143 \*****************/
2146 * DOC: Antenna control
2148 * Hw supports up to 14 antennas ! I haven't found any card that implements
2149 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2150 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2151 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2153 * We can have a single antenna for RX and multiple antennas for TX.
2154 * RX antenna is our "default" antenna (usually antenna 1) set on
2155 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2156 * (0 for automatic selection, 1 - 14 antenna number).
2158 * We can let hw do all the work doing fast antenna diversity for both
2159 * tx and rx or we can do things manually. Here are the options we have
2160 * (all are bits of STA_ID1 register):
2162 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2163 * control descriptor, use the default antenna to transmit or else use the last
2164 * antenna on which we received an ACK.
2166 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2167 * the antenna on which we got the ACK for that frame.
2169 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2170 * one on the TX descriptor.
2172 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2173 * (ACKs etc), or else use current antenna (the one we just used for TX).
2175 * Using the above we support the following scenarios:
2177 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2179 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2181 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2183 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2185 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2187 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2189 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2191 * Also note that when setting antenna to F on tx descriptor card inverts
2192 * current tx antenna.
2196 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2197 * @ah: The &struct ath5k_hw
2198 * @ant: Antenna number
2200 static void
2201 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2203 if (ah->ah_version != AR5K_AR5210)
2204 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2208 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2209 * @ah: The &struct ath5k_hw
2210 * @ee_mode: One of enum ath5k_driver_mode
2211 * @enable: True to enable, false to disable
2213 static void
2214 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2216 switch (ee_mode) {
2217 case AR5K_EEPROM_MODE_11G:
2218 /* XXX: This is set to
2219 * disabled on initvals !!! */
2220 case AR5K_EEPROM_MODE_11A:
2221 if (enable)
2222 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2223 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2224 else
2225 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2226 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2227 break;
2228 case AR5K_EEPROM_MODE_11B:
2229 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2230 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2231 break;
2232 default:
2233 return;
2236 if (enable) {
2237 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2238 AR5K_PHY_RESTART_DIV_GC, 4);
2240 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2241 AR5K_PHY_FAST_ANT_DIV_EN);
2242 } else {
2243 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2244 AR5K_PHY_RESTART_DIV_GC, 0);
2246 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2247 AR5K_PHY_FAST_ANT_DIV_EN);
2252 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2253 * @ah: The &struct ath5k_hw
2254 * @ee_mode: One of enum ath5k_driver_mode
2256 * Switch table comes from EEPROM and includes information on controlling
2257 * the 2 antenna RX attenuators
2259 void
2260 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2262 u8 ant0, ant1;
2265 * In case a fixed antenna was set as default
2266 * use the same switch table twice.
2268 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2269 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2270 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2271 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2272 else {
2273 ant0 = AR5K_ANT_SWTABLE_A;
2274 ant1 = AR5K_ANT_SWTABLE_B;
2277 /* Set antenna idle switch table */
2278 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2279 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2280 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2281 AR5K_PHY_ANT_CTL_TXRX_EN));
2283 /* Set antenna switch tables */
2284 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2285 AR5K_PHY_ANT_SWITCH_TABLE_0);
2286 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2287 AR5K_PHY_ANT_SWITCH_TABLE_1);
2291 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2292 * @ah: The &struct ath5k_hw
2293 * @ant_mode: One of enum ath5k_ant_mode
2295 void
2296 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2298 struct ieee80211_channel *channel = ah->ah_current_channel;
2299 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2300 bool use_def_for_sg;
2301 int ee_mode;
2302 u8 def_ant, tx_ant;
2303 u32 sta_id1 = 0;
2305 /* if channel is not initialized yet we can't set the antennas
2306 * so just store the mode. it will be set on the next reset */
2307 if (channel == NULL) {
2308 ah->ah_ant_mode = ant_mode;
2309 return;
2312 def_ant = ah->ah_def_ant;
2314 ee_mode = ath5k_eeprom_mode_from_channel(channel);
2315 if (ee_mode < 0) {
2316 ATH5K_ERR(ah,
2317 "invalid channel: %d\n", channel->center_freq);
2318 return;
2321 switch (ant_mode) {
2322 case AR5K_ANTMODE_DEFAULT:
2323 tx_ant = 0;
2324 use_def_for_tx = false;
2325 update_def_on_tx = false;
2326 use_def_for_rts = false;
2327 use_def_for_sg = false;
2328 fast_div = true;
2329 break;
2330 case AR5K_ANTMODE_FIXED_A:
2331 def_ant = 1;
2332 tx_ant = 1;
2333 use_def_for_tx = true;
2334 update_def_on_tx = false;
2335 use_def_for_rts = true;
2336 use_def_for_sg = true;
2337 fast_div = false;
2338 break;
2339 case AR5K_ANTMODE_FIXED_B:
2340 def_ant = 2;
2341 tx_ant = 2;
2342 use_def_for_tx = true;
2343 update_def_on_tx = false;
2344 use_def_for_rts = true;
2345 use_def_for_sg = true;
2346 fast_div = false;
2347 break;
2348 case AR5K_ANTMODE_SINGLE_AP:
2349 def_ant = 1; /* updated on tx */
2350 tx_ant = 0;
2351 use_def_for_tx = true;
2352 update_def_on_tx = true;
2353 use_def_for_rts = true;
2354 use_def_for_sg = true;
2355 fast_div = true;
2356 break;
2357 case AR5K_ANTMODE_SECTOR_AP:
2358 tx_ant = 1; /* variable */
2359 use_def_for_tx = false;
2360 update_def_on_tx = false;
2361 use_def_for_rts = true;
2362 use_def_for_sg = false;
2363 fast_div = false;
2364 break;
2365 case AR5K_ANTMODE_SECTOR_STA:
2366 tx_ant = 1; /* variable */
2367 use_def_for_tx = true;
2368 update_def_on_tx = false;
2369 use_def_for_rts = true;
2370 use_def_for_sg = false;
2371 fast_div = true;
2372 break;
2373 case AR5K_ANTMODE_DEBUG:
2374 def_ant = 1;
2375 tx_ant = 2;
2376 use_def_for_tx = false;
2377 update_def_on_tx = false;
2378 use_def_for_rts = false;
2379 use_def_for_sg = false;
2380 fast_div = false;
2381 break;
2382 default:
2383 return;
2386 ah->ah_tx_ant = tx_ant;
2387 ah->ah_ant_mode = ant_mode;
2388 ah->ah_def_ant = def_ant;
2390 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2391 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2392 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2393 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2395 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2397 if (sta_id1)
2398 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2400 ath5k_hw_set_antenna_switch(ah, ee_mode);
2401 /* Note: set diversity before default antenna
2402 * because it won't work correctly */
2403 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2404 ath5k_hw_set_def_antenna(ah, def_ant);
2408 /****************\
2409 * TX power setup *
2410 \****************/
2413 * Helper functions
2417 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2418 * @target: X value of the middle point
2419 * @x_left: X value of the left point
2420 * @x_right: X value of the right point
2421 * @y_left: Y value of the left point
2422 * @y_right: Y value of the right point
2424 static s16
2425 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2426 s16 y_left, s16 y_right)
2428 s16 ratio, result;
2430 /* Avoid divide by zero and skip interpolation
2431 * if we have the same point */
2432 if ((x_left == x_right) || (y_left == y_right))
2433 return y_left;
2436 * Since we use ints and not fps, we need to scale up in
2437 * order to get a sane ratio value (or else we 'll eg. get
2438 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2439 * to have some accuracy both for 0.5 and 0.25 steps.
2441 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2443 /* Now scale down to be in range */
2444 result = y_left + (ratio * (target - x_left) / 100);
2446 return result;
2450 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2451 * linear PCDAC curve
2452 * @stepL: Left array with y values (pcdac steps)
2453 * @stepR: Right array with y values (pcdac steps)
2454 * @pwrL: Left array with x values (power steps)
2455 * @pwrR: Right array with x values (power steps)
2457 * Since we have the top of the curve and we draw the line below
2458 * until we reach 1 (1 pcdac step) we need to know which point
2459 * (x value) that is so that we don't go below x axis and have negative
2460 * pcdac values when creating the curve, or fill the table with zeros.
2462 static s16
2463 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2464 const s16 *pwrL, const s16 *pwrR)
2466 s8 tmp;
2467 s16 min_pwrL, min_pwrR;
2468 s16 pwr_i;
2470 /* Some vendors write the same pcdac value twice !!! */
2471 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2472 return max(pwrL[0], pwrR[0]);
2474 if (pwrL[0] == pwrL[1])
2475 min_pwrL = pwrL[0];
2476 else {
2477 pwr_i = pwrL[0];
2478 do {
2479 pwr_i--;
2480 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2481 pwrL[0], pwrL[1],
2482 stepL[0], stepL[1]);
2483 } while (tmp > 1);
2485 min_pwrL = pwr_i;
2488 if (pwrR[0] == pwrR[1])
2489 min_pwrR = pwrR[0];
2490 else {
2491 pwr_i = pwrR[0];
2492 do {
2493 pwr_i--;
2494 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2495 pwrR[0], pwrR[1],
2496 stepR[0], stepR[1]);
2497 } while (tmp > 1);
2499 min_pwrR = pwr_i;
2502 /* Keep the right boundary so that it works for both curves */
2503 return max(min_pwrL, min_pwrR);
2507 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2508 * @pmin: Minimum power value (xmin)
2509 * @pmax: Maximum power value (xmax)
2510 * @pwr: Array of power steps (x values)
2511 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2512 * @num_points: Number of provided points
2513 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2514 * @type: One of enum ath5k_powertable_type (eeprom.h)
2516 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2517 * Power to PCDAC curve.
2519 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2520 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2521 * PCDAC/PDADC step for each curve is 64 but we can write more than
2522 * one curves on hw so we can go up to 128 (which is the max step we
2523 * can write on the final table).
2525 * We write y values (PCDAC/PDADC steps) on hw.
2527 static void
2528 ath5k_create_power_curve(s16 pmin, s16 pmax,
2529 const s16 *pwr, const u8 *vpd,
2530 u8 num_points,
2531 u8 *vpd_table, u8 type)
2533 u8 idx[2] = { 0, 1 };
2534 s16 pwr_i = 2 * pmin;
2535 int i;
2537 if (num_points < 2)
2538 return;
2540 /* We want the whole line, so adjust boundaries
2541 * to cover the entire power range. Note that
2542 * power values are already 0.25dB so no need
2543 * to multiply pwr_i by 2 */
2544 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2545 pwr_i = pmin;
2546 pmin = 0;
2547 pmax = 63;
2550 /* Find surrounding turning points (TPs)
2551 * and interpolate between them */
2552 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2553 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2555 /* We passed the right TP, move to the next set of TPs
2556 * if we pass the last TP, extrapolate above using the last
2557 * two TPs for ratio */
2558 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2559 idx[0]++;
2560 idx[1]++;
2563 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2564 pwr[idx[0]], pwr[idx[1]],
2565 vpd[idx[0]], vpd[idx[1]]);
2567 /* Increase by 0.5dB
2568 * (0.25 dB units) */
2569 pwr_i += 2;
2574 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2575 * for a given channel.
2576 * @ah: The &struct ath5k_hw
2577 * @channel: The &struct ieee80211_channel
2578 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2579 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2581 * Get the surrounding per-channel power calibration piers
2582 * for a given frequency so that we can interpolate between
2583 * them and come up with an appropriate dataset for our current
2584 * channel.
2586 static void
2587 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2588 struct ieee80211_channel *channel,
2589 struct ath5k_chan_pcal_info **pcinfo_l,
2590 struct ath5k_chan_pcal_info **pcinfo_r)
2592 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2593 struct ath5k_chan_pcal_info *pcinfo;
2594 u8 idx_l, idx_r;
2595 u8 mode, max, i;
2596 u32 target = channel->center_freq;
2598 idx_l = 0;
2599 idx_r = 0;
2601 switch (channel->hw_value) {
2602 case AR5K_EEPROM_MODE_11A:
2603 pcinfo = ee->ee_pwr_cal_a;
2604 mode = AR5K_EEPROM_MODE_11A;
2605 break;
2606 case AR5K_EEPROM_MODE_11B:
2607 pcinfo = ee->ee_pwr_cal_b;
2608 mode = AR5K_EEPROM_MODE_11B;
2609 break;
2610 case AR5K_EEPROM_MODE_11G:
2611 default:
2612 pcinfo = ee->ee_pwr_cal_g;
2613 mode = AR5K_EEPROM_MODE_11G;
2614 break;
2616 max = ee->ee_n_piers[mode] - 1;
2618 /* Frequency is below our calibrated
2619 * range. Use the lowest power curve
2620 * we have */
2621 if (target < pcinfo[0].freq) {
2622 idx_l = idx_r = 0;
2623 goto done;
2626 /* Frequency is above our calibrated
2627 * range. Use the highest power curve
2628 * we have */
2629 if (target > pcinfo[max].freq) {
2630 idx_l = idx_r = max;
2631 goto done;
2634 /* Frequency is inside our calibrated
2635 * channel range. Pick the surrounding
2636 * calibration piers so that we can
2637 * interpolate */
2638 for (i = 0; i <= max; i++) {
2640 /* Frequency matches one of our calibration
2641 * piers, no need to interpolate, just use
2642 * that calibration pier */
2643 if (pcinfo[i].freq == target) {
2644 idx_l = idx_r = i;
2645 goto done;
2648 /* We found a calibration pier that's above
2649 * frequency, use this pier and the previous
2650 * one to interpolate */
2651 if (target < pcinfo[i].freq) {
2652 idx_r = i;
2653 idx_l = idx_r - 1;
2654 goto done;
2658 done:
2659 *pcinfo_l = &pcinfo[idx_l];
2660 *pcinfo_r = &pcinfo[idx_r];
2664 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2665 * calibration data
2666 * @ah: The &struct ath5k_hw *ah,
2667 * @channel: The &struct ieee80211_channel
2668 * @rates: The &struct ath5k_rate_pcal_info to fill
2670 * Get the surrounding per-rate power calibration data
2671 * for a given frequency and interpolate between power
2672 * values to set max target power supported by hw for
2673 * each rate on this frequency.
2675 static void
2676 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2677 struct ieee80211_channel *channel,
2678 struct ath5k_rate_pcal_info *rates)
2680 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2681 struct ath5k_rate_pcal_info *rpinfo;
2682 u8 idx_l, idx_r;
2683 u8 mode, max, i;
2684 u32 target = channel->center_freq;
2686 idx_l = 0;
2687 idx_r = 0;
2689 switch (channel->hw_value) {
2690 case AR5K_MODE_11A:
2691 rpinfo = ee->ee_rate_tpwr_a;
2692 mode = AR5K_EEPROM_MODE_11A;
2693 break;
2694 case AR5K_MODE_11B:
2695 rpinfo = ee->ee_rate_tpwr_b;
2696 mode = AR5K_EEPROM_MODE_11B;
2697 break;
2698 case AR5K_MODE_11G:
2699 default:
2700 rpinfo = ee->ee_rate_tpwr_g;
2701 mode = AR5K_EEPROM_MODE_11G;
2702 break;
2704 max = ee->ee_rate_target_pwr_num[mode] - 1;
2706 /* Get the surrounding calibration
2707 * piers - same as above */
2708 if (target < rpinfo[0].freq) {
2709 idx_l = idx_r = 0;
2710 goto done;
2713 if (target > rpinfo[max].freq) {
2714 idx_l = idx_r = max;
2715 goto done;
2718 for (i = 0; i <= max; i++) {
2720 if (rpinfo[i].freq == target) {
2721 idx_l = idx_r = i;
2722 goto done;
2725 if (target < rpinfo[i].freq) {
2726 idx_r = i;
2727 idx_l = idx_r - 1;
2728 goto done;
2732 done:
2733 /* Now interpolate power value, based on the frequency */
2734 rates->freq = target;
2736 rates->target_power_6to24 =
2737 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2738 rpinfo[idx_r].freq,
2739 rpinfo[idx_l].target_power_6to24,
2740 rpinfo[idx_r].target_power_6to24);
2742 rates->target_power_36 =
2743 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2744 rpinfo[idx_r].freq,
2745 rpinfo[idx_l].target_power_36,
2746 rpinfo[idx_r].target_power_36);
2748 rates->target_power_48 =
2749 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2750 rpinfo[idx_r].freq,
2751 rpinfo[idx_l].target_power_48,
2752 rpinfo[idx_r].target_power_48);
2754 rates->target_power_54 =
2755 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2756 rpinfo[idx_r].freq,
2757 rpinfo[idx_l].target_power_54,
2758 rpinfo[idx_r].target_power_54);
2762 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2763 * @ah: the &struct ath5k_hw
2764 * @channel: The &struct ieee80211_channel
2766 * Get the max edge power for this channel if
2767 * we have such data from EEPROM's Conformance Test
2768 * Limits (CTL), and limit max power if needed.
2770 static void
2771 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2772 struct ieee80211_channel *channel)
2774 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2775 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2776 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2777 u8 *ctl_val = ee->ee_ctl;
2778 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2779 s16 edge_pwr = 0;
2780 u8 rep_idx;
2781 u8 i, ctl_mode;
2782 u8 ctl_idx = 0xFF;
2783 u32 target = channel->center_freq;
2785 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2787 switch (channel->hw_value) {
2788 case AR5K_MODE_11A:
2789 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2790 ctl_mode |= AR5K_CTL_TURBO;
2791 else
2792 ctl_mode |= AR5K_CTL_11A;
2793 break;
2794 case AR5K_MODE_11G:
2795 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2796 ctl_mode |= AR5K_CTL_TURBOG;
2797 else
2798 ctl_mode |= AR5K_CTL_11G;
2799 break;
2800 case AR5K_MODE_11B:
2801 ctl_mode |= AR5K_CTL_11B;
2802 break;
2803 default:
2804 return;
2807 for (i = 0; i < ee->ee_ctls; i++) {
2808 if (ctl_val[i] == ctl_mode) {
2809 ctl_idx = i;
2810 break;
2814 /* If we have a CTL dataset available grab it and find the
2815 * edge power for our frequency */
2816 if (ctl_idx == 0xFF)
2817 return;
2819 /* Edge powers are sorted by frequency from lower
2820 * to higher. Each CTL corresponds to 8 edge power
2821 * measurements. */
2822 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2824 /* Don't do boundaries check because we
2825 * might have more that one bands defined
2826 * for this mode */
2828 /* Get the edge power that's closer to our
2829 * frequency */
2830 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2831 rep_idx += i;
2832 if (target <= rep[rep_idx].freq)
2833 edge_pwr = (s16) rep[rep_idx].edge;
2836 if (edge_pwr)
2837 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2842 * Power to PCDAC table functions
2846 * DOC: Power to PCDAC table functions
2848 * For RF5111 we have an XPD -eXternal Power Detector- curve
2849 * for each calibrated channel. Each curve has 0,5dB Power steps
2850 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2851 * exponential function. To recreate the curve we read 11 points
2852 * from eeprom (eeprom.c) and interpolate here.
2854 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2855 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2856 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2857 * power steps on x axis and PCDAC steps on y axis and looks like a
2858 * linear function. To recreate the curve and pass the power values
2859 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2860 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2861 * and interpolate here.
2863 * For a given channel we get the calibrated points (piers) for it or
2864 * -if we don't have calibration data for this specific channel- from the
2865 * available surrounding channels we have calibration data for, after we do a
2866 * linear interpolation between them. Then since we have our calibrated points
2867 * for this channel, we do again a linear interpolation between them to get the
2868 * whole curve.
2870 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2874 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2875 * @ah: The &struct ath5k_hw
2876 * @table_min: Minimum power (x min)
2877 * @table_max: Maximum power (x max)
2879 * No further processing is needed for RF5111, the only thing we have to
2880 * do is fill the values below and above calibration range since eeprom data
2881 * may not cover the entire PCDAC table.
2883 static void
2884 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2885 s16 *table_max)
2887 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2888 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2889 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2890 s16 min_pwr, max_pwr;
2892 /* Get table boundaries */
2893 min_pwr = table_min[0];
2894 pcdac_0 = pcdac_tmp[0];
2896 max_pwr = table_max[0];
2897 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2899 /* Extrapolate below minimum using pcdac_0 */
2900 pcdac_i = 0;
2901 for (i = 0; i < min_pwr; i++)
2902 pcdac_out[pcdac_i++] = pcdac_0;
2904 /* Copy values from pcdac_tmp */
2905 pwr_idx = min_pwr;
2906 for (i = 0; pwr_idx <= max_pwr &&
2907 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2908 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2909 pwr_idx++;
2912 /* Extrapolate above maximum */
2913 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2914 pcdac_out[pcdac_i++] = pcdac_n;
2919 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2920 * @ah: The &struct ath5k_hw
2921 * @table_min: Minimum power (x min)
2922 * @table_max: Maximum power (x max)
2923 * @pdcurves: Number of pd curves
2925 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2926 * RFX112 can have up to 2 curves (one for low txpower range and one for
2927 * higher txpower range). We need to put them both on pcdac_out and place
2928 * them in the correct location. In case we only have one curve available
2929 * just fit it on pcdac_out (it's supposed to cover the entire range of
2930 * available pwr levels since it's always the higher power curve). Extrapolate
2931 * below and above final table if needed.
2933 static void
2934 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2935 s16 *table_max, u8 pdcurves)
2937 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2938 u8 *pcdac_low_pwr;
2939 u8 *pcdac_high_pwr;
2940 u8 *pcdac_tmp;
2941 u8 pwr;
2942 s16 max_pwr_idx;
2943 s16 min_pwr_idx;
2944 s16 mid_pwr_idx = 0;
2945 /* Edge flag turns on the 7nth bit on the PCDAC
2946 * to declare the higher power curve (force values
2947 * to be greater than 64). If we only have one curve
2948 * we don't need to set this, if we have 2 curves and
2949 * fill the table backwards this can also be used to
2950 * switch from higher power curve to lower power curve */
2951 u8 edge_flag;
2952 int i;
2954 /* When we have only one curve available
2955 * that's the higher power curve. If we have
2956 * two curves the first is the high power curve
2957 * and the next is the low power curve. */
2958 if (pdcurves > 1) {
2959 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2960 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2961 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2962 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2964 /* If table size goes beyond 31.5dB, keep the
2965 * upper 31.5dB range when setting tx power.
2966 * Note: 126 = 31.5 dB in quarter dB steps */
2967 if (table_max[0] - table_min[1] > 126)
2968 min_pwr_idx = table_max[0] - 126;
2969 else
2970 min_pwr_idx = table_min[1];
2972 /* Since we fill table backwards
2973 * start from high power curve */
2974 pcdac_tmp = pcdac_high_pwr;
2976 edge_flag = 0x40;
2977 } else {
2978 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2979 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2980 min_pwr_idx = table_min[0];
2981 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2982 pcdac_tmp = pcdac_high_pwr;
2983 edge_flag = 0;
2986 /* This is used when setting tx power*/
2987 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2989 /* Fill Power to PCDAC table backwards */
2990 pwr = max_pwr_idx;
2991 for (i = 63; i >= 0; i--) {
2992 /* Entering lower power range, reset
2993 * edge flag and set pcdac_tmp to lower
2994 * power curve.*/
2995 if (edge_flag == 0x40 &&
2996 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2997 edge_flag = 0x00;
2998 pcdac_tmp = pcdac_low_pwr;
2999 pwr = mid_pwr_idx / 2;
3002 /* Don't go below 1, extrapolate below if we have
3003 * already switched to the lower power curve -or
3004 * we only have one curve and edge_flag is zero
3005 * anyway */
3006 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3007 while (i >= 0) {
3008 pcdac_out[i] = pcdac_out[i + 1];
3009 i--;
3011 break;
3014 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3016 /* Extrapolate above if pcdac is greater than
3017 * 126 -this can happen because we OR pcdac_out
3018 * value with edge_flag on high power curve */
3019 if (pcdac_out[i] > 126)
3020 pcdac_out[i] = 126;
3022 /* Decrease by a 0.5dB step */
3023 pwr--;
3028 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3029 * @ah: The &struct ath5k_hw
3031 static void
3032 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3034 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
3035 int i;
3038 * Write TX power values
3040 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3041 ath5k_hw_reg_write(ah,
3042 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3043 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3044 AR5K_PHY_PCDAC_TXPOWER(i));
3050 * Power to PDADC table functions
3054 * DOC: Power to PDADC table functions
3056 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3057 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3058 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3059 * PDADC steps on y axis and looks like an exponential function like the
3060 * RF5111 curve.
3062 * To recreate the curves we read the points from eeprom (eeprom.c)
3063 * and interpolate here. Note that in most cases only 2 (higher and lower)
3064 * curves are used (like RF5112) but vendors have the opportunity to include
3065 * all 4 curves on eeprom. The final curve (higher power) has an extra
3066 * point for better accuracy like RF5112.
3068 * The process is similar to what we do above for RF5111/5112
3072 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3073 * @ah: The &struct ath5k_hw
3074 * @pwr_min: Minimum power (x min)
3075 * @pwr_max: Maximum power (x max)
3076 * @pdcurves: Number of available curves
3078 * Combine the various pd curves and create the final Power to PDADC table
3079 * We can have up to 4 pd curves, we need to do a similar process
3080 * as we do for RF5112. This time we don't have an edge_flag but we
3081 * set the gain boundaries on a separate register.
3083 static void
3084 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3085 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3087 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3088 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3089 u8 *pdadc_tmp;
3090 s16 pdadc_0;
3091 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3092 u8 pd_gain_overlap;
3094 /* Note: Register value is initialized on initvals
3095 * there is no feedback from hw.
3096 * XXX: What about pd_gain_overlap from EEPROM ? */
3097 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3098 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3100 /* Create final PDADC table */
3101 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3102 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3104 if (pdg == pdcurves - 1)
3105 /* 2 dB boundary stretch for last
3106 * (higher power) curve */
3107 gain_boundaries[pdg] = pwr_max[pdg] + 4;
3108 else
3109 /* Set gain boundary in the middle
3110 * between this curve and the next one */
3111 gain_boundaries[pdg] =
3112 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3114 /* Sanity check in case our 2 db stretch got out of
3115 * range. */
3116 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3117 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3119 /* For the first curve (lower power)
3120 * start from 0 dB */
3121 if (pdg == 0)
3122 pdadc_0 = 0;
3123 else
3124 /* For the other curves use the gain overlap */
3125 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3126 pd_gain_overlap;
3128 /* Force each power step to be at least 0.5 dB */
3129 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3130 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3131 else
3132 pwr_step = 1;
3134 /* If pdadc_0 is negative, we need to extrapolate
3135 * below this pdgain by a number of pwr_steps */
3136 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3137 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3138 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3139 pdadc_0++;
3142 /* Set last pwr level, using gain boundaries */
3143 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3144 /* Limit it to be inside pwr range */
3145 table_size = pwr_max[pdg] - pwr_min[pdg];
3146 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3148 /* Fill pdadc_out table */
3149 while (pdadc_0 < max_idx && pdadc_i < 128)
3150 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3152 /* Need to extrapolate above this pdgain? */
3153 if (pdadc_n <= max_idx)
3154 continue;
3156 /* Force each power step to be at least 0.5 dB */
3157 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3158 pwr_step = pdadc_tmp[table_size - 1] -
3159 pdadc_tmp[table_size - 2];
3160 else
3161 pwr_step = 1;
3163 /* Extrapolate above */
3164 while ((pdadc_0 < (s16) pdadc_n) &&
3165 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3166 s16 tmp = pdadc_tmp[table_size - 1] +
3167 (pdadc_0 - max_idx) * pwr_step;
3168 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3169 pdadc_0++;
3173 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3174 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3175 pdg++;
3178 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3179 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3180 pdadc_i++;
3183 /* Set gain boundaries */
3184 ath5k_hw_reg_write(ah,
3185 AR5K_REG_SM(pd_gain_overlap,
3186 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3187 AR5K_REG_SM(gain_boundaries[0],
3188 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3189 AR5K_REG_SM(gain_boundaries[1],
3190 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3191 AR5K_REG_SM(gain_boundaries[2],
3192 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3193 AR5K_REG_SM(gain_boundaries[3],
3194 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3195 AR5K_PHY_TPC_RG5);
3197 /* Used for setting rate power table */
3198 ah->ah_txpower.txp_min_idx = pwr_min[0];
3203 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3204 * @ah: The &struct ath5k_hw
3205 * @ee_mode: One of enum ath5k_driver_mode
3207 static void
3208 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3210 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3211 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3212 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3213 u8 pdcurves = ee->ee_pd_gains[ee_mode];
3214 u32 reg;
3215 u8 i;
3217 /* Select the right pdgain curves */
3219 /* Clear current settings */
3220 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3221 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3222 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3223 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3224 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3227 * Use pd_gains curve from eeprom
3229 * This overrides the default setting from initvals
3230 * in case some vendors (e.g. Zcomax) don't use the default
3231 * curves. If we don't honor their settings we 'll get a
3232 * 5dB (1 * gain overlap ?) drop.
3234 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3236 switch (pdcurves) {
3237 case 3:
3238 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3239 /* Fall through */
3240 case 2:
3241 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3242 /* Fall through */
3243 case 1:
3244 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3245 break;
3247 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3250 * Write TX power values
3252 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3253 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3254 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3260 * Common code for PCDAC/PDADC tables
3264 * ath5k_setup_channel_powertable() - Set up power table for this channel
3265 * @ah: The &struct ath5k_hw
3266 * @channel: The &struct ieee80211_channel
3267 * @ee_mode: One of enum ath5k_driver_mode
3268 * @type: One of enum ath5k_powertable_type (eeprom.h)
3270 * This is the main function that uses all of the above
3271 * to set PCDAC/PDADC table on hw for the current channel.
3272 * This table is used for tx power calibration on the baseband,
3273 * without it we get weird tx power levels and in some cases
3274 * distorted spectral mask
3276 static int
3277 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3278 struct ieee80211_channel *channel,
3279 u8 ee_mode, u8 type)
3281 struct ath5k_pdgain_info *pdg_L, *pdg_R;
3282 struct ath5k_chan_pcal_info *pcinfo_L;
3283 struct ath5k_chan_pcal_info *pcinfo_R;
3284 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3285 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3286 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3287 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3288 u8 *tmpL;
3289 u8 *tmpR;
3290 u32 target = channel->center_freq;
3291 int pdg, i;
3293 /* Get surrounding freq piers for this channel */
3294 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3295 &pcinfo_L,
3296 &pcinfo_R);
3298 /* Loop over pd gain curves on
3299 * surrounding freq piers by index */
3300 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3302 /* Fill curves in reverse order
3303 * from lower power (max gain)
3304 * to higher power. Use curve -> idx
3305 * backmapping we did on eeprom init */
3306 u8 idx = pdg_curve_to_idx[pdg];
3308 /* Grab the needed curves by index */
3309 pdg_L = &pcinfo_L->pd_curves[idx];
3310 pdg_R = &pcinfo_R->pd_curves[idx];
3312 /* Initialize the temp tables */
3313 tmpL = ah->ah_txpower.tmpL[pdg];
3314 tmpR = ah->ah_txpower.tmpR[pdg];
3316 /* Set curve's x boundaries and create
3317 * curves so that they cover the same
3318 * range (if we don't do that one table
3319 * will have values on some range and the
3320 * other one won't have any so interpolation
3321 * will fail) */
3322 table_min[pdg] = min(pdg_L->pd_pwr[0],
3323 pdg_R->pd_pwr[0]) / 2;
3325 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3326 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3328 /* Now create the curves on surrounding channels
3329 * and interpolate if needed to get the final
3330 * curve for this gain on this channel */
3331 switch (type) {
3332 case AR5K_PWRTABLE_LINEAR_PCDAC:
3333 /* Override min/max so that we don't loose
3334 * accuracy (don't divide by 2) */
3335 table_min[pdg] = min(pdg_L->pd_pwr[0],
3336 pdg_R->pd_pwr[0]);
3338 table_max[pdg] =
3339 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3340 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3342 /* Override minimum so that we don't get
3343 * out of bounds while extrapolating
3344 * below. Don't do this when we have 2
3345 * curves and we are on the high power curve
3346 * because table_min is ok in this case */
3347 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3349 table_min[pdg] =
3350 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3351 pdg_R->pd_step,
3352 pdg_L->pd_pwr,
3353 pdg_R->pd_pwr);
3355 /* Don't go too low because we will
3356 * miss the upper part of the curve.
3357 * Note: 126 = 31.5dB (max power supported)
3358 * in 0.25dB units */
3359 if (table_max[pdg] - table_min[pdg] > 126)
3360 table_min[pdg] = table_max[pdg] - 126;
3363 /* Fall through */
3364 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3365 case AR5K_PWRTABLE_PWR_TO_PDADC:
3367 ath5k_create_power_curve(table_min[pdg],
3368 table_max[pdg],
3369 pdg_L->pd_pwr,
3370 pdg_L->pd_step,
3371 pdg_L->pd_points, tmpL, type);
3373 /* We are in a calibration
3374 * pier, no need to interpolate
3375 * between freq piers */
3376 if (pcinfo_L == pcinfo_R)
3377 continue;
3379 ath5k_create_power_curve(table_min[pdg],
3380 table_max[pdg],
3381 pdg_R->pd_pwr,
3382 pdg_R->pd_step,
3383 pdg_R->pd_points, tmpR, type);
3384 break;
3385 default:
3386 return -EINVAL;
3389 /* Interpolate between curves
3390 * of surrounding freq piers to
3391 * get the final curve for this
3392 * pd gain. Re-use tmpL for interpolation
3393 * output */
3394 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3395 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3396 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3397 (s16) pcinfo_L->freq,
3398 (s16) pcinfo_R->freq,
3399 (s16) tmpL[i],
3400 (s16) tmpR[i]);
3404 /* Now we have a set of curves for this
3405 * channel on tmpL (x range is table_max - table_min
3406 * and y values are tmpL[pdg][]) sorted in the same
3407 * order as EEPROM (because we've used the backmapping).
3408 * So for RF5112 it's from higher power to lower power
3409 * and for RF2413 it's from lower power to higher power.
3410 * For RF5111 we only have one curve. */
3412 /* Fill min and max power levels for this
3413 * channel by interpolating the values on
3414 * surrounding channels to complete the dataset */
3415 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3416 (s16) pcinfo_L->freq,
3417 (s16) pcinfo_R->freq,
3418 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3420 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3421 (s16) pcinfo_L->freq,
3422 (s16) pcinfo_R->freq,
3423 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3425 /* Fill PCDAC/PDADC table */
3426 switch (type) {
3427 case AR5K_PWRTABLE_LINEAR_PCDAC:
3428 /* For RF5112 we can have one or two curves
3429 * and each curve covers a certain power lvl
3430 * range so we need to do some more processing */
3431 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3432 ee->ee_pd_gains[ee_mode]);
3434 /* Set txp.offset so that we can
3435 * match max power value with max
3436 * table index */
3437 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3438 break;
3439 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3440 /* We are done for RF5111 since it has only
3441 * one curve, just fit the curve on the table */
3442 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3444 /* No rate powertable adjustment for RF5111 */
3445 ah->ah_txpower.txp_min_idx = 0;
3446 ah->ah_txpower.txp_offset = 0;
3447 break;
3448 case AR5K_PWRTABLE_PWR_TO_PDADC:
3449 /* Set PDADC boundaries and fill
3450 * final PDADC table */
3451 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3452 ee->ee_pd_gains[ee_mode]);
3454 /* Set txp.offset, note that table_min
3455 * can be negative */
3456 ah->ah_txpower.txp_offset = table_min[0];
3457 break;
3458 default:
3459 return -EINVAL;
3462 ah->ah_txpower.txp_setup = true;
3464 return 0;
3468 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3469 * @ah: The &struct ath5k_hw
3470 * @ee_mode: One of enum ath5k_driver_mode
3471 * @type: One of enum ath5k_powertable_type (eeprom.h)
3473 static void
3474 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3476 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3477 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3478 else
3479 ath5k_write_pcdac_table(ah);
3484 * DOC: Per-rate tx power setting
3486 * This is the code that sets the desired tx power limit (below
3487 * maximum) on hw for each rate (we also have TPC that sets
3488 * power per packet type). We do that by providing an index on the
3489 * PCDAC/PDADC table we set up above, for each rate.
3491 * For now we only limit txpower based on maximum tx power
3492 * supported by hw (what's inside rate_info) + conformance test
3493 * limits. We need to limit this even more, based on regulatory domain
3494 * etc to be safe. Normally this is done from above so we don't care
3495 * here, all we care is that the tx power we set will be O.K.
3496 * for the hw (e.g. won't create noise on PA etc).
3498 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3499 * x values) and is indexed as follows:
3500 * rates[0] - rates[7] -> OFDM rates
3501 * rates[8] - rates[14] -> CCK rates
3502 * rates[15] -> XR rates (they all have the same power)
3506 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3507 * @ah: The &struct ath5k_hw
3508 * @max_pwr: The maximum tx power requested in 0.5dB steps
3509 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3510 * @ee_mode: One of enum ath5k_driver_mode
3512 static void
3513 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3514 struct ath5k_rate_pcal_info *rate_info,
3515 u8 ee_mode)
3517 unsigned int i;
3518 u16 *rates;
3520 /* max_pwr is power level we got from driver/user in 0.5dB
3521 * units, switch to 0.25dB units so we can compare */
3522 max_pwr *= 2;
3523 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3525 /* apply rate limits */
3526 rates = ah->ah_txpower.txp_rates_power_table;
3528 /* OFDM rates 6 to 24Mb/s */
3529 for (i = 0; i < 5; i++)
3530 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3532 /* Rest OFDM rates */
3533 rates[5] = min(rates[0], rate_info->target_power_36);
3534 rates[6] = min(rates[0], rate_info->target_power_48);
3535 rates[7] = min(rates[0], rate_info->target_power_54);
3537 /* CCK rates */
3538 /* 1L */
3539 rates[8] = min(rates[0], rate_info->target_power_6to24);
3540 /* 2L */
3541 rates[9] = min(rates[0], rate_info->target_power_36);
3542 /* 2S */
3543 rates[10] = min(rates[0], rate_info->target_power_36);
3544 /* 5L */
3545 rates[11] = min(rates[0], rate_info->target_power_48);
3546 /* 5S */
3547 rates[12] = min(rates[0], rate_info->target_power_48);
3548 /* 11L */
3549 rates[13] = min(rates[0], rate_info->target_power_54);
3550 /* 11S */
3551 rates[14] = min(rates[0], rate_info->target_power_54);
3553 /* XR rates */
3554 rates[15] = min(rates[0], rate_info->target_power_6to24);
3556 /* CCK rates have different peak to average ratio
3557 * so we have to tweak their power so that gainf
3558 * correction works ok. For this we use OFDM to
3559 * CCK delta from eeprom */
3560 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3561 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3562 for (i = 8; i <= 15; i++)
3563 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3565 /* Now that we have all rates setup use table offset to
3566 * match the power range set by user with the power indices
3567 * on PCDAC/PDADC table */
3568 for (i = 0; i < 16; i++) {
3569 rates[i] += ah->ah_txpower.txp_offset;
3570 /* Don't get out of bounds */
3571 if (rates[i] > 63)
3572 rates[i] = 63;
3575 /* Min/max in 0.25dB units */
3576 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3577 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3578 ah->ah_txpower.txp_ofdm = rates[7];
3583 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3584 * @ah: The &struct ath5k_hw
3585 * @channel: The &struct ieee80211_channel
3586 * @txpower: Requested tx power in 0.5dB steps
3588 * Combines all of the above to set the requested tx power limit
3589 * on hw.
3591 static int
3592 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3593 u8 txpower)
3595 struct ath5k_rate_pcal_info rate_info;
3596 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3597 int ee_mode;
3598 u8 type;
3599 int ret;
3601 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3602 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3603 return -EINVAL;
3606 ee_mode = ath5k_eeprom_mode_from_channel(channel);
3607 if (ee_mode < 0) {
3608 ATH5K_ERR(ah,
3609 "invalid channel: %d\n", channel->center_freq);
3610 return -EINVAL;
3613 /* Initialize TX power table */
3614 switch (ah->ah_radio) {
3615 case AR5K_RF5110:
3616 /* TODO */
3617 return 0;
3618 case AR5K_RF5111:
3619 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3620 break;
3621 case AR5K_RF5112:
3622 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3623 break;
3624 case AR5K_RF2413:
3625 case AR5K_RF5413:
3626 case AR5K_RF2316:
3627 case AR5K_RF2317:
3628 case AR5K_RF2425:
3629 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3630 break;
3631 default:
3632 return -EINVAL;
3636 * If we don't change channel/mode skip tx powertable calculation
3637 * and use the cached one.
3639 if (!ah->ah_txpower.txp_setup ||
3640 (channel->hw_value != curr_channel->hw_value) ||
3641 (channel->center_freq != curr_channel->center_freq)) {
3642 /* Reset TX power values */
3643 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3644 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3646 /* Calculate the powertable */
3647 ret = ath5k_setup_channel_powertable(ah, channel,
3648 ee_mode, type);
3649 if (ret)
3650 return ret;
3653 /* Write table on hw */
3654 ath5k_write_channel_powertable(ah, ee_mode, type);
3656 /* Limit max power if we have a CTL available */
3657 ath5k_get_max_ctl_power(ah, channel);
3659 /* FIXME: Antenna reduction stuff */
3661 /* FIXME: Limit power on turbo modes */
3663 /* FIXME: TPC scale reduction */
3665 /* Get surrounding channels for per-rate power table
3666 * calibration */
3667 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3669 /* Setup rate power table */
3670 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3672 /* Write rate power table on hw */
3673 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3674 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3675 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3677 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3678 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3679 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3681 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3682 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3683 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3685 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3686 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3687 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3689 /* FIXME: TPC support */
3690 if (ah->ah_txpower.txp_tpc) {
3691 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3692 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3694 ath5k_hw_reg_write(ah,
3695 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3696 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3697 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3698 AR5K_TPC);
3699 } else {
3700 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3701 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3704 return 0;
3708 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3709 * @ah: The &struct ath5k_hw
3710 * @txpower: The requested tx power limit in 0.5dB steps
3712 * This function provides access to ath5k_hw_txpower to the driver in
3713 * case user or an application changes it while PHY is running.
3716 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3718 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3719 "changing txpower to %d\n", txpower);
3721 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3725 /*************\
3726 Init function
3727 \*************/
3730 * ath5k_hw_phy_init() - Initialize PHY
3731 * @ah: The &struct ath5k_hw
3732 * @channel: The @struct ieee80211_channel
3733 * @mode: One of enum ath5k_driver_mode
3734 * @fast: Try a fast channel switch instead
3736 * This is the main function used during reset to initialize PHY
3737 * or do a fast channel change if possible.
3739 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3740 * warm reset state !
3743 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3744 u8 mode, bool fast)
3746 struct ieee80211_channel *curr_channel;
3747 int ret, i;
3748 u32 phy_tst1;
3749 ret = 0;
3752 * Sanity check for fast flag
3753 * Don't try fast channel change when changing modulation
3754 * mode/band. We check for chip compatibility on
3755 * ath5k_hw_reset.
3757 curr_channel = ah->ah_current_channel;
3758 if (fast && (channel->hw_value != curr_channel->hw_value))
3759 return -EINVAL;
3762 * On fast channel change we only set the synth parameters
3763 * while PHY is running, enable calibration and skip the rest.
3765 if (fast) {
3766 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3767 AR5K_PHY_RFBUS_REQ_REQUEST);
3768 for (i = 0; i < 100; i++) {
3769 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3770 break;
3771 udelay(5);
3773 /* Failed */
3774 if (i >= 100)
3775 return -EIO;
3777 /* Set channel and wait for synth */
3778 ret = ath5k_hw_channel(ah, channel);
3779 if (ret)
3780 return ret;
3782 ath5k_hw_wait_for_synth(ah, channel);
3786 * Set TX power
3788 * Note: We need to do that before we set
3789 * RF buffer settings on 5211/5212+ so that we
3790 * properly set curve indices.
3792 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3793 ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3794 if (ret)
3795 return ret;
3797 /* Write OFDM timings on 5212*/
3798 if (ah->ah_version == AR5K_AR5212 &&
3799 channel->hw_value != AR5K_MODE_11B) {
3801 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3802 if (ret)
3803 return ret;
3805 /* Spur info is available only from EEPROM versions
3806 * greater than 5.3, but the EEPROM routines will use
3807 * static values for older versions */
3808 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3809 ath5k_hw_set_spur_mitigation_filter(ah,
3810 channel);
3813 /* If we used fast channel switching
3814 * we are done, release RF bus and
3815 * fire up NF calibration.
3817 * Note: Only NF calibration due to
3818 * channel change, not AGC calibration
3819 * since AGC is still running !
3821 if (fast) {
3823 * Release RF Bus grant
3825 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3826 AR5K_PHY_RFBUS_REQ_REQUEST);
3829 * Start NF calibration
3831 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3832 AR5K_PHY_AGCCTL_NF);
3834 return ret;
3838 * For 5210 we do all initialization using
3839 * initvals, so we don't have to modify
3840 * any settings (5210 also only supports
3841 * a/aturbo modes)
3843 if (ah->ah_version != AR5K_AR5210) {
3846 * Write initial RF gain settings
3847 * This should work for both 5111/5112
3849 ret = ath5k_hw_rfgain_init(ah, channel->band);
3850 if (ret)
3851 return ret;
3853 usleep_range(1000, 1500);
3856 * Write RF buffer
3858 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3859 if (ret)
3860 return ret;
3862 /*Enable/disable 802.11b mode on 5111
3863 (enable 2111 frequency converter + CCK)*/
3864 if (ah->ah_radio == AR5K_RF5111) {
3865 if (mode == AR5K_MODE_11B)
3866 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3867 AR5K_TXCFG_B_MODE);
3868 else
3869 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3870 AR5K_TXCFG_B_MODE);
3873 } else if (ah->ah_version == AR5K_AR5210) {
3874 usleep_range(1000, 1500);
3875 /* Disable phy and wait */
3876 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3877 usleep_range(1000, 1500);
3880 /* Set channel on PHY */
3881 ret = ath5k_hw_channel(ah, channel);
3882 if (ret)
3883 return ret;
3886 * Enable the PHY and wait until completion
3887 * This includes BaseBand and Synthesizer
3888 * activation.
3890 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3892 ath5k_hw_wait_for_synth(ah, channel);
3895 * Perform ADC test to see if baseband is ready
3896 * Set tx hold and check adc test register
3898 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3899 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3900 for (i = 0; i <= 20; i++) {
3901 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3902 break;
3903 usleep_range(200, 250);
3905 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3908 * Start automatic gain control calibration
3910 * During AGC calibration RX path is re-routed to
3911 * a power detector so we don't receive anything.
3913 * This method is used to calibrate some static offsets
3914 * used together with on-the fly I/Q calibration (the
3915 * one performed via ath5k_hw_phy_calibrate), which doesn't
3916 * interrupt rx path.
3918 * While rx path is re-routed to the power detector we also
3919 * start a noise floor calibration to measure the
3920 * card's noise floor (the noise we measure when we are not
3921 * transmitting or receiving anything).
3923 * If we are in a noisy environment, AGC calibration may time
3924 * out and/or noise floor calibration might timeout.
3926 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3927 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3929 /* At the same time start I/Q calibration for QAM constellation
3930 * -no need for CCK- */
3931 ah->ah_iq_cal_needed = false;
3932 if (!(mode == AR5K_MODE_11B)) {
3933 ah->ah_iq_cal_needed = true;
3934 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3935 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3936 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3937 AR5K_PHY_IQ_RUN);
3940 /* Wait for gain calibration to finish (we check for I/Q calibration
3941 * during ath5k_phy_calibrate) */
3942 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3943 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3944 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3945 channel->center_freq);
3948 /* Restore antenna mode */
3949 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3951 return ret;