Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / ath / ath9k / dfs_pri_detector.c
blob91b8dceeadb10ef6c9f84d20f4a5bba6cd1500dd
1 /*
2 * Copyright (c) 2012 Neratec Solutions AG
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
20 #include "ath9k.h"
21 #include "dfs_pattern_detector.h"
22 #include "dfs_pri_detector.h"
23 #include "dfs_debug.h"
25 /**
26 * struct pri_sequence - sequence of pulses matching one PRI
27 * @head: list_head
28 * @pri: pulse repetition interval (PRI) in usecs
29 * @dur: duration of sequence in usecs
30 * @count: number of pulses in this sequence
31 * @count_falses: number of not matching pulses in this sequence
32 * @first_ts: time stamp of first pulse in usecs
33 * @last_ts: time stamp of last pulse in usecs
34 * @deadline_ts: deadline when this sequence becomes invalid (first_ts + dur)
36 struct pri_sequence {
37 struct list_head head;
38 u32 pri;
39 u32 dur;
40 u32 count;
41 u32 count_falses;
42 u64 first_ts;
43 u64 last_ts;
44 u64 deadline_ts;
47 /**
48 * struct pulse_elem - elements in pulse queue
49 * @ts: time stamp in usecs
51 struct pulse_elem {
52 struct list_head head;
53 u64 ts;
56 /**
57 * pde_get_multiple() - get number of multiples considering a given tolerance
58 * @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
60 static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
62 u32 remainder;
63 u32 factor;
64 u32 delta;
66 if (fraction == 0)
67 return 0;
69 delta = (val < fraction) ? (fraction - val) : (val - fraction);
71 if (delta <= tolerance)
72 /* val and fraction are within tolerance */
73 return 1;
75 factor = val / fraction;
76 remainder = val % fraction;
77 if (remainder > tolerance) {
78 /* no exact match */
79 if ((fraction - remainder) <= tolerance)
80 /* remainder is within tolerance */
81 factor++;
82 else
83 factor = 0;
85 return factor;
88 /**
89 * DOC: Singleton Pulse and Sequence Pools
91 * Instances of pri_sequence and pulse_elem are kept in singleton pools to
92 * reduce the number of dynamic allocations. They are shared between all
93 * instances and grow up to the peak number of simultaneously used objects.
95 * Memory is freed after all references to the pools are released.
97 static u32 singleton_pool_references;
98 static LIST_HEAD(pulse_pool);
99 static LIST_HEAD(pseq_pool);
100 static DEFINE_SPINLOCK(pool_lock);
102 static void pool_register_ref(void)
104 spin_lock_bh(&pool_lock);
105 singleton_pool_references++;
106 DFS_POOL_STAT_INC(pool_reference);
107 spin_unlock_bh(&pool_lock);
110 static void pool_deregister_ref(void)
112 spin_lock_bh(&pool_lock);
113 singleton_pool_references--;
114 DFS_POOL_STAT_DEC(pool_reference);
115 if (singleton_pool_references == 0) {
116 /* free singleton pools with no references left */
117 struct pri_sequence *ps, *ps0;
118 struct pulse_elem *p, *p0;
120 list_for_each_entry_safe(p, p0, &pulse_pool, head) {
121 list_del(&p->head);
122 DFS_POOL_STAT_DEC(pulse_allocated);
123 kfree(p);
125 list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
126 list_del(&ps->head);
127 DFS_POOL_STAT_DEC(pseq_allocated);
128 kfree(ps);
131 spin_unlock_bh(&pool_lock);
134 static void pool_put_pulse_elem(struct pulse_elem *pe)
136 spin_lock_bh(&pool_lock);
137 list_add(&pe->head, &pulse_pool);
138 DFS_POOL_STAT_DEC(pulse_used);
139 spin_unlock_bh(&pool_lock);
142 static void pool_put_pseq_elem(struct pri_sequence *pse)
144 spin_lock_bh(&pool_lock);
145 list_add(&pse->head, &pseq_pool);
146 DFS_POOL_STAT_DEC(pseq_used);
147 spin_unlock_bh(&pool_lock);
150 static struct pri_sequence *pool_get_pseq_elem(void)
152 struct pri_sequence *pse = NULL;
153 spin_lock_bh(&pool_lock);
154 if (!list_empty(&pseq_pool)) {
155 pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
156 list_del(&pse->head);
157 DFS_POOL_STAT_INC(pseq_used);
159 spin_unlock_bh(&pool_lock);
160 return pse;
163 static struct pulse_elem *pool_get_pulse_elem(void)
165 struct pulse_elem *pe = NULL;
166 spin_lock_bh(&pool_lock);
167 if (!list_empty(&pulse_pool)) {
168 pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
169 list_del(&pe->head);
170 DFS_POOL_STAT_INC(pulse_used);
172 spin_unlock_bh(&pool_lock);
173 return pe;
176 static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
178 struct list_head *l = &pde->pulses;
179 if (list_empty(l))
180 return NULL;
181 return list_entry(l->prev, struct pulse_elem, head);
184 static bool pulse_queue_dequeue(struct pri_detector *pde)
186 struct pulse_elem *p = pulse_queue_get_tail(pde);
187 if (p != NULL) {
188 list_del_init(&p->head);
189 pde->count--;
190 /* give it back to pool */
191 pool_put_pulse_elem(p);
193 return (pde->count > 0);
196 /* remove pulses older than window */
197 static void pulse_queue_check_window(struct pri_detector *pde)
199 u64 min_valid_ts;
200 struct pulse_elem *p;
202 /* there is no delta time with less than 2 pulses */
203 if (pde->count < 2)
204 return;
206 if (pde->last_ts <= pde->window_size)
207 return;
209 min_valid_ts = pde->last_ts - pde->window_size;
210 while ((p = pulse_queue_get_tail(pde)) != NULL) {
211 if (p->ts >= min_valid_ts)
212 return;
213 pulse_queue_dequeue(pde);
217 static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
219 struct pulse_elem *p = pool_get_pulse_elem();
220 if (p == NULL) {
221 p = kmalloc(sizeof(*p), GFP_KERNEL);
222 if (p == NULL) {
223 DFS_POOL_STAT_INC(pulse_alloc_error);
224 return false;
226 DFS_POOL_STAT_INC(pulse_allocated);
227 DFS_POOL_STAT_INC(pulse_used);
229 INIT_LIST_HEAD(&p->head);
230 p->ts = ts;
231 list_add(&p->head, &pde->pulses);
232 pde->count++;
233 pde->last_ts = ts;
234 pulse_queue_check_window(pde);
235 if (pde->count >= pde->max_count)
236 pulse_queue_dequeue(pde);
237 return true;
240 static bool pseq_handler_create_sequences(struct pri_detector *pde,
241 u64 ts, u32 min_count)
243 struct pulse_elem *p;
244 list_for_each_entry(p, &pde->pulses, head) {
245 struct pri_sequence ps, *new_ps;
246 struct pulse_elem *p2;
247 u32 tmp_false_count;
248 u64 min_valid_ts;
249 u32 delta_ts = ts - p->ts;
251 if (delta_ts < pde->rs->pri_min)
252 /* ignore too small pri */
253 continue;
255 if (delta_ts > pde->rs->pri_max)
256 /* stop on too large pri (sorted list) */
257 break;
259 /* build a new sequence with new potential pri */
260 ps.count = 2;
261 ps.count_falses = 0;
262 ps.first_ts = p->ts;
263 ps.last_ts = ts;
264 ps.pri = ts - p->ts;
265 ps.dur = ps.pri * (pde->rs->ppb - 1)
266 + 2 * pde->rs->max_pri_tolerance;
268 p2 = p;
269 tmp_false_count = 0;
270 min_valid_ts = ts - ps.dur;
271 /* check which past pulses are candidates for new sequence */
272 list_for_each_entry_continue(p2, &pde->pulses, head) {
273 u32 factor;
274 if (p2->ts < min_valid_ts)
275 /* stop on crossing window border */
276 break;
277 /* check if pulse match (multi)PRI */
278 factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
279 pde->rs->max_pri_tolerance);
280 if (factor > 0) {
281 ps.count++;
282 ps.first_ts = p2->ts;
284 * on match, add the intermediate falses
285 * and reset counter
287 ps.count_falses += tmp_false_count;
288 tmp_false_count = 0;
289 } else {
290 /* this is a potential false one */
291 tmp_false_count++;
294 if (ps.count < min_count)
295 /* did not reach minimum count, drop sequence */
296 continue;
298 /* this is a valid one, add it */
299 ps.deadline_ts = ps.first_ts + ps.dur;
300 new_ps = pool_get_pseq_elem();
301 if (new_ps == NULL) {
302 new_ps = kmalloc(sizeof(*new_ps), GFP_KERNEL);
303 if (new_ps == NULL) {
304 DFS_POOL_STAT_INC(pseq_alloc_error);
305 return false;
307 DFS_POOL_STAT_INC(pseq_allocated);
308 DFS_POOL_STAT_INC(pseq_used);
310 memcpy(new_ps, &ps, sizeof(ps));
311 INIT_LIST_HEAD(&new_ps->head);
312 list_add(&new_ps->head, &pde->sequences);
314 return true;
317 /* check new ts and add to all matching existing sequences */
318 static u32
319 pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
321 u32 max_count = 0;
322 struct pri_sequence *ps, *ps2;
323 list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
324 u32 delta_ts;
325 u32 factor;
327 /* first ensure that sequence is within window */
328 if (ts > ps->deadline_ts) {
329 list_del_init(&ps->head);
330 pool_put_pseq_elem(ps);
331 continue;
334 delta_ts = ts - ps->last_ts;
335 factor = pde_get_multiple(delta_ts, ps->pri,
336 pde->rs->max_pri_tolerance);
337 if (factor > 0) {
338 ps->last_ts = ts;
339 ps->count++;
341 if (max_count < ps->count)
342 max_count = ps->count;
343 } else {
344 ps->count_falses++;
347 return max_count;
350 static struct pri_sequence *
351 pseq_handler_check_detection(struct pri_detector *pde)
353 struct pri_sequence *ps;
355 if (list_empty(&pde->sequences))
356 return NULL;
358 list_for_each_entry(ps, &pde->sequences, head) {
360 * we assume to have enough matching confidence if we
361 * 1) have enough pulses
362 * 2) have more matching than false pulses
364 if ((ps->count >= pde->rs->ppb_thresh) &&
365 (ps->count * pde->rs->num_pri >= ps->count_falses))
366 return ps;
368 return NULL;
372 /* free pulse queue and sequences list and give objects back to pools */
373 static void pri_detector_reset(struct pri_detector *pde, u64 ts)
375 struct pri_sequence *ps, *ps0;
376 struct pulse_elem *p, *p0;
377 list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
378 list_del_init(&ps->head);
379 pool_put_pseq_elem(ps);
381 list_for_each_entry_safe(p, p0, &pde->pulses, head) {
382 list_del_init(&p->head);
383 pool_put_pulse_elem(p);
385 pde->count = 0;
386 pde->last_ts = ts;
389 static void pri_detector_exit(struct pri_detector *de)
391 pri_detector_reset(de, 0);
392 pool_deregister_ref();
393 kfree(de);
396 static bool pri_detector_add_pulse(struct pri_detector *de,
397 struct pulse_event *event)
399 u32 max_updated_seq;
400 struct pri_sequence *ps;
401 u64 ts = event->ts;
402 const struct radar_detector_specs *rs = de->rs;
404 /* ignore pulses not within width range */
405 if ((rs->width_min > event->width) || (rs->width_max < event->width))
406 return false;
408 if ((ts - de->last_ts) < rs->max_pri_tolerance)
409 /* if delta to last pulse is too short, don't use this pulse */
410 return false;
411 de->last_ts = ts;
413 max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
415 if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
416 pr_err("failed to create pulse sequences\n");
417 pri_detector_reset(de, ts);
418 return false;
421 ps = pseq_handler_check_detection(de);
423 if (ps != NULL) {
424 pr_info("DFS: radar found: pri=%d, count=%d, count_false=%d\n",
425 ps->pri, ps->count, ps->count_falses);
426 pri_detector_reset(de, ts);
427 return true;
429 pulse_queue_enqueue(de, ts);
430 return false;
433 struct pri_detector *
434 pri_detector_init(const struct radar_detector_specs *rs)
436 struct pri_detector *de;
437 de = kzalloc(sizeof(*de), GFP_KERNEL);
438 if (de == NULL)
439 return NULL;
440 de->exit = pri_detector_exit;
441 de->add_pulse = pri_detector_add_pulse;
442 de->reset = pri_detector_reset;
444 INIT_LIST_HEAD(&de->sequences);
445 INIT_LIST_HEAD(&de->pulses);
446 de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
447 de->max_count = rs->ppb * 2;
448 de->rs = rs;
450 pool_register_ref();
451 return de;