2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 /****************************\
23 Reset function and helpers
24 \****************************/
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <asm/unaligned.h>
30 #include <linux/pci.h> /* To determine if a card is pci-e */
31 #include <linux/log2.h>
32 #include <linux/platform_device.h>
39 * DOC: Reset function and helpers
41 * Here we implement the main reset routine, used to bring the card
42 * to a working state and ready to receive. We also handle routines
43 * that don't fit on other places such as clock, sleep and power control
52 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
53 * @ah: The &struct ath5k_hw
54 * @reg: The register to read
55 * @flag: The flag/field to check on the register
56 * @val: The field value we expect (if we check a field)
57 * @is_set: Instead of checking if the flag got cleared, check if it got set
59 * Some registers contain flags that indicate that an operation is
60 * running. We use this function to poll these registers and check
61 * if these flags get cleared. We also use it to poll a register
62 * field (containing multiple flags) until it gets a specific value.
64 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
67 ath5k_hw_register_timeout(struct ath5k_hw
*ah
, u32 reg
, u32 flag
, u32 val
,
73 for (i
= AR5K_TUNE_REGISTER_TIMEOUT
; i
> 0; i
--) {
74 data
= ath5k_hw_reg_read(ah
, reg
);
75 if (is_set
&& (data
& flag
))
77 else if ((data
& flag
) == val
)
82 return (i
<= 0) ? -EAGAIN
: 0;
86 /*************************\
87 * Clock related functions *
88 \*************************/
91 * ath5k_hw_htoclock() - Translate usec to hw clock units
92 * @ah: The &struct ath5k_hw
93 * @usec: value in microseconds
95 * Translate usecs to hw clock units based on the current
98 * Returns number of clock units
101 ath5k_hw_htoclock(struct ath5k_hw
*ah
, unsigned int usec
)
103 struct ath_common
*common
= ath5k_hw_common(ah
);
104 return usec
* common
->clockrate
;
108 * ath5k_hw_clocktoh() - Translate hw clock units to usec
109 * @ah: The &struct ath5k_hw
110 * @clock: value in hw clock units
112 * Translate hw clock units to usecs based on the current
115 * Returns number of usecs
118 ath5k_hw_clocktoh(struct ath5k_hw
*ah
, unsigned int clock
)
120 struct ath_common
*common
= ath5k_hw_common(ah
);
121 return clock
/ common
->clockrate
;
125 * ath5k_hw_init_core_clock() - Initialize core clock
126 * @ah: The &struct ath5k_hw
128 * Initialize core clock parameters (usec, usec32, latencies etc),
129 * based on current bwmode and chipset properties.
132 ath5k_hw_init_core_clock(struct ath5k_hw
*ah
)
134 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
135 struct ath_common
*common
= ath5k_hw_common(ah
);
136 u32 usec_reg
, txlat
, rxlat
, usec
, clock
, sclock
, txf2txs
;
139 * Set core clock frequency
141 switch (channel
->hw_value
) {
154 /* Use clock multiplier for non-default
156 switch (ah
->ah_bwmode
) {
157 case AR5K_BWMODE_40MHZ
:
160 case AR5K_BWMODE_10MHZ
:
163 case AR5K_BWMODE_5MHZ
:
170 common
->clockrate
= clock
;
173 * Set USEC parameters
175 /* Set USEC counter on PCU*/
177 usec
= AR5K_REG_SM(usec
, AR5K_USEC_1
);
179 /* Set usec duration on DCU */
180 if (ah
->ah_version
!= AR5K_AR5210
)
181 AR5K_REG_WRITE_BITS(ah
, AR5K_DCU_GBL_IFS_MISC
,
182 AR5K_DCU_GBL_IFS_MISC_USEC_DUR
,
185 /* Set 32MHz USEC counter */
186 if ((ah
->ah_radio
== AR5K_RF5112
) ||
187 (ah
->ah_radio
== AR5K_RF2413
) ||
188 (ah
->ah_radio
== AR5K_RF5413
) ||
189 (ah
->ah_radio
== AR5K_RF2316
) ||
190 (ah
->ah_radio
== AR5K_RF2317
))
191 /* Remain on 40MHz clock ? */
195 sclock
= AR5K_REG_SM(sclock
, AR5K_USEC_32
);
198 * Set tx/rx latencies
200 usec_reg
= ath5k_hw_reg_read(ah
, AR5K_USEC_5211
);
201 txlat
= AR5K_REG_MS(usec_reg
, AR5K_USEC_TX_LATENCY_5211
);
202 rxlat
= AR5K_REG_MS(usec_reg
, AR5K_USEC_RX_LATENCY_5211
);
205 * Set default Tx frame to Tx data start delay
207 txf2txs
= AR5K_INIT_TXF2TXD_START_DEFAULT
;
210 * 5210 initvals don't include usec settings
211 * so we need to use magic values here for
214 if (ah
->ah_version
== AR5K_AR5210
) {
216 txlat
= AR5K_INIT_TX_LATENCY_5210
;
217 rxlat
= AR5K_INIT_RX_LATENCY_5210
;
220 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
221 /* 5311 has different tx/rx latency masks
222 * from 5211, since we deal 5311 the same
223 * as 5211 when setting initvals, shift
224 * values here to their proper locations
226 * Note: Initvals indicate tx/rx/ latencies
227 * are the same for turbo mode */
228 txlat
= AR5K_REG_SM(txlat
, AR5K_USEC_TX_LATENCY_5210
);
229 rxlat
= AR5K_REG_SM(rxlat
, AR5K_USEC_RX_LATENCY_5210
);
231 switch (ah
->ah_bwmode
) {
232 case AR5K_BWMODE_10MHZ
:
233 txlat
= AR5K_REG_SM(txlat
* 2,
234 AR5K_USEC_TX_LATENCY_5211
);
235 rxlat
= AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX
,
236 AR5K_USEC_RX_LATENCY_5211
);
237 txf2txs
= AR5K_INIT_TXF2TXD_START_DELAY_10MHZ
;
239 case AR5K_BWMODE_5MHZ
:
240 txlat
= AR5K_REG_SM(txlat
* 4,
241 AR5K_USEC_TX_LATENCY_5211
);
242 rxlat
= AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX
,
243 AR5K_USEC_RX_LATENCY_5211
);
244 txf2txs
= AR5K_INIT_TXF2TXD_START_DELAY_5MHZ
;
246 case AR5K_BWMODE_40MHZ
:
247 txlat
= AR5K_INIT_TX_LAT_MIN
;
248 rxlat
= AR5K_REG_SM(rxlat
/ 2,
249 AR5K_USEC_RX_LATENCY_5211
);
250 txf2txs
= AR5K_INIT_TXF2TXD_START_DEFAULT
;
256 usec_reg
= (usec
| sclock
| txlat
| rxlat
);
257 ath5k_hw_reg_write(ah
, usec_reg
, AR5K_USEC
);
259 /* On 5112 set tx frame to tx data start delay */
260 if (ah
->ah_radio
== AR5K_RF5112
) {
261 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RF_CTL2
,
262 AR5K_PHY_RF_CTL2_TXF2TXD_START
,
268 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
269 * @ah: The &struct ath5k_hw
270 * @enable: Enable sleep clock operation (false to disable)
272 * If there is an external 32KHz crystal available, use it
273 * as ref. clock instead of 32/40MHz clock and baseband clocks
274 * to save power during sleep or restore normal 32/40MHz
277 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
278 * 123 - 127) require delay on access.
281 ath5k_hw_set_sleep_clock(struct ath5k_hw
*ah
, bool enable
)
283 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
284 u32 scal
, spending
, sclock
;
286 /* Only set 32KHz settings if we have an external
287 * 32KHz crystal present */
288 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee
->ee_misc1
) ||
289 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee
->ee_misc1
)) &&
293 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, 1);
294 /* Set up tsf increment on each cycle */
295 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 61);
297 /* Set baseband sleep control registers
298 * and sleep control rate */
299 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
301 if ((ah
->ah_radio
== AR5K_RF5112
) ||
302 (ah
->ah_radio
== AR5K_RF5413
) ||
303 (ah
->ah_radio
== AR5K_RF2316
) ||
304 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
308 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
310 if ((ah
->ah_radio
== AR5K_RF5112
) ||
311 (ah
->ah_radio
== AR5K_RF5413
) ||
312 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
313 ath5k_hw_reg_write(ah
, 0x26, AR5K_PHY_SLMT
);
314 ath5k_hw_reg_write(ah
, 0x0d, AR5K_PHY_SCAL
);
315 ath5k_hw_reg_write(ah
, 0x07, AR5K_PHY_SCLOCK
);
316 ath5k_hw_reg_write(ah
, 0x3f, AR5K_PHY_SDELAY
);
317 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
318 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x02);
320 ath5k_hw_reg_write(ah
, 0x0a, AR5K_PHY_SLMT
);
321 ath5k_hw_reg_write(ah
, 0x0c, AR5K_PHY_SCAL
);
322 ath5k_hw_reg_write(ah
, 0x03, AR5K_PHY_SCLOCK
);
323 ath5k_hw_reg_write(ah
, 0x20, AR5K_PHY_SDELAY
);
324 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
325 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x03);
328 /* Enable sleep clock operation */
329 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
,
330 AR5K_PCICFG_SLEEP_CLOCK_EN
);
334 /* Disable sleep clock operation and
335 * restore default parameters */
336 AR5K_REG_DISABLE_BITS(ah
, AR5K_PCICFG
,
337 AR5K_PCICFG_SLEEP_CLOCK_EN
);
339 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
340 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0);
342 /* Set DAC/ADC delays */
343 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
344 ath5k_hw_reg_write(ah
, AR5K_PHY_SLMT_32MHZ
, AR5K_PHY_SLMT
);
346 if (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))
347 scal
= AR5K_PHY_SCAL_32MHZ_2417
;
348 else if (ee
->ee_is_hb63
)
349 scal
= AR5K_PHY_SCAL_32MHZ_HB63
;
351 scal
= AR5K_PHY_SCAL_32MHZ
;
352 ath5k_hw_reg_write(ah
, scal
, AR5K_PHY_SCAL
);
354 ath5k_hw_reg_write(ah
, AR5K_PHY_SCLOCK_32MHZ
, AR5K_PHY_SCLOCK
);
355 ath5k_hw_reg_write(ah
, AR5K_PHY_SDELAY_32MHZ
, AR5K_PHY_SDELAY
);
357 if ((ah
->ah_radio
== AR5K_RF5112
) ||
358 (ah
->ah_radio
== AR5K_RF5413
) ||
359 (ah
->ah_radio
== AR5K_RF2316
) ||
360 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
364 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
366 /* Set up tsf increment on each cycle */
367 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 1);
369 if ((ah
->ah_radio
== AR5K_RF5112
) ||
370 (ah
->ah_radio
== AR5K_RF5413
) ||
371 (ah
->ah_radio
== AR5K_RF2316
) ||
372 (ah
->ah_radio
== AR5K_RF2317
))
376 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, sclock
);
381 /*********************\
382 * Reset/Sleep control *
383 \*********************/
386 * ath5k_hw_nic_reset() - Reset the various chipset units
387 * @ah: The &struct ath5k_hw
388 * @val: Mask to indicate what units to reset
390 * To reset the various chipset units we need to write
391 * the mask to AR5K_RESET_CTL and poll the register until
392 * all flags are cleared.
394 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
397 ath5k_hw_nic_reset(struct ath5k_hw
*ah
, u32 val
)
400 u32 mask
= val
? val
: ~0U;
402 /* Read-and-clear RX Descriptor Pointer*/
403 ath5k_hw_reg_read(ah
, AR5K_RXDP
);
406 * Reset the device and wait until success
408 ath5k_hw_reg_write(ah
, val
, AR5K_RESET_CTL
);
410 /* Wait at least 128 PCI clocks */
411 usleep_range(15, 20);
413 if (ah
->ah_version
== AR5K_AR5210
) {
414 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
415 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
416 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
417 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
419 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
420 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
423 ret
= ath5k_hw_register_timeout(ah
, AR5K_RESET_CTL
, mask
, val
, false);
426 * Reset configuration register (for hw byte-swap). Note that this
427 * is only set for big endian. We do the necessary magic in
430 if ((val
& AR5K_RESET_CTL_PCU
) == 0)
431 ath5k_hw_reg_write(ah
, AR5K_INIT_CFG
, AR5K_CFG
);
437 * ath5k_hw_wisoc_reset() - Reset AHB chipset
438 * @ah: The &struct ath5k_hw
439 * @flags: Mask to indicate what units to reset
441 * Same as ath5k_hw_nic_reset but for AHB based devices
443 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
446 ath5k_hw_wisoc_reset(struct ath5k_hw
*ah
, u32 flags
)
448 u32 mask
= flags
? flags
: ~0U;
453 /* ah->ah_mac_srev is not available at this point yet */
454 if (ah
->devid
>= AR5K_SREV_AR2315_R6
) {
455 reg
= (u32 __iomem
*) AR5K_AR2315_RESET
;
456 if (mask
& AR5K_RESET_CTL_PCU
)
457 val
|= AR5K_AR2315_RESET_WMAC
;
458 if (mask
& AR5K_RESET_CTL_BASEBAND
)
459 val
|= AR5K_AR2315_RESET_BB_WARM
;
461 reg
= (u32 __iomem
*) AR5K_AR5312_RESET
;
462 if (to_platform_device(ah
->dev
)->id
== 0) {
463 if (mask
& AR5K_RESET_CTL_PCU
)
464 val
|= AR5K_AR5312_RESET_WMAC0
;
465 if (mask
& AR5K_RESET_CTL_BASEBAND
)
466 val
|= AR5K_AR5312_RESET_BB0_COLD
|
467 AR5K_AR5312_RESET_BB0_WARM
;
469 if (mask
& AR5K_RESET_CTL_PCU
)
470 val
|= AR5K_AR5312_RESET_WMAC1
;
471 if (mask
& AR5K_RESET_CTL_BASEBAND
)
472 val
|= AR5K_AR5312_RESET_BB1_COLD
|
473 AR5K_AR5312_RESET_BB1_WARM
;
477 /* Put BB/MAC into reset */
478 regval
= ioread32(reg
);
479 iowrite32(regval
| val
, reg
);
480 regval
= ioread32(reg
);
481 usleep_range(100, 150);
483 /* Bring BB/MAC out of reset */
484 iowrite32(regval
& ~val
, reg
);
485 regval
= ioread32(reg
);
488 * Reset configuration register (for hw byte-swap). Note that this
489 * is only set for big endian. We do the necessary magic in
492 if ((flags
& AR5K_RESET_CTL_PCU
) == 0)
493 ath5k_hw_reg_write(ah
, AR5K_INIT_CFG
, AR5K_CFG
);
499 * ath5k_hw_set_power_mode() - Set power mode
500 * @ah: The &struct ath5k_hw
501 * @mode: One of enum ath5k_power_mode
502 * @set_chip: Set to true to write sleep control register
503 * @sleep_duration: How much time the device is allowed to sleep
504 * when sleep logic is enabled (in 128 microsecond increments).
506 * This function is used to configure sleep policy and allowed
507 * sleep modes. For more information check out the sleep control
508 * register on reg.h and STA_ID1.
510 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
514 ath5k_hw_set_power_mode(struct ath5k_hw
*ah
, enum ath5k_power_mode mode
,
515 bool set_chip
, u16 sleep_duration
)
520 staid
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
);
524 staid
&= ~AR5K_STA_ID1_DEFAULT_ANTENNA
;
526 case AR5K_PM_NETWORK_SLEEP
:
528 ath5k_hw_reg_write(ah
,
529 AR5K_SLEEP_CTL_SLE_ALLOW
|
533 staid
|= AR5K_STA_ID1_PWR_SV
;
536 case AR5K_PM_FULL_SLEEP
:
538 ath5k_hw_reg_write(ah
, AR5K_SLEEP_CTL_SLE_SLP
,
541 staid
|= AR5K_STA_ID1_PWR_SV
;
546 staid
&= ~AR5K_STA_ID1_PWR_SV
;
551 data
= ath5k_hw_reg_read(ah
, AR5K_SLEEP_CTL
);
553 /* If card is down we 'll get 0xffff... so we
554 * need to clean this up before we write the register
556 if (data
& 0xffc00000)
559 /* Preserve sleep duration etc */
560 data
= data
& ~AR5K_SLEEP_CTL_SLE
;
562 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
564 usleep_range(15, 20);
566 for (i
= 200; i
> 0; i
--) {
567 /* Check if the chip did wake up */
568 if ((ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
569 AR5K_PCICFG_SPWR_DN
) == 0)
572 /* Wait a bit and retry */
573 usleep_range(50, 75);
574 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
578 /* Fail if the chip didn't wake up */
589 ath5k_hw_reg_write(ah
, staid
, AR5K_STA_ID1
);
595 * ath5k_hw_on_hold() - Put device on hold
596 * @ah: The &struct ath5k_hw
598 * Put MAC and Baseband on warm reset and keep that state
599 * (don't clean sleep control register). After this MAC
600 * and Baseband are disabled and a full reset is needed
601 * to come back. This way we save as much power as possible
602 * without putting the card on full sleep.
604 * Returns 0 on success or -EIO on error
607 ath5k_hw_on_hold(struct ath5k_hw
*ah
)
609 struct pci_dev
*pdev
= ah
->pdev
;
613 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
616 /* Make sure device is awake */
617 ret
= ath5k_hw_set_power_mode(ah
, AR5K_PM_AWAKE
, true, 0);
619 ATH5K_ERR(ah
, "failed to wakeup the MAC Chip\n");
624 * Put chipset on warm reset...
626 * Note: putting PCI core on warm reset on PCI-E cards
627 * results card to hang and always return 0xffff... so
628 * we ignore that flag for PCI-E cards. On PCI cards
629 * this flag gets cleared after 64 PCI clocks.
631 bus_flags
= (pdev
&& pci_is_pcie(pdev
)) ? 0 : AR5K_RESET_CTL_PCI
;
633 if (ah
->ah_version
== AR5K_AR5210
) {
634 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
635 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
636 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
637 usleep_range(2000, 2500);
639 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
640 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
644 ATH5K_ERR(ah
, "failed to put device on warm reset\n");
648 /* ...wakeup again!*/
649 ret
= ath5k_hw_set_power_mode(ah
, AR5K_PM_AWAKE
, true, 0);
651 ATH5K_ERR(ah
, "failed to put device on hold\n");
659 * ath5k_hw_nic_wakeup() - Force card out of sleep
660 * @ah: The &struct ath5k_hw
661 * @channel: The &struct ieee80211_channel
663 * Bring up MAC + PHY Chips and program PLL
664 * NOTE: Channel is NULL for the initial wakeup.
666 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
669 ath5k_hw_nic_wakeup(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
)
671 struct pci_dev
*pdev
= ah
->pdev
;
672 u32 turbo
, mode
, clock
, bus_flags
;
679 if ((ath5k_get_bus_type(ah
) != ATH_AHB
) || channel
) {
680 /* Wakeup the device */
681 ret
= ath5k_hw_set_power_mode(ah
, AR5K_PM_AWAKE
, true, 0);
683 ATH5K_ERR(ah
, "failed to wakeup the MAC Chip\n");
689 * Put chipset on warm reset...
691 * Note: putting PCI core on warm reset on PCI-E cards
692 * results card to hang and always return 0xffff... so
693 * we ignore that flag for PCI-E cards. On PCI cards
694 * this flag gets cleared after 64 PCI clocks.
696 bus_flags
= (pdev
&& pci_is_pcie(pdev
)) ? 0 : AR5K_RESET_CTL_PCI
;
698 if (ah
->ah_version
== AR5K_AR5210
) {
699 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
700 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
701 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
702 usleep_range(2000, 2500);
704 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
705 ret
= ath5k_hw_wisoc_reset(ah
, AR5K_RESET_CTL_PCU
|
706 AR5K_RESET_CTL_BASEBAND
);
708 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
709 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
713 ATH5K_ERR(ah
, "failed to reset the MAC Chip\n");
717 /* ...wakeup again!...*/
718 ret
= ath5k_hw_set_power_mode(ah
, AR5K_PM_AWAKE
, true, 0);
720 ATH5K_ERR(ah
, "failed to resume the MAC Chip\n");
724 /* ...reset configuration register on Wisoc ...
725 * ...clear reset control register and pull device out of
726 * warm reset on others */
727 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
728 ret
= ath5k_hw_wisoc_reset(ah
, 0);
730 ret
= ath5k_hw_nic_reset(ah
, 0);
733 ATH5K_ERR(ah
, "failed to warm reset the MAC Chip\n");
737 /* On initialization skip PLL programming since we don't have
738 * a channel / mode set yet */
742 if (ah
->ah_version
!= AR5K_AR5210
) {
744 * Get channel mode flags
747 if (ah
->ah_radio
>= AR5K_RF5112
) {
748 mode
= AR5K_PHY_MODE_RAD_RF5112
;
749 clock
= AR5K_PHY_PLL_RF5112
;
751 mode
= AR5K_PHY_MODE_RAD_RF5111
; /*Zero*/
752 clock
= AR5K_PHY_PLL_RF5111
; /*Zero*/
755 if (channel
->band
== IEEE80211_BAND_2GHZ
) {
756 mode
|= AR5K_PHY_MODE_FREQ_2GHZ
;
757 clock
|= AR5K_PHY_PLL_44MHZ
;
759 if (channel
->hw_value
== AR5K_MODE_11B
) {
760 mode
|= AR5K_PHY_MODE_MOD_CCK
;
762 /* XXX Dynamic OFDM/CCK is not supported by the
763 * AR5211 so we set MOD_OFDM for plain g (no
764 * CCK headers) operation. We need to test
765 * this, 5211 might support ofdm-only g after
766 * all, there are also initial register values
767 * in the code for g mode (see initvals.c).
769 if (ah
->ah_version
== AR5K_AR5211
)
770 mode
|= AR5K_PHY_MODE_MOD_OFDM
;
772 mode
|= AR5K_PHY_MODE_MOD_DYN
;
774 } else if (channel
->band
== IEEE80211_BAND_5GHZ
) {
775 mode
|= (AR5K_PHY_MODE_FREQ_5GHZ
|
776 AR5K_PHY_MODE_MOD_OFDM
);
778 /* Different PLL setting for 5413 */
779 if (ah
->ah_radio
== AR5K_RF5413
)
780 clock
= AR5K_PHY_PLL_40MHZ_5413
;
782 clock
|= AR5K_PHY_PLL_40MHZ
;
784 ATH5K_ERR(ah
, "invalid radio frequency mode\n");
788 /*XXX: Can bwmode be used with dynamic mode ?
789 * (I don't think it supports 44MHz) */
790 /* On 2425 initvals TURBO_SHORT is not present */
791 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) {
792 turbo
= AR5K_PHY_TURBO_MODE
|
793 (ah
->ah_radio
== AR5K_RF2425
) ? 0 :
794 AR5K_PHY_TURBO_SHORT
;
795 } else if (ah
->ah_bwmode
!= AR5K_BWMODE_DEFAULT
) {
796 if (ah
->ah_radio
== AR5K_RF5413
) {
797 mode
|= (ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) ?
798 AR5K_PHY_MODE_HALF_RATE
:
799 AR5K_PHY_MODE_QUARTER_RATE
;
800 } else if (ah
->ah_version
== AR5K_AR5212
) {
801 clock
|= (ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) ?
802 AR5K_PHY_PLL_HALF_RATE
:
803 AR5K_PHY_PLL_QUARTER_RATE
;
807 } else { /* Reset the device */
809 /* ...enable Atheros turbo mode if requested */
810 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
811 ath5k_hw_reg_write(ah
, AR5K_PHY_TURBO_MODE
,
815 if (ah
->ah_version
!= AR5K_AR5210
) {
817 /* ...update PLL if needed */
818 if (ath5k_hw_reg_read(ah
, AR5K_PHY_PLL
) != clock
) {
819 ath5k_hw_reg_write(ah
, clock
, AR5K_PHY_PLL
);
820 usleep_range(300, 350);
823 /* ...set the PHY operating mode */
824 ath5k_hw_reg_write(ah
, mode
, AR5K_PHY_MODE
);
825 ath5k_hw_reg_write(ah
, turbo
, AR5K_PHY_TURBO
);
832 /**************************************\
833 * Post-initvals register modifications *
834 \**************************************/
837 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
838 * @ah: The &struct ath5k_hw
839 * @channel: The &struct ieee80211_channel
841 * Some settings are not handled on initvals, e.g. bwmode
842 * settings, some phy settings, workarounds etc that in general
843 * don't fit anywhere else or are too small to introduce a separate
844 * function for each one. So we have this function to handle
845 * them all during reset and complete card's initialization.
848 ath5k_hw_tweak_initval_settings(struct ath5k_hw
*ah
,
849 struct ieee80211_channel
*channel
)
851 if (ah
->ah_version
== AR5K_AR5212
&&
852 ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
854 /* Setup ADC control */
855 ath5k_hw_reg_write(ah
,
857 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF
) |
859 AR5K_PHY_ADC_CTL_INBUFGAIN_ON
) |
860 AR5K_PHY_ADC_CTL_PWD_DAC_OFF
|
861 AR5K_PHY_ADC_CTL_PWD_ADC_OFF
),
866 /* Disable barker RSSI threshold */
867 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
868 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR
);
870 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
871 AR5K_PHY_DAG_CCK_CTL_RSSI_THR
, 2);
873 /* Set the mute mask */
874 ath5k_hw_reg_write(ah
, 0x0000000f, AR5K_SEQ_MASK
);
877 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
878 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212B
)
879 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BLUETOOTH
);
881 /* Enable DCU double buffering */
882 if (ah
->ah_phy_revision
> AR5K_SREV_PHY_5212B
)
883 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
884 AR5K_TXCFG_DCU_DBL_BUF_DIS
);
887 if ((ah
->ah_radio
== AR5K_RF5413
) ||
888 (ah
->ah_radio
== AR5K_RF2317
) ||
889 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
892 if (channel
->center_freq
== 2462 ||
893 channel
->center_freq
== 2467)
896 /* Only update if needed */
897 if (ath5k_hw_reg_read(ah
, AR5K_PHY_FAST_ADC
) != fast_adc
)
898 ath5k_hw_reg_write(ah
, fast_adc
,
902 /* Fix for first revision of the RF5112 RF chipset */
903 if (ah
->ah_radio
== AR5K_RF5112
&&
904 ah
->ah_radio_5ghz_revision
<
905 AR5K_SREV_RAD_5112A
) {
907 ath5k_hw_reg_write(ah
, AR5K_PHY_CCKTXCTL_WORLD
,
909 if (channel
->band
== IEEE80211_BAND_5GHZ
)
913 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_FRAME_CTL
);
916 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
917 /* Clear QCU/DCU clock gating register */
918 ath5k_hw_reg_write(ah
, 0, AR5K_QCUDCU_CLKGT
);
919 /* Set DAC/ADC delays */
920 ath5k_hw_reg_write(ah
, AR5K_PHY_SCAL_32MHZ_5311
,
922 /* Enable PCU FIFO corruption ECO */
923 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5211
,
924 AR5K_DIAG_SW_ECO_ENABLE
);
928 /* Increase PHY switch and AGC settling time
929 * on turbo mode (ath5k_hw_commit_eeprom_settings
930 * will override settling time if available) */
931 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) {
933 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
934 AR5K_PHY_SETTLING_AGC
,
935 AR5K_AGC_SETTLING_TURBO
);
937 /* XXX: Initvals indicate we only increase
938 * switch time on AR5212, 5211 and 5210
939 * only change agc time (bug?) */
940 if (ah
->ah_version
== AR5K_AR5212
)
941 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
942 AR5K_PHY_SETTLING_SWITCH
,
943 AR5K_SWITCH_SETTLING_TURBO
);
945 if (ah
->ah_version
== AR5K_AR5210
) {
946 /* Set Frame Control Register */
947 ath5k_hw_reg_write(ah
,
948 (AR5K_PHY_FRAME_CTL_INI
|
949 AR5K_PHY_TURBO_MODE
|
950 AR5K_PHY_TURBO_SHORT
| 0x2020),
951 AR5K_PHY_FRAME_CTL_5210
);
953 /* On 5413 PHY force window length for half/quarter rate*/
954 } else if ((ah
->ah_mac_srev
>= AR5K_SREV_AR5424
) &&
955 (ah
->ah_mac_srev
<= AR5K_SREV_AR5414
)) {
956 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL_5211
,
957 AR5K_PHY_FRAME_CTL_WIN_LEN
,
960 } else if (ah
->ah_version
== AR5K_AR5210
) {
961 /* Set Frame Control Register for normal operation */
962 ath5k_hw_reg_write(ah
, (AR5K_PHY_FRAME_CTL_INI
| 0x1020),
963 AR5K_PHY_FRAME_CTL_5210
);
968 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
969 * @ah: The &struct ath5k_hw
970 * @channel: The &struct ieee80211_channel
972 * Use settings stored on EEPROM to properly initialize the card
973 * based on various infos and per-mode calibration data.
976 ath5k_hw_commit_eeprom_settings(struct ath5k_hw
*ah
,
977 struct ieee80211_channel
*channel
)
979 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
980 s16 cck_ofdm_pwr_delta
;
983 /* TODO: Add support for AR5210 EEPROM */
984 if (ah
->ah_version
== AR5K_AR5210
)
987 ee_mode
= ath5k_eeprom_mode_from_channel(channel
);
989 /* Adjust power delta for channel 14 */
990 if (channel
->center_freq
== 2484)
992 ((ee
->ee_cck_ofdm_power_delta
-
993 ee
->ee_scaled_cck_delta
) * 2) / 10;
996 (ee
->ee_cck_ofdm_power_delta
* 2) / 10;
998 /* Set CCK to OFDM power delta on tx power
999 * adjustment register */
1000 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
1001 if (channel
->hw_value
== AR5K_MODE_11G
)
1002 ath5k_hw_reg_write(ah
,
1003 AR5K_REG_SM((ee
->ee_cck_ofdm_gain_delta
* -1),
1004 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA
) |
1005 AR5K_REG_SM((cck_ofdm_pwr_delta
* -1),
1006 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX
),
1007 AR5K_PHY_TX_PWR_ADJ
);
1009 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TX_PWR_ADJ
);
1011 /* For older revs we scale power on sw during tx power
1013 ah
->ah_txpower
.txp_cck_ofdm_pwr_delta
= cck_ofdm_pwr_delta
;
1014 ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
=
1015 ee
->ee_cck_ofdm_gain_delta
;
1018 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1020 ath5k_hw_set_antenna_switch(ah
, ee_mode
);
1022 /* Noise floor threshold */
1023 ath5k_hw_reg_write(ah
,
1024 AR5K_PHY_NF_SVAL(ee
->ee_noise_floor_thr
[ee_mode
]),
1027 if ((ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) &&
1028 (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
)) {
1029 /* Switch settling time (Turbo) */
1030 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
1031 AR5K_PHY_SETTLING_SWITCH
,
1032 ee
->ee_switch_settling_turbo
[ee_mode
]);
1034 /* Tx/Rx attenuation (Turbo) */
1035 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
1036 AR5K_PHY_GAIN_TXRX_ATTEN
,
1037 ee
->ee_atn_tx_rx_turbo
[ee_mode
]);
1039 /* ADC/PGA desired size (Turbo) */
1040 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
1041 AR5K_PHY_DESIRED_SIZE_ADC
,
1042 ee
->ee_adc_desired_size_turbo
[ee_mode
]);
1044 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
1045 AR5K_PHY_DESIRED_SIZE_PGA
,
1046 ee
->ee_pga_desired_size_turbo
[ee_mode
]);
1048 /* Tx/Rx margin (Turbo) */
1049 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
1050 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
1051 ee
->ee_margin_tx_rx_turbo
[ee_mode
]);
1054 /* Switch settling time */
1055 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
1056 AR5K_PHY_SETTLING_SWITCH
,
1057 ee
->ee_switch_settling
[ee_mode
]);
1059 /* Tx/Rx attenuation */
1060 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
1061 AR5K_PHY_GAIN_TXRX_ATTEN
,
1062 ee
->ee_atn_tx_rx
[ee_mode
]);
1064 /* ADC/PGA desired size */
1065 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
1066 AR5K_PHY_DESIRED_SIZE_ADC
,
1067 ee
->ee_adc_desired_size
[ee_mode
]);
1069 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
1070 AR5K_PHY_DESIRED_SIZE_PGA
,
1071 ee
->ee_pga_desired_size
[ee_mode
]);
1074 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
1075 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
1076 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
1077 ee
->ee_margin_tx_rx
[ee_mode
]);
1081 ath5k_hw_reg_write(ah
,
1082 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 24) |
1083 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 16) |
1084 (ee
->ee_tx_frm2xpa_enable
[ee_mode
] << 8) |
1085 (ee
->ee_tx_frm2xpa_enable
[ee_mode
]), AR5K_PHY_RF_CTL4
);
1088 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RF_CTL3
,
1089 AR5K_PHY_RF_CTL3_TXE2XLNA_ON
,
1090 ee
->ee_tx_end2xlna_enable
[ee_mode
]);
1092 /* Thresh64 (ANI) */
1093 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_NF
,
1094 AR5K_PHY_NF_THRESH62
,
1095 ee
->ee_thr_62
[ee_mode
]);
1097 /* False detect backoff for channels
1098 * that have spur noise. Write the new
1099 * cyclic power RSSI threshold. */
1100 if (ath5k_hw_chan_has_spur_noise(ah
, channel
))
1101 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
1102 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
1103 AR5K_INIT_CYCRSSI_THR1
+
1104 ee
->ee_false_detect
[ee_mode
]);
1106 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
1107 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
1108 AR5K_INIT_CYCRSSI_THR1
);
1110 /* I/Q correction (set enable bit last to match HAL sources) */
1111 /* TODO: Per channel i/q infos ? */
1112 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) {
1113 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_I_COFF
,
1114 ee
->ee_i_cal
[ee_mode
]);
1115 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_Q_COFF
,
1116 ee
->ee_q_cal
[ee_mode
]);
1117 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
);
1120 /* Heavy clipping -disable for now */
1121 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_1
)
1122 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_HEAVY_CLIP_ENABLE
);
1126 /*********************\
1127 * Main reset function *
1128 \*********************/
1131 * ath5k_hw_reset() - The main reset function
1132 * @ah: The &struct ath5k_hw
1133 * @op_mode: One of enum nl80211_iftype
1134 * @channel: The &struct ieee80211_channel
1135 * @fast: Enable fast channel switching
1136 * @skip_pcu: Skip pcu initialization
1138 * This is the function we call each time we want to (re)initialize the
1139 * card and pass new settings to hw. We also call it when hw runs into
1140 * trouble to make it come back to a working state.
1142 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1146 ath5k_hw_reset(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
,
1147 struct ieee80211_channel
*channel
, bool fast
, bool skip_pcu
)
1149 u32 s_seq
[10], s_led
[3], tsf_up
, tsf_lo
;
1158 * Sanity check for fast flag
1159 * Fast channel change only available
1162 if (fast
&& (ah
->ah_radio
!= AR5K_RF2413
) &&
1163 (ah
->ah_radio
!= AR5K_RF5413
))
1166 /* Disable sleep clock operation
1167 * to avoid register access delay on certain
1169 if (ah
->ah_version
== AR5K_AR5212
)
1170 ath5k_hw_set_sleep_clock(ah
, false);
1175 ath5k_hw_stop_rx_pcu(ah
);
1180 * Note: If DMA didn't stop continue
1181 * since only a reset will fix it.
1183 ret
= ath5k_hw_dma_stop(ah
);
1185 /* RF Bus grant won't work if we have pending
1188 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1189 "DMA didn't stop, falling back to normal reset\n");
1191 /* Non fatal, just continue with
1196 mode
= channel
->hw_value
;
1201 if (ah
->ah_version
<= AR5K_AR5211
) {
1203 "G mode not available on 5210/5211");
1208 if (ah
->ah_version
< AR5K_AR5211
) {
1210 "B mode not available on 5210");
1216 "invalid channel: %d\n", channel
->center_freq
);
1221 * If driver requested fast channel change and DMA has stopped
1222 * go on. If it fails continue with a normal reset.
1225 ret
= ath5k_hw_phy_init(ah
, channel
, mode
, true);
1227 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1228 "fast chan change failed, falling back to normal reset\n");
1229 /* Non fatal, can happen eg.
1233 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1234 "fast chan change successful\n");
1240 * Save some registers before a reset
1242 if (ah
->ah_version
!= AR5K_AR5210
) {
1244 * Save frame sequence count
1245 * For revs. after Oahu, only save
1246 * seq num for DCU 0 (Global seq num)
1248 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
1250 for (i
= 0; i
< 10; i
++)
1251 s_seq
[i
] = ath5k_hw_reg_read(ah
,
1252 AR5K_QUEUE_DCU_SEQNUM(i
));
1255 s_seq
[0] = ath5k_hw_reg_read(ah
,
1256 AR5K_QUEUE_DCU_SEQNUM(0));
1259 /* TSF accelerates on AR5211 during reset
1260 * As a workaround save it here and restore
1261 * it later so that it's back in time after
1262 * reset. This way it'll get re-synced on the
1263 * next beacon without breaking ad-hoc.
1265 * On AR5212 TSF is almost preserved across a
1266 * reset so it stays back in time anyway and
1267 * we don't have to save/restore it.
1269 * XXX: Since this breaks power saving we have
1270 * to disable power saving until we receive the
1271 * next beacon, so we can resync beacon timers */
1272 if (ah
->ah_version
== AR5K_AR5211
) {
1273 tsf_up
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
1274 tsf_lo
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
1280 s_led
[0] = ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
1281 AR5K_PCICFG_LEDSTATE
;
1282 s_led
[1] = ath5k_hw_reg_read(ah
, AR5K_GPIOCR
);
1283 s_led
[2] = ath5k_hw_reg_read(ah
, AR5K_GPIODO
);
1287 * Since we are going to write rf buffer
1288 * check if we have any pending gain_F
1289 * optimization settings
1291 if (ah
->ah_version
== AR5K_AR5212
&&
1292 (ah
->ah_radio
<= AR5K_RF5112
)) {
1293 if (!fast
&& ah
->ah_rf_banks
!= NULL
)
1294 ath5k_hw_gainf_calibrate(ah
);
1297 /* Wakeup the device */
1298 ret
= ath5k_hw_nic_wakeup(ah
, channel
);
1302 /* PHY access enable */
1303 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5211
)
1304 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1306 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
| 0x40,
1309 /* Write initial settings */
1310 ret
= ath5k_hw_write_initvals(ah
, mode
, skip_pcu
);
1314 /* Initialize core clock settings */
1315 ath5k_hw_init_core_clock(ah
);
1318 * Tweak initval settings for revised
1319 * chipsets and add some more config
1322 ath5k_hw_tweak_initval_settings(ah
, channel
);
1324 /* Commit values from EEPROM */
1325 ath5k_hw_commit_eeprom_settings(ah
, channel
);
1329 * Restore saved values
1333 if (ah
->ah_version
!= AR5K_AR5210
) {
1334 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
1335 for (i
= 0; i
< 10; i
++)
1336 ath5k_hw_reg_write(ah
, s_seq
[i
],
1337 AR5K_QUEUE_DCU_SEQNUM(i
));
1339 ath5k_hw_reg_write(ah
, s_seq
[0],
1340 AR5K_QUEUE_DCU_SEQNUM(0));
1343 if (ah
->ah_version
== AR5K_AR5211
) {
1344 ath5k_hw_reg_write(ah
, tsf_up
, AR5K_TSF_U32
);
1345 ath5k_hw_reg_write(ah
, tsf_lo
, AR5K_TSF_L32
);
1350 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
, s_led
[0]);
1353 ath5k_hw_reg_write(ah
, s_led
[1], AR5K_GPIOCR
);
1354 ath5k_hw_reg_write(ah
, s_led
[2], AR5K_GPIODO
);
1359 ath5k_hw_pcu_init(ah
, op_mode
);
1364 ret
= ath5k_hw_phy_init(ah
, channel
, mode
, false);
1367 "failed to initialize PHY (%i) !\n", ret
);
1372 * Configure QCUs/DCUs
1374 ret
= ath5k_hw_init_queues(ah
);
1380 * Initialize DMA/Interrupts
1382 ath5k_hw_dma_init(ah
);
1386 * Enable 32KHz clock function for AR5212+ chips
1387 * Set clocks to 32KHz operation and use an
1388 * external 32KHz crystal when sleeping if one
1390 * Disabled by default because it is also disabled in
1391 * other drivers and it is known to cause stability
1392 * issues on some devices
1394 if (ah
->ah_use_32khz_clock
&& ah
->ah_version
== AR5K_AR5212
&&
1395 op_mode
!= NL80211_IFTYPE_AP
)
1396 ath5k_hw_set_sleep_clock(ah
, true);
1399 * Disable beacons and reset the TSF
1401 AR5K_REG_DISABLE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_ENABLE
);
1402 ath5k_hw_reset_tsf(ah
);